The Suidae are a family of Cetartiodactyla composed of 17 species classified in a minimum of five extant genera that originated at least 20 million years ago. Their success is evident in the multitude of habitats in which they are found as both natural and feral populations in tropical Island Southeast Asia, the high plateau of the Himalayas, Siberia, North Africa, the Pacific Islands, Australia, and the Americas. Morphological and molecular analyses of these species have revealed numerous aspects of their biology, including the ease with which many lineages have and continue to hybridize. This trait has made them an ideal model for evolutionary biologists. Suid species have also shared a deep history with humans, from their association with early hominids in Africa to their domestication. Here we review the current knowledge of this fascinating group and provide a comprehensive evolutionary history from the Oligocene to the present day.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Montgelard C, Catzeflis FM, Douzery E. 1.  1997. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14:550–59 [Google Scholar]
  2. Orliac M, Pierre-Olivier A, Ducrocq S. 2.  2010. Phylogenetic relationships of the Suidae (Mammalia, Cetartiodactyla): new insights on the relationships within Suoidea. Zool. Scr. 39:315–30 [Google Scholar]
  3. Orliac M. 3.  2013. The petrosal bone of extinct Suoidea (Mammalia, Artiodactyla). J. Syst. Palaeontol. 11:925–45 [Google Scholar]
  4. Randi E, Lucchini V, Diong CH. 4.  1996. Evolutionary genetics of the Suiformes as reconstructed using mtDNA sequencing. J. Mamm. Evol. 3:163–94 [Google Scholar]
  5. Gongora J, Cuddahee RE, Nascimento FF, Palgrave CJ, Lowden S. 5.  et al. 2011. Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zool. Scr. 40:327–35 [Google Scholar]
  6. Pickford M, Senut B, Hadoto DPM. 6.  1993. Geology and Palaeobiology of the Albertine Rift Valley, Uganda-Zaire: Geology Orléans, France: CIFEG
  7. Ducrocq S. 7.  1994. An Eocene Peccary from Thailand and the Biogeographical Origins of the Artiodactyl Family Tayassuidae Dyfed, UK: Palaeontol. Assoc.
  8. Harris JM, Li-Ping L. 8.  2007. Superfamily Suoidea. The Evolution of Artiodactyla D Prothero, S Foss 130–50 Baltimore, MD: Johns Hopkins Univ. Press [Google Scholar]
  9. Orliac MJ, Antoine P-O, Roohi G, Welcomme J-L. 9.  2010. Suoidea (Mammalia, Cetartiodactyla) from the Early Oligocene of the Bugti Hills, Balochistan, Pakistan. J. Vertebr. Paleontol. 30:1300–5 [Google Scholar]
  10. Pickford M. 10.  1986. Cainozoic paleontological sites of Western Kenya. Am. J. Phys. Anthr. 76:1142 [Google Scholar]
  11. Pickford M. 11.  1988. Revision of the Miocene Suidae of the Indian Subcontinent München, Ger.: F. Pfiel
  12. Van der Made J. 12.  1998. Biometrical trends in the Tetraconodontinae, a subfamily of pigs. Trans. R. Soc. Edinb. Earth Sci. 89:199–225 [Google Scholar]
  13. Pickford M. 13.  2012. Ancestors of Broom's pigs. Trans. R. Soc. S. Afr. 67:17–35 [Google Scholar]
  14. Pickford M. 14.  1986. A Revision of the Miocene Suidae and Tayassuidae, (Artiodactyla, Mammalia) of Africa Leiden, Neth.: Brill Acad. [Google Scholar]
  15. White TD, Harris JM. 15.  1977. Suid evolution and correlation of African hominid localities. Science 198:13–21 [Google Scholar]
  16. Leakey LSB. 16.  1958. Some East African Pleistocene Suidae London: Br. Mus.
  17. Harris JM, Leakey MG, Brown FH. 17.  1988. Stratigraphy and Paleontology of Pliocene and Pleistocene Localities West of Lake Turkana, Kenya Los Angeles, CA: Nat. Hist. Mus. L.A. Cty.
  18. Roth J, Wagner JA. 18.  1854. Die fossilen Knochen-überreste von Pikermi in Griechenland: Gemeinschaftlich bestimmt und beschrieben von den Akademikern. München, Ger.: Verlag Akad.
  19. Geraads D, Spassov N, Garevski R. 19.  2008. New specimens of Propotamochoerus (Suidae, Mammalia) from the late Miocene of the Balkans. Neues Jahrb. Geol. Paläontol. Abh. 248:103–13 [Google Scholar]
  20. Van der Made J, Morales J, Montoya P. 20.  2006. Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian Salinity Crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238:228–46 [Google Scholar]
  21. Orliac MJ. 21.  2009. The differentiation of bunodont Listriodontinae (Mammalia, Suidae) of Africa: new data from Kalodirr and Moruorot, Kenya. Zool. J. Linn. Soc. 157:653–78 [Google Scholar]
  22. Pickford M. 22.  1988. Une étrange suidénain du Néogène Supérier de Langebaanweg (Afrique du Sud). Ann. Paléontol. 74:229–50 [Google Scholar]
  23. Van der Made J. 23.  1996. Listriodontinae (Suidae, Mammalia): their evolution, systematics and distribution in time and space. Contrib. Tert. Quat. Geol. 33:3–254 [Google Scholar]
  24. Van der Made J. 24.  1996. Albanohyus, a small Miocene pig. Acta Zool. Crac. 39:293–303 [Google Scholar]
  25. Brunet M, White T. 25.  2001. Two new suin species (Mammalia, Suidae) from Africa (Chad, Ethiopia). C. R. Acad. Sci. Ser. II Fasc. A Sci. Terre Planètes 332:51–57 [Google Scholar]
  26. Cooke H. 26.  1997. The status of the African fossil suids Kolpochoerus limnetes (Hopwood, 1926), K. phacochoeroides (Thomas 1884) and “K.” afarensis (Cooke, 1978). Geobios 30:121–26 [Google Scholar]
  27. Haile-Selassie Y, Simpson SW. 27.  2013. A new species of Kolpochoerus (Mammalia: Suidae) from the Pliocene of Central Afar, Ethiopia: its taxonomy and phylogenetic relationships. J. Mamm. Evol. 20:115–27 [Google Scholar]
  28. White TD, Suwa G. 28.  2004. A new species of Notochoerus (Artiodactyla, Suidae) from the Pliocene of Ethiopia. J. Vertebr. Paleontol. 24:474–80 [Google Scholar]
  29. Frantz L, Schraiber JG, Madsen O, Megens H-J, Bosse M. 29.  et al. 2013. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol. 14:R107 [Google Scholar]
  30. Hooijer DA. 30.  1974. Quaternary mammals west and east of Wallace's Line. Neth J. Zool. 25:46–56 [Google Scholar]
  31. Pickford M. 31.  2013. Suids from the Pleistocene of Naungkwe Taung, Kayin State, Myanmar. Paleontol. Res. 16:307–17 [Google Scholar]
  32. Azzaroli A. 32.  1992. Suids of the early Villafranchian of Villafranca d'Asti and China. Rend. Lincei 3:109–24 [Google Scholar]
  33. Montoya P, Ginsburg L, Alberdi MT, Van der Made J, Morales J, Soria MD. 33.  2006. Fossil large mammals from the early Pliocene locality of Alcoy (Spain) and their importance in biostratigraphy. Geodiversitas 28:137–73 [Google Scholar]
  34. Fistani AB. 34.  1996. Sus scrofa priscus (Goldfuss, De Serres) (Mammalia, Artiodactyla, Suidae) from the Middle Pleistocene layers of Gajtan 1 site, southeast of Shkodër (north Albania). Ann. Paléontol. 82:177–229 [Google Scholar]
  35. Guérin C, Faure M. 35.  1997. The wild boar (Sus scrofa priscus) from the post-Villafranchian Lower Pleistocene of Untermassfeld. Das Pleistozän von Untermassfeld bei Meiningen (Thüringen) RD Kahlke 1375–84 Mainz, Ger.: Röm. Ger. Zentralmus. [Google Scholar]
  36. Faure M, Guerin C. 36.  1984. Sus strozzii et Sus scrofa, deux mammiferes artiodactyles, marqueurs des paleoenvironnements. Palaeogeogr. Palaeoclimatol. Palaeoecol. 48:215–28 [Google Scholar]
  37. Wang W, Potts R, Baoyin Y, Huang W, Cheng H. 37.  et al. 2007. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52:370–79 [Google Scholar]
  38. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y. 38.  et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–98 [Google Scholar]
  39. Bosse M, Megens H-J, Madsen O, Paudel Y, Frantz LA. 39.  et al. 2012. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLOS Genet. 8:e1003100 [Google Scholar]
  40. Li M, Tian S, Jin L, Zhou G, Li Y. 40.  et al. 2013. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat. Genet. 45:1431–38 [Google Scholar]
  41. Ai H, Fang X, Yang B, Huang Z, Chen H. 41.  et al. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet. 47:217–25 [Google Scholar]
  42. Paudel Y, Madsen O, Megens H-J, Frantz LA, Bosse M. 42.  et al. 2013. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genom. 14:449 [Google Scholar]
  43. Nguyen DT, Lee K, Choi H, Choi M-k, Le MT. 43.  et al. 2012. The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genom. 13:584 [Google Scholar]
  44. Sudmant PH, Huddleston J, Catacchio CR, Malig M, Hillier LW. 44.  et al. 2013. Evolution and diversity of copy number variation in the great ape lineage. Genome Res. 23:1373–82 [Google Scholar]
  45. Ache BW, Young JM. 45.  2005. Olfaction: diverse species, conserved principles. Neuron 48:417–30 [Google Scholar]
  46. Nozawa M, Kawahara Y, Nei M. 46.  2007. Genomic drift and copy number variation of sensory receptor genes in humans. PNAS 104:20421–26 [Google Scholar]
  47. Go Y, Niimura Y. 47.  2008. Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol. Biol. Evol. 25:1897–907 [Google Scholar]
  48. Niimura Y, Nei M. 48.  2007. Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLOS ONE 2:e708 [Google Scholar]
  49. Paudel Y, Madsen O, Megens H-J, Frantz LA, Bosse M. 49.  et al. 2015. Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors. BMC Genom. 16:330 [Google Scholar]
  50. Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E. 50.  et al. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307:1618–21 [Google Scholar]
  51. Larson G, Cucchi T, Fujita M, Matisoo-Smith E, Robins J. 51.  et al. 2007. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. PNAS 104:4834–39 [Google Scholar]
  52. Lucchini V, Meijaard E, Diong CH, Groves CP, Randi E. 52.  2005. New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. J. Zool. 266:25–35 [Google Scholar]
  53. Frantz LA, Madsen O, Megens HJ, Groenen MA, Lohse K. 53.  2014. Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island South-East Asian Sus species during the Plio-Pleistocene climatic fluctuations. Mol. Ecol. 23:5566–74 [Google Scholar]
  54. Bender PA. 54.  1992. A reconsideration of the fossil suid Potamochoeroides shawi, from the Makapansgat Limeworks, Potgietersrus, Northern Transvaal Bloemfontein: Navors. Nas. Mus. [Google Scholar]
  55. Cooke H. 55.  1978. Suid evolution and correlation of African hominid localities: an alternative taxonomy. Science 201:460–63 [Google Scholar]
  56. Groves CP. 56.  1981. Ancestors for the pigs: taxonomy and phylogeny of the genus Sus. Tech. Bull., Dep. Prehist., Res. School Pac. Stud., Aust. Natl. Univ.
  57. Pickford M. 57.  2006. Synopsis of the biochronology of African Neogene and Quaternary Suiformes. Trans. R. Soc. S. Afr. 61:51–62 [Google Scholar]
  58. Gongora J, Cuddahee RE, Ferreira do Nascimento F, Palgrave CJ, Lowden S. 58.  et al. 2011. Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zool. Scr. 40:327–35 [Google Scholar]
  59. Kumar S, Gaur R. 59.  2013. First record of maxillary dentition of Potamochoerus theobaldi (Suidae, Mammalia) from the Upper Siwaliks of India. Riv. Ital. Paleontol. Stratigr. 119:57–63 [Google Scholar]
  60. Arribas A, Garrido G. 60.  2008. A new wild boar belonging to the genus Potamochoerus (Suidae, Artiodactyla, Mammalia) from the Eurasian Late Upper Pliocene (Fonelas P-1, Cuenca de Guadix, Granada). Cuad. Mus. Geomin. 10:337–64 [Google Scholar]
  61. Gray J. 61.  1873. L.—Observations on pigs (Sus, Linnæus; Setifera, Illiger) and their skulls, with the description of a new species. J. Nat. Hist. 11:431–39 [Google Scholar]
  62. de Bruyn M, Stelbrink B, Morley RJ, Hall R, Carvalho GR. 62.  et al. 2014. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63:879–901 [Google Scholar]
  63. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U. 63.  et al. 2010. A draft sequence of the Neandertal genome. Science 328:710–22 [Google Scholar]
  64. Lohse K, Frantz LA. 64.  2014. Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes. Genetics 196:1241–51 [Google Scholar]
  65. Huerta-Sánchez E, Jin X, Bianba Z, Peter BM, Vinckenbosch N. 65.  et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:194–97 [Google Scholar]
  66. Vercammen P, Seydack AHW, Oliver WLR. 66.  1993. The bush pigs (Potamochoerus porcus and P. larvatus). Pigs, Peccaries and Hippos WLR Oliver 93–100 Gland, Switz.: IUCN [Google Scholar]
  67. Blouch RA. 67.  1993. The Javan warty pig (Sus verrucosus). Pigs, Peccaries and Hippos WLR Oliver 129–35 Gland, Switz.: IUCN [Google Scholar]
  68. Blouch RA. 68.  1995. Conservation and research priorities for threatened suids of South and Southeast Asia. Ibex 3:21–25 [Google Scholar]
  69. Schwarz E. 69.  1914. Säugetiere von Timor: Mit 8 Tafeln (Tafel 2–9) Stuttgart, Ger.: Im Kommissionverlag der E. Schweizerbartschen Verlagsbuchhandlung [Google Scholar]
  70. Groves CP. 70.  1984. Of mice and men and pigs in the Indo-Australian Archipelago. Canberra Anthropol. 7:1–19 [Google Scholar]
  71. Groves CP. 71.  1983. Pigs east of the Wallace Line. J. Soc. Océan. 39:105–19 [Google Scholar]
  72. Vigne J-D, Zazzo A, Saliège J-F, Poplin F, Guilaine J, Simmons A. 72.  2009. Pre-Neolithic wild boar management and introduction to Cyprus more than 11,400 years ago. PNAS 106:16135–38 [Google Scholar]
  73. Hambrecht G. 73.  2012. Zooarchaeology and modernity in Iceland. Int. J. Hist. Archaeol. 16:472–87 [Google Scholar]
  74. Nelson DE, Heinemeier J, Møhl J, Arneborg J. 74.  2012. Isotopic analysis of the domestic animals of Norse Greenland. J. N. Atl. 3:Spec. Vol.77–92 [Google Scholar]
  75. Burgos-Paz W, Souza CA, Megens HJ, Ramayo-Caldas Y, Melo M. 75.  et al. 2013. Porcine colonization of the Americas: a 60k SNP story. Heredity 110:321–30 [Google Scholar]
  76. Gongora J, Fleming P, Spencer PB, Mason R, Garkavenko O. 76.  et al. 2004. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33:2339–48 [Google Scholar]
  77. Barrios-Garcia MN, Ballari SA. 77.  2012. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14:2283–300 [Google Scholar]
  78. Frantz LAF, Schraiber J, Madsen O, Megens HJ, Semiadi G. 78.  et al. 2013. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus (Suidae: Cetartiodactyla). Genome Biol. 14:R107 [Google Scholar]
  79. Larson G, Fuller DQ. 79.  2014. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45:115–36 [Google Scholar]
  80. Vigne J-D. 80.  2011. The origins of animal domestication and husbandry: a major change in the history of humanity and the biosphere. C. R. Biol. 334:171–81 [Google Scholar]
  81. Zeder MA. 81.  2012. The domestication of animals. J. Anthropol. Res. 68:161–90 [Google Scholar]
  82. Marom N, Bar-Oz G. 82.  2013. The prey pathway: a regional history of cattle (Bos taurus) and pig (Sus scrofa) domestication in the northern Jordan Valley, Israel. PLOS ONE 8:e55958 [Google Scholar]
  83. Zohary D, Tchernov E, Horwitz L. 83.  1998. The role of unconscious selection in the domestication of sheep and goats. J. Zool. 245:129–35 [Google Scholar]
  84. Duarte CM, Marbá N, Holmer M. 84.  2007. Rapid domestication of marine species. Science 316:382–83 [Google Scholar]
  85. Ervynck A, Dobney K, Hongo H, Meadow R. 85.  2001. Born free? New evidence for the status of Sus scrofa at Neolithic Çayönü Tepesi (Southeastern Anatolia, Turkey). Paléorient 27:247–73 [Google Scholar]
  86. Hongo H, Meadow RH. 86.  1998. Pig exploitation at neolithic Çayönü Tepesi (Southeastern Anatolia). Ancestors for the Pigs: Pigs in Prehistory SM Nelson 77–98 Philadelphia: Univ. Pa. Mus. Archaeol. Anthropol. [Google Scholar]
  87. Dobney K, Ervynck A, Albarella U, Rowley-Conwy P. 87.  2004. The chronology and frequency of a stress marker (linear enamel hypoplasia) in recent and archaeological populations of Sus scrofa in north-west Europe, and the effects of early domestication. J. Zool. 264:197–208 [Google Scholar]
  88. Peters J, Helmer D, von den Driesch A, Saña Segui M. 88.  1999. Early animal husbandry in the Northern Levant. Paléorient 25:227–48 [Google Scholar]
  89. Albarella U, Dobney K, Rowley-Conwy P. 89.  2006. The domestication of the pig (Sus scrofa): new challenges and approaches. Documenting Domestication: New Genetic and Archaeological Paradigms MA Zeder 209–27 Berkeley: Univ. Calif. Press [Google Scholar]
  90. Barton L, Newsome SD, Chen F-H, Wang H, Guilderson TP, Bettinger RL. 90.  2009. Agricultural origins and the isotopic identity of domestication in northern China. PNAS 106:5523–28 [Google Scholar]
  91. Fuller DQ, Qin L, Zheng Y, Zhao Z, Chen X. 91.  et al. 2009. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science 323:1607–10 [Google Scholar]
  92. Liu X, Hunt HV, Jones MK. 92.  2009. River valleys and foothills: changing archaeological perceptions of North China's earliest farms. Antiquity 83:82–95 [Google Scholar]
  93. Lu H, Zhang J, Liu K-b, Wu N, Li Y. 93.  et al. 2009. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. PNAS 106:7367–72 [Google Scholar]
  94. Fuller DQ, Qin L. 94.  2009. Water management and labour in the origins and dispersal of Asian rice. World Archaeol. 41:88–111 [Google Scholar]
  95. Flad RK, Jing Y, Shuicheng L. 95.  2007. Zooarchaeological evidence for animal domestication in northwest China. Late Quaternary Climate Change and Human Adaptation in Arid China DB Madsen, X Gao, FH Chen 167–204 Amsterdam: Elsevier, 1st ed.. [Google Scholar]
  96. Yuan J, Flad R. 96.  2002. Pig domestication in ancient China. Antiquity 76:724–32 [Google Scholar]
  97. Cucchi T, Hulme-Beaman A, Yuan J, Dobney K. 97.  2011. Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. J. Archaeol. Sci. 38:11–22 [Google Scholar]
  98. Jiang L. 98.  2004. Kuahuqiao Beijing: Wenwu
  99. Groves CP. 99.  2007. Current views on taxonomy and zoogeography of the genus Sus. Pigs and Humans: 10,000 Years of Interaction U Albarella, K Dobney, A Ervynck, P Rowley-Conwy 15–29 Oxford: Oxford Univ. Press [Google Scholar]
  100. Groves CP, Grubb P. 100.  1993. The Eurasian Suids (Sus and Babyrousa). Taxonomy and description. Pigs, Peccaries and Hippos WLR Oliver 107–12 Gland, Switz.: IUCN [Google Scholar]
  101. Giuffra E, Kijas J, Amarger V, Carlborg Ö, Jeon J-T, Andersson L. 101.  2000. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154:1785–91 [Google Scholar]
  102. Fang M, Andersson L. 102.  2006. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc. R. Soc. B Biol. Sci. 273:1803–10 [Google Scholar]
  103. Kim KI, Lee JH, Li K, Zhang YP, Lee SS. 103.  et al. 2002. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33:19–25 [Google Scholar]
  104. Fang M, Hu X, Jiang T, Braunschweig M, Hu L. 104.  et al. 2005. The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers. Anim. Genet. 36:7–13 [Google Scholar]
  105. Megens H-J, Crooijmans R, San Cristobal M, Hui X, Li N, Groenen M. 105.  2008. Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet. Sel. Evol. 40:103–28 [Google Scholar]
  106. Ai H, Huang L, Ren J. 106.  2013. Genetic diversity, linkage disequilibrium and selection signatures in Chinese and Western pigs revealed by genome-wide SNP markers. PLOS ONE 8:e56001 [Google Scholar]
  107. Ottoni C, Flink LG, Evin A, Geörg C, De Cupere B. 107.  et al. 2012. Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Mol. Biol. Evol. 30:4824–32 [Google Scholar]
  108. Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J. 108.  et al. 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. PNAS 104:15276–81 [Google Scholar]
  109. Larson G, Liu R, Zhao X, Yuan J, Fuller D. 109.  et al. 2010. Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. PNAS 107:7686–91 [Google Scholar]
  110. Larson G, Burger J. 110.  2013. A population genetic theory of animal domestication. Trends Genet. 29:197–205 [Google Scholar]
  111. Evin A, Girdland Flink L, Krause-Kyora B, Makarewicz C, Hartz S. 111.  et al. 2014. Exploring the complexity of domestication: a response to Rowley-Conwy and Zeder. World Archaeol. 46:825–34 [Google Scholar]
  112. Ramírez O, Burgos-Paz W, Casas E, Ballester M, Bianco E. 112.  et al. 2015. Genome data from a sixteenth century pig illuminate modern breed relationships. Heredity 114:175–84 [Google Scholar]
  113. Bosse M, Madsen O, Megens H-J, Frantz LA, Paudel Y. 113.  et al. 2014. Hybrid origin of European commercial pigs examined by an in-depth haplotype analysis on chromosome 1. Front. Genet. 5:442 [Google Scholar]
  114. Bosse M, Megens HJ, Madsen O, Frantz LA, Paudel Y. 114.  et al. 2014. Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations. Mol. Ecol. 23:4089–102 [Google Scholar]
  115. White S. 115.  2011. From globalized pig breeds to capitalist pigs: a study in animal cultures and evolutionary history. Environ. Hist. 16:94–120 [Google Scholar]
  116. 116. Int. Union Conserv. Nat 2014. Red List of Threatened Species. Version 2012.2. Gland, Switz.: IUCN
  117. Han D. 117.  1987. Artiodactyla fossils from Liucheng Gigantopithecus cave in Guangxi. Mem. Inst. Vert. Palaeontol. Palaeoanthropol. 18:135–208 [Google Scholar]
  118. Hardjasamita HS. 118.  1987. Taxonomy and phylogeny of the Suidae (Mammalia) in Indonesia. Scr. Geol. 85:1–68 [Google Scholar]
  119. Meijaard E. 119.  2014. A literature review of ecological separation between Sus verrucosus and S. Scrofa. Suiform Sound. 12:18–25 [Google Scholar]
  120. Semiadi G, Meijaard E. 120.  2006. Distribution and conservation of Javan Warty Pig (Sus verrucosus). Oryx 40:50–56 [Google Scholar]
  121. Rode-Margono EJ, Rademaker M. 121.  2015. Preliminary results of the first ecological study on Bawean warty pigs Sus blouchi. Suiform Sound. 13:15–18 [Google Scholar]
  122. Groves CP, Schaller GB, Amato G, Khounboline K. 122.  1997. Rediscovery of the wild pig Sus bucculentus. Nature 386:335 [Google Scholar]
  123. Robins JH, Ross HA, Allen MS, Matisoo-Smith E. 123.  2006. Taxonomy: Sus bucculentus revisited Nature 440E7
  124. Schütz E. 124.  2015. Records of Mindoro warty pig (Sus oliveri) in the interior of Mindoro Island–Philippines. Suiform Sound. 13:13–16 [Google Scholar]
  125. Curran L, Leighton M. 125.  2000. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70:101–28 [Google Scholar]
  126. Fujinuma J, Harrison RD. 126.  2012. Wild pigs (Sus scrofa) mediate large-scale edge effects in a lowland tropical rainforest in peninsular Malaysia. PLOS ONE 7:e37321 [Google Scholar]
  127. Hodgson B. 127.  1847. On a new form of the hog kind or Suidae. J. Asiat. Soc. Bengal 16:423–28 [Google Scholar]
  128. Oliver W. 128.  2006. Pygmy hogs in southern Nepal (or news at last on the so-called ‘Hormel Expedition’)?. Suiform Sound. 6:19–22 [Google Scholar]
  129. Narayan G, Deka P, Oliver W. 129.  2008. Porcula salvania The IUCN Red List of Threatened Species. Version 2014.3. Gland, Switz.: IUCN
  130. Dennell R. 130.  2010. Palaeoanthropology: early Homo sapiens in China. Nature 468:512–13 [Google Scholar]
  131. Mellars P, Gori KC, Carr M, Soares PA, Richards MB. 131.  2013. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. PNAS 110:10699–704 [Google Scholar]
  132. Cho I-C, Han S-H, Fang M, Lee S-S, Ko M-S. 132.  et al. 2009. The robust phylogeny of Korean wild boar (Sus scrofa coreanus) using partial D-loop sequence of mtDNA. Mol. Cells 28:423–30 [Google Scholar]
  133. Genov PV. 133.  1999. A review of the cranial characteristics of the wild boar (Sus scrofa Linnaeus 1758), with systematic conclusions. Mamm. Rev. 29:205–34 [Google Scholar]
  134. Meijaard E, Groves CP. 134.  2013. New taxonomic proposals for the Sus scrofa group in eastern Asia. Suiform Sound. 12:26–30 [Google Scholar]
  135. Wilson DE, Reeder DM. 135.  1993. Mammal Species of the World. A Taxonomic and Geographic Reference. Washington, DC: Smithson. Inst. Press1206
  136. Groves C, Grubb P. 136.  2011. Ungulate Taxonomy Baltimore, MD: Johns Hopkins Univ. Press
  137. Endo H, Kurohmaru M, Hayashi Y, Ohsako S, Matsumoto M. 137.  et al. 1998. Multivariate analysis of mandible in the Ryukyu wild pig (Sus scrofa riukiuanus). J. Vet. Med. Sci. 60:731–33 [Google Scholar]
  138. Watanobe T, Okumura N, Ishiguro N, Nakano M, Matsui A. 138.  et al. 1999. Genetic relationship and distribution of the Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (Sus scrofa riukiuanus) analysed by mitochondrial DNA. Mol. Ecol. 8:1509–12 [Google Scholar]
  139. Li C, Chang Q, Chen J, Zhang B, Zhu L, Zhou K. 139.  2005. Population structure and phylogeography of the wild boar Sus scrofa in Northeast Asia based on mitochondrial DNA control region variation analysis. Acta Zool. Sin. 51:640–49 [Google Scholar]
  140. Wu C, Jiang Y, Chu H, Li S, Wang Y. 140.  et al. 2007. The type I Lanyu pig has a maternal genetic lineage distinct from Asian and European pigs. Anim. Genet. 38:499–505 [Google Scholar]
  141. 141. Food Agric. Organ 2015. Fifteenth regular session of the Commission on Genetic Resources for Food and Agriculture, Rome, 19–23 Jan. CGRFA-15/15/Rep.
  142. Laval G, Iannuccelli N, Legault C, Milan D, Groenen MA. 142.  et al. 2000. Genetic diversity of eleven European pig breeds. Genet. Sel. Evol. 32:187–204 [Google Scholar]
  143. Martınez AM, Delgado JV, Rodero A, Vega-Pla JL. 143.  2000. Genetic structure of the Iberian pig breed using microsatellites. Anim. Genet. 31:295–301 [Google Scholar]
  144. Zhang G, Wang Z, Sun F, Chen W, Yang G. 144.  et al. 2003. Genetic diversity of microsatellite loci in fifty-six Chinese native pig breeds. Acta Genet. Sin. 30:225–33 [Google Scholar]
  145. SanCristobal M, Chevalet C, Haley C, Joosten R, Rattink A. 145.  et al. 2006. Genetic diversity within and between European pig breeds using microsatellite markers. Anim. Genet. 37:189–98 [Google Scholar]
  146. Herrero-Medrano JM, Megens H-J, Groenen MA, Ramis G, Bosse M. 146.  et al. 2013. Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet. 14:106 [Google Scholar]
  147. Foulley J, Van Schriek M, Alderson L, Amigues Y, Bagga M. 147.  et al. 2006. Genetic diversity analysis using lowly polymorphic dominant markers: the example of AFLP in pigs. J. Hered. 97:244–52 [Google Scholar]
  148. SanCristobal M, Chevalet C, Peleman J, Heuven H, Brugmans B. 148.  et al. 2006. Genetic diversity in European pigs utilizing amplified fragment length polymorphism markers. Anim. Genet. 37:232–38 [Google Scholar]
  149. Herrero-Medrano JM, Megens H-J, Groenen MA, Bosse M, Pérez-Enciso M, Crooijmans RP. 149.  2014. Whole-genome sequence analysis reveals differences in population management and selection of European low-input pig breeds. BMC Genom. 15:601 [Google Scholar]
  150. Frantz LAF, Schraiber JG, Madsen O, Megens H-J, Cagan A. 150.  et al. 2015. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet. 47:1141–48 [Google Scholar]
  151. Briedermann L. 151.  1990. Schwarzwild Berlin: VEB Dtsch. Landwirtsch.
  152. Yalden D. 152.  2010. The History of British Mammals Edinburgh: A&C Black
  153. Amaral AJ, Megens H-J, Crooijmans RP, Heuven HC, Groenen MA. 153.  2008. Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179:569–79 [Google Scholar]
  154. Thomsen PD, Schausera K, Bertelsenc MF, Vejlsted M, Grøndahl C, Christensen K. 154.  2011. Meiotic studies in infertile domestic pig-babirusa hybrids. Cytogenet. Genome Res. 132:124–28 [Google Scholar]
  155. Aubert M, Brumm A, Ramli M, Sutikna T, Saptomo EW. 155.  et al. 2014. Pleistocene cave art from Sulawesi, Indonesia. Nature 514:223–27 [Google Scholar]
  156. Langer P. 156.  1988. The Mammalian Herbivore Stomach: Comparative Anatomy, Function and Evolution New York: G. Fischer
  157. Macdonald AA. 157.  1994. The placenta and cardiac foramen ovale of the babirusa (Babyrousa babyrussa). Anat. Embryol. 190:489–94 [Google Scholar]
  158. Ziehmer B, Ogle S, Signorella A, Knorr C, Macdonald A. 158.  2010. Anatomy and histology of the reproductive tract of the female Babirusa (Babyrousa celebensis). Theriogenology 74:184–93 [Google Scholar]
  159. Ziehmer B, Signorella A, Kneepkens A, Hunt C, Ogle S. 159.  et al. 2013. The anatomy and histology of the reproductive tract of the male Babirusa (Babyrousa celebensis). Theriogenology 79:1054–64 [Google Scholar]
  160. Nijman V, Nekaris KAI. 160.  2014. Trade in Babirusa skulls on Bali in 2013. Suiform Sound. 12:34–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error