This review deals with the latest advances in the study of embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) from domesticated species, with a focus on pigs, cattle, sheep, goats, horses, cats, and dogs. Whereas the derivation of fully pluripotent ESC from these species has proved slow, reprogramming of somatic cells to iPSC has been more straightforward. However, most of these iPSC depend on the continued expression of the introduced transgenes, a major drawback to their utility. The persistent failure in generating ESC and the dependency of iPSC on ectopic genes probably stem from an inability to maintain the stability of the endogenous gene networks necessary to maintain pluripotency. Based on work in humans and rodents, achievement of full pluripotency will likely require fine adjustments in the growth factors and signaling inhibitors provided to the cells. Finally, we discuss the future utility of these cells for biomedical and agricultural purposes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Morgani SM, Brickman JM. 1.  2014. The molecular underpinnings of totipotency. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130549 [Google Scholar]
  2. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F. 2.  et al. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–17 [Google Scholar]
  3. Uccelli A, Moretta L, Pistoia V. 3.  2008. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8:726–36 [Google Scholar]
  4. Porada CD, Zanjani ED, Almeida-Porad G. 4.  2006. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr. Stem. Cell Res. Ther. 1:365–69 [Google Scholar]
  5. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD. 5.  et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49 [Google Scholar]
  6. Pittenger MF, Martin BJ. 6.  2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95:9–20 [Google Scholar]
  7. Black LL, Gaynor J, Adams C, Dhupa S, Sams AE. 7.  et al. 2008. Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet. Ther. 9:192–200 [Google Scholar]
  8. Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S. 8.  et al. 2007. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng. 13:2949–55 [Google Scholar]
  9. Frisbie DD, Lu Y, Kawcak CE, DiCarlo EF, Binette F, McIlwraith CW. 9.  2009. In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am. J. Sports Med. 37:Suppl. 171S–80S [Google Scholar]
  10. Vilar JM, Batista M, Morales M, Santana A, Cuervo B. 10.  et al. 2014. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet. Res. 10:143 [Google Scholar]
  11. Cyranoski D. 11.  2013. Stem cells boom in vet clinics. Nature 496:148–49 [Google Scholar]
  12. Goncalves NN, Ambrosio CE, Piedrahita JA. 12.  2014. Stem cells and regenerative medicine in domestic and companion animals: a multispecies perspective. Reprod. Domest. Anim. 49:Suppl. 42–10 [Google Scholar]
  13. Ezashi T, Telugu BP, Roberts RM. 13.  2012. Induced pluripotent stem cells from pigs and other ungulate species: An alternative to embryonic stem cells?. Reprod. Domest. Anim. 47:Suppl. 492–97 [Google Scholar]
  14. Koh S, Piedrahita JA. 14.  2014. From “ES-like” cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81:103–11 [Google Scholar]
  15. Gandolfi F, Pennarossa G, Maffei S, Brevini T. 15.  2012. Why is it so difficult to derive pluripotent stem cells in domestic ungulates?. Reprod. Domest. Anim. 47:Suppl. 511–17 [Google Scholar]
  16. Alberio R, Perez AR. 16.  2012. Recent advances in stem and germ cell research: implications for the derivation of pig pluripotent cells. Reprod. Domest. Anim. 47:Suppl. 498–106 [Google Scholar]
  17. Malaver-Ortega LF, Sumer H, Liu J, Verma PJ. 17.  2012. The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology 78:1749–62 [Google Scholar]
  18. Nowak-Imialek M, Niemann H. 18.  2012. Pluripotent cells in farm animals: state of the art and future perspectives. Reprod. Fertil. Dev. 25:103–28 [Google Scholar]
  19. Wang H, Pei Y, Li N, Han J. 19.  2014. Progress, problems and prospects of porcine pluripotent stem cells. Front. Agric. Sci. Eng. 1:6–15 [Google Scholar]
  20. Oback B, Huang B. 20.  2014. Pluripotent stem cells from livestock. Stem Cells: From Basic Research to Therapy304–46 Boca Raton, FL: CRC Press [Google Scholar]
  21. McLaren A. 21.  1982. The Embryo London: Cambridge Univ. Press [Google Scholar]
  22. Chazaud C, Yamanaka Y, Pawson T, Rossant J. 22.  2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10:615–24 [Google Scholar]
  23. Stern CD, Downs KM. 23.  2012. The hypoblast (visceral endoderm): an evo-devo perspective. Development 139:1059–69 [Google Scholar]
  24. Lawson KA, Meneses JJ, Pedersen RA. 24.  1991. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911 [Google Scholar]
  25. Rossant J. 25.  2007. Stem cells and lineage development in the mammalian blastocyst. Reprod. Fertil. Dev. 19:111–18 [Google Scholar]
  26. Evans MJ, Kaufman MH. 26.  1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–56 [Google Scholar]
  27. Martin GR. 27.  1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS 78:7634–38 [Google Scholar]
  28. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL. 28.  et al. 1988. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–87 [Google Scholar]
  29. Ying QL, Nichols J, Chambers I, Smith A. 29.  2003. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–92 [Google Scholar]
  30. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B. 30.  et al. 2008. The ground state of embryonic stem cell self-renewal. Nature 453:519–23 [Google Scholar]
  31. Nichols J, Smith A. 31.  2009. Naive and primed pluripotent states. Cell Stem Cell 4:487–92 [Google Scholar]
  32. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M. 32.  et al. 2004. The knockout mouse project. Nat. Genet. 36:921–24 [Google Scholar]
  33. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ. 33.  et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–47 [Google Scholar]
  34. Hanna JH, Saha K, Jaenisch R. 34.  2010. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–25 [Google Scholar]
  35. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. 35.  2004. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70:837–45 [Google Scholar]
  36. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA. 36.  2006. Feeder-independent culture of human embryonic stem cells. Nat. Methods 3:637–46 [Google Scholar]
  37. Parfitt DE, Shen MM. 37.  2014. From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130542 [Google Scholar]
  38. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B. 38.  et al. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–95 [Google Scholar]
  39. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP. 39.  et al. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–99 [Google Scholar]
  40. Kalkan T, Smith A. 40.  2014. Mapping the route from naive pluripotency to lineage specification. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130540 [Google Scholar]
  41. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E. 41.  et al. 2013. Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–86 [Google Scholar]
  42. Yang Y, Adachi K, Sheridan MA, Alexenko AP, Schust DJ. 42.  et al. 2015. Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. PNAS 112:E2337–46 [Google Scholar]
  43. Blomberg LA, Telugu BP. 43.  2012. Twenty years of embryonic stem cell research in farm animals. Reprod. Domest. Anim. 47:Suppl. 480–85 [Google Scholar]
  44. Roberts RM, Yuan Y, Genovese N, Ezashi T. 44.  2015. Livestock models for exploiting the promise of pluripotent stem cells. ILAR J. 56:74–82 [Google Scholar]
  45. Prather RS. 45.  2013. Pig genomics for biomedicine. Nat. Biotechnol. 31:122–24 [Google Scholar]
  46. Walters EM, Prather RS. 46.  2013. Advancing swine models for human health and diseases. Mo. Med. 110:212–15 [Google Scholar]
  47. Haraguchi S, Kikuchi K, Nakai M, Tokunaga T. 47.  2012. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J. Reprod. Dev. 58:707–16 [Google Scholar]
  48. Kim S, Kim JH, Lee E, Jeong YW, Hossein MS. 48.  et al. 2010. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18:93–101 [Google Scholar]
  49. Brevini TA, Pennarossa G, Attanasio L, Vanelli A, Gasparrini B, Gandolfi F. 49.  2010. Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev. 6:484–95 [Google Scholar]
  50. Jung SK, Kim HJ, Kim CL, Lee JH, You JY. 50.  et al. 2014. Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells. J. Vet. Sci. 15:519–28 [Google Scholar]
  51. Leeb M, Wutz A. 51.  2011. Derivation of haploid embryonic stem cells from mouse embryos. Nature 479:131–34 [Google Scholar]
  52. Siriboon C, Lin YH, Kere M, Chen CD, Chen LR. 52.  et al. 2015. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLOS ONE 10:e0118165 [Google Scholar]
  53. Park JK, Kim HS, Uh KJ, Choi KH, Kim HM. 53.  et al. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLOS ONE 8:e52481 [Google Scholar]
  54. Telugu BP, Ezashi T, Sinha S, Alexenko AP, Spate L. 54.  et al. 2011. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J. Biol. Chem. 286:28948–53 [Google Scholar]
  55. Jin M, Wu A, Dorzhin S, Yue Q, Ma Y, Liu D. 55.  2012. Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization. Cytotechnology 64:379–89 [Google Scholar]
  56. Cong S, Cao G, Liu D. 56.  2014. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro. Cytotechnology 66:995–1005 [Google Scholar]
  57. Furusawa T, Ohkoshi K, Kimura K, Matsuyama S, Akagi S. 57.  et al. 2013. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biol. Reprod. 89:28 [Google Scholar]
  58. Verma V, Huang B, Kallingappa PK, Oback B. 58.  2013. Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines. Stem Cells Dev. 22:1728–42 [Google Scholar]
  59. Ozawa M, Sakatani M, Hankowski KE, Terada N, Dobbs KB, Hansen PJ. 59.  2012. Importance of culture conditions during the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells. Theriogenology 78:1243–51.e2 [Google Scholar]
  60. Kumar De A, Malakar D, Akshey YS, Jena MK, Dutta R. 60.  2011. Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat (Capra hircus) embryos. Anim. Biotechnol. 22:181–96 [Google Scholar]
  61. Dattena M, Chessa B, Lacerenza D, Accardo C, Pilichi S. 61.  et al. 2006. Isolation, culture, and characterization of embryonic cell lines from vitrified sheep blastocysts. Mol. Reprod. Dev. 73:31–39 [Google Scholar]
  62. Zhao Y, Lin J, Wang L, Chen B, Zhou C. 62.  et al. 2011. Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells. J. Exp. Zool. A Ecol. Genet. Physiol. 315:639–48 [Google Scholar]
  63. Behboodi E, Bondareva A, Begin I, Rao K, Neveu N. 63.  et al. 2011. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos. Mol. Reprod. Dev. 78:202–11 [Google Scholar]
  64. Saito S, Ugai H, Sawai K, Yamamoto Y, Minamihashi A. 64.  et al. 2002. Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett. 531:389–96 [Google Scholar]
  65. Li X, Zhou SG, Imreh MP, Ahrlund-Richter L, Allen WR. 65.  2006. Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells Dev. 15:523–31 [Google Scholar]
  66. Guest DJ, Allen WR. 66.  2007. Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Stem Cells Dev. 16:789–96 [Google Scholar]
  67. Hatoya S, Torii R, Kondo Y, Okuno T, Kobayashi K. 67.  et al. 2006. Isolation and characterization of embryonic stem-like cells from canine blastocysts. Mol. Reprod. Dev. 73:298–305 [Google Scholar]
  68. Schneider MR, Adler H, Braun J, Kienzle B, Wolf E, Kolb HJ. 68.  2007. Canine embryo-derived stem cells—toward clinically relevant animal models for evaluating efficacy and safety of cell therapies. Stem Cells 25:1850–51 [Google Scholar]
  69. Hayes B, Fagerlie SR, Ramakrishnan A, Baran S, Harkey M. 69.  et al. 2008. Derivation, characterization, and in vitro differentiation of canine embryonic stem cells. Stem Cells 26:465–73 [Google Scholar]
  70. Wilcox JT, Semple E, Gartley C, Brisson BA, Perrault SD. 70.  et al. 2009. Characterization of canine embryonic stem cell lines derived from different niche microenvironments. Stem Cells Dev. 18:1167–78 [Google Scholar]
  71. Vaags AK, Rosic-Kablar S, Gartley CJ, Zheng YZ, Chesney A. 71.  et al. 2009. Derivation and characterization of canine embryonic stem cell lines with in vitro and in vivo differentiation potential. Stem Cells 27:329–40 [Google Scholar]
  72. Yu X, Jin G, Yin X, Cho S, Jeon J. 72.  et al. 2008. Isolation and characterization of embryonic stem-like cells derived from in vivo-produced cat blastocysts. Mol. Reprod. Dev. 75:1426–32 [Google Scholar]
  73. Gómez MC, Serrano MA, Pope CE, Jenkins JA, Biancardi MN. 73.  et al. 2010. Derivation of cat embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. Theriogenology 74:498–515 [Google Scholar]
  74. Takahashi K, Yamanaka S. 74.  2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76 [Google Scholar]
  75. Nowak-Imialek M, Niemann H. 75.  2012. Pluripotent cells in farm animals: state of the art and future perspectives. Reprod. Fertil. Dev. 25:103–28 [Google Scholar]
  76. Kumar D, Talluri TR, Anand T, Kues WA. 76.  2015. Induced pluripotent stem cells: mechanisms, achievements and perspectives in farm animals. World J. Stem Cells 7:315–28 [Google Scholar]
  77. Sartori C, DiDomenico AI, Thomson AJ, Milne E, Lillico SG. 77.  et al. 2012. Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell. Reprogr. 14:8–19 [Google Scholar]
  78. West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK. 78.  et al. 2010. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 19:1211–20 [Google Scholar]
  79. West FD, Uhl EW, Liu Y, Stowe H, Lu Y. 79.  et al. 2011. Brief report: Chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 29:1640–43 [Google Scholar]
  80. Zhang W, Pei Y, Zhong L, Wen B, Cao S, Han J. 80.  2015. Pluripotent and metabolic features of two types of porcine iPSCs derived from defined mouse and human ES cell culture conditions. PLOS ONE 10:e0124562 [Google Scholar]
  81. Fujishiro SH, Nakano K, Mizukami Y, Azami T, Arai Y. 81.  et al. 2013. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev. 22:473–82 [Google Scholar]
  82. Cheng D, Li Z, Liu Y, Gao Y, Wang H. 82.  2012. Kinetic analysis of porcine fibroblast reprogramming toward pluripotency by defined factors. Cell. Reprogr. 14:312–23 [Google Scholar]
  83. Wang J, Gu Q, Hao J, Jia Y, Xue B. 83.  et al. 2013. Tbx3 and Nr5α2 play important roles in pig pluripotent stem cells. Stem Cell Rev. Rep. 9:700–8 [Google Scholar]
  84. Gao Y, Guo Y, Duan A, Cheng D, Zhang S, Wang H. 84.  2014. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA Cell Biol. 33:1–11 [Google Scholar]
  85. Cheng D, Guo Y, Li Z, Liu Y, Gao X. 85.  et al. 2012. Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLOS ONE 7:e51778 [Google Scholar]
  86. Zhang S, Guo Y, Cui Y, Liu Y, Yu T, Wang H. 86.  2015. Generation of intermediate porcine iPS cells under culture condition favorable for mesenchymal-to-epithelial transition. Stem Cell Rev. 11:24–38 [Google Scholar]
  87. Telugu BP, Ezashi T, Roberts RM. 87.  2010. Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int. J. Dev. Biol. 54:1703–11 [Google Scholar]
  88. Wu Z, Chen J, Ren J, Bao L, Liao J. 88.  et al. 2009. Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol. 1:46–54 [Google Scholar]
  89. Montserrat N, Bahima EG, Batlle L, Hafner S, Rodrigues AM. 89.  et al. 2011. Generation of pig iPS cells: a model for cell therapy. J. Cardiovasc. Transl. Res. 4:121–30 [Google Scholar]
  90. Kues WA, Herrmann D, Barg-Kues B, Haridoss S, Nowak-Imialek M. 90.  et al. 2013. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev. 22:124–35 [Google Scholar]
  91. Petkov S, Hyttel P, Niemann H. 91.  2013. The choice of expression vector promoter is an important factor in the reprogramming of porcine fibroblasts into induced pluripotent cells. Cell. Reprogr. 15:1–8 [Google Scholar]
  92. Li X, Zhang F, Song G, Gu W, Chen M. 92.  et al. 2013. Intramyocardial injection of pig pluripotent stem cells improves left ventricular function and perfusion: a study in a porcine model of acute myocardial infarction. PLOS ONE 8:e66688 [Google Scholar]
  93. Aravalli RN, Cressman EN, Steer CJ. 93.  2012. Hepatic differentiation of porcine induced pluripotent stem cells in vitro. Vet. J. 194:369–74 [Google Scholar]
  94. Yang JY, Mumaw JL, Liu Y, Stice SL, West FD. 94.  2013. SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplant. 22:945–59 [Google Scholar]
  95. Zhou L, Wang W, Liu Y, Fernandez de Castro J, Ezashi T. 95.  et al. 2011. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells 29:972–80 [Google Scholar]
  96. Ezashi T, Matsuyama H, Telugu BP, Roberts RM. 96.  2011. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells. Biol. Reprod. 85:779–87 [Google Scholar]
  97. Huang B, Li T, Alonso-Gonzalez L, Gorre R, Keatley S. 97.  et al. 2011. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLOS ONE 6:e24501 [Google Scholar]
  98. Heo YT, Quan X, Xu YN, Baek S, Choi H. 98.  et al. 2015. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev. 24:393–402 [Google Scholar]
  99. Wang SW, Wang SS, Wu DC, Lin YC, Ku CC. 99.  et al. 2013. Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death Dis. 4:e907 [Google Scholar]
  100. Lin YC, Kuo KK, Wuputra K, Lin SH, Ku CC. 100.  et al. 2014. Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. Int. J. Mol. Sci. 15:5011–31 [Google Scholar]
  101. Talluri TR, Kumar D, Glage S, Garrels W, Ivics Z. 101.  et al. 2015. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell. Reprogr. 17:131–40 [Google Scholar]
  102. Li Y, Cang M, Lee AS, Zhang K, Liu D. 102.  2011. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLOS ONE 6:e15947 [Google Scholar]
  103. Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ. 103.  2012. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77:338–46.e1 [Google Scholar]
  104. Song H, Li H, Huang M, Xu D, Gu C. 104.  et al. 2013. Induced pluripotent stem cells from goat fibroblasts. Mol. Reprod. Dev. 80:1009–17 [Google Scholar]
  105. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P. 105.  et al. 2011. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev. 7:693–702 [Google Scholar]
  106. Breton A, Sharma R, Diaz AC, Parham AG, Graham A. 106.  et al. 2013. Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev. 22:611–21 [Google Scholar]
  107. Sharma R, Livesey MR, Wyllie DJ, Proudfoot C, Whitelaw CB. 107.  et al. 2014. Generation of functional neurons from feeder-free, keratinocyte-derived equine induced pluripotent stem cells. Stem Cells Dev. 23:1524–34 [Google Scholar]
  108. Whitworth DJ, Ovchinnikov DA, Sun J, Fortuna PR, Wolvetang EJ. 108.  2014. Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev. 23:1515–23 [Google Scholar]
  109. Shimada H, Nakada A, Hashimoto Y, Shigeno K, Shionoya Y, Nakamura T. 109.  2010. Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol. Reprod. Dev. 77:2 [Google Scholar]
  110. Luo J, Suhr ST, Chang EA, Wang K, Ross PJ. 110.  et al. 2011. Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev. 20:1669–78 [Google Scholar]
  111. Lee AS, Xu D, Plews JR, Nguyen PK, Nag D. 111.  et al. 2011. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J. Biol. Chem. 286:32697–704 [Google Scholar]
  112. Koh S, Thomas R, Tsai S, Bischoff S, Lim JH. 112.  et al. 2013. Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts. Stem Cells Dev. 22:951–63 [Google Scholar]
  113. Whitworth DJ, Ovchinnikov DA, Wolvetang EJ. 113.  2012. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev. 21:2288–97 [Google Scholar]
  114. Nishimura T, Hatoya S, Kanegi R, Sugiura K, Wijewardana V. 114.  et al. 2013. Generation of functional platelets from canine induced pluripotent stem cells. Stem Cells Dev. 22:2026–35 [Google Scholar]
  115. Verma R, Holland MK, Temple-Smith P, Verma PJ. 115.  2012. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid. Theriogenology 77:220–28.e2 [Google Scholar]
  116. Verma R, Liu J, Holland MK, Temple-Smith P, Williamson M, Verma PJ. 116.  2013. Nanog is an essential factor for induction of pluripotency in somatic cells from endangered felids. Biores. Open Access 2:72–76 [Google Scholar]
  117. Wu J, Okamura D, Li M, Suzuki K, Luo C. 117.  et al. 2015. An alternative pluripotent state confers interspecies chimaeric competency. Nature 521:316–21 [Google Scholar]
  118. Robinton DA, Daley GQ. 118.  2012. The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305 [Google Scholar]
  119. Malik N, Rao MS. 119.  2013. A review of the methods for human iPSC derivation. Methods Mol. Biol. 997:23–33 [Google Scholar]
  120. Rony IK, Baten A, Bloomfield JA, Islam ME, Billah MM, Islam KD. 120.  2015. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Prolif. 48:140–56 [Google Scholar]
  121. Hou P, Li Y, Zhang X, Liu C, Guan J. 121.  et al. 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–54 [Google Scholar]
  122. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A. 122.  et al. 2011. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8:409–12 [Google Scholar]
  123. Niwa H, Burdon T, Chambers I, Smith A. 123.  1998. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12:2048–60 [Google Scholar]
  124. Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R. 124.  et al. 2006. The role of PI3K/AKT, MAPK/ERK and NFκβ signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum. Mol. Genet. 15:1894–913 [Google Scholar]
  125. Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC. 125.  et al. 2004. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22:522–30 [Google Scholar]
  126. Hall VJ, Christensen J, Gao Y, Schmidt MH, Hyttel P. 126.  2009. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev. Dyn. 238:2014–24 [Google Scholar]
  127. Blomberg LA, Schreier LL, Talbot NC. 127.  2008. Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Mol. Reprod. Dev. 75:450–63 [Google Scholar]
  128. Hall VJ, Hyttel P. 128.  2014. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states. Stem Cells Dev. 23:2030–45 [Google Scholar]
  129. Welham MJ, Storm MP, Kingham E, Bone HK. 129.  2007. Phosphoinositide 3-kinases and regulation of embryonic stem cell fate. Biochem. Soc. Trans. 35:225–28 [Google Scholar]
  130. Thomson AJ, Pierart H, Meek S, Bogerman A, Sutherland L. 130.  et al. 2012. Reprogramming pig fetal fibroblasts reveals a functional LIF signaling pathway. Cell. Reprogr. 14:112–22 [Google Scholar]
  131. Massagué J, Seoane J, Wotton D. 131.  2005. Smad transcription factors. Genes Dev. 19:2783–810 [Google Scholar]
  132. Feng XH, Derynck R. 132.  2005. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21:659–93 [Google Scholar]
  133. Li Z, Fei T, Zhang J, Zhu G, Wang L. 133.  et al. 2012. BMP4 signaling acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell 10:171–82 [Google Scholar]
  134. Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A. 134.  1999. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274:19838–45 [Google Scholar]
  135. Amita M, Adachi K, Alexenko AP, Sinha S, Schust DJ. 135.  et al. 2013. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. PNAS 110:E1212–21 [Google Scholar]
  136. Xu RH, Chen X, Li DS, Li R, Addicks GC. 136.  et al. 2002. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20:1261–64 [Google Scholar]
  137. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. 137.  2005. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2:185–90 [Google Scholar]
  138. Alberio R, Croxall N, Allegrucci C. 138.  2010. Pig epiblast stem cells depend on Activin/Nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 19:1627–36 [Google Scholar]
  139. Vallier L, Alexander M, Pedersen RA. 139.  2005. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118:4495–509 [Google Scholar]
  140. James D, Levine AJ, Besser D, Hemmati-Brivanlou A. 140.  2005. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–82 [Google Scholar]
  141. Xiao L, Yuan X, Sharkis SJ. 141.  2006. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24:1476–86 [Google Scholar]
  142. Ogawa K, Saito A, Matsui H, Suzuki H, Ohtsuka S. 142.  et al. 2007. Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. J. Cell Sci. 120:55–65 [Google Scholar]
  143. Watabe T, Miyazono K. 143.  2009. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res. 19:103–15 [Google Scholar]
  144. Galvin-Burgess KE, Travis ED, Pierson KE, Vivian JL. 144.  2013. TGF-β-superfamily signaling regulates embryonic stem cell heterogeneity: self-renewal as a dynamic and regulated equilibrium. Stem Cells 31:48–58 [Google Scholar]
  145. Du J, Wu Y, Ai Z, Shi X, Chen L, Guo Z. 145.  2014. Mechanism of SB431542 in inhibiting mouse embryonic stem cell differentiation. Cell. Signal. 26:2107–16 [Google Scholar]
  146. Bao S, Tang F, Li X, Hayashi K, Gillich A. 146.  et al. 2009. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461:1292–95 [Google Scholar]
  147. Chan Y-S, Göke J, Ng J-H, Lu XY, Gonzales KAU. 147.  et al. 2013. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13:663–75 [Google Scholar]
  148. Ware CB, Nelson AM, Mecham B, Hesson J, Zhou WY. 148.  et al. 2014. Derivation of naive human embryonic stem cells. PNAS 111:4484–89 [Google Scholar]
  149. Theunissen TW, Powell BE, Wang HY, Mitalipova M, Faddah DA. 149.  et al. 2014. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–87 [Google Scholar]
  150. Takashima Y, Guo G, Loos R, Nichols J, Ficz G. 150.  et al. 2014. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–69 [Google Scholar]
  151. Tonge PD, Corso AJ, Monetti C, Hussein SM, Puri MC. 151.  et al. 2014. Divergent reprogramming routes lead to alternative stem-cell states. Nature 516:192–97 [Google Scholar]
  152. Capecchi MR. 152.  1989. Altering the genome by homologous recombination. Science 244:1288–92 [Google Scholar]
  153. Notarianni E, Galli C, Laurie S, Moor RM, Evans MJ. 153.  1991. Derivation of pluripotent, embryonic cell lines from the pig and sheep. J. Reprod. Fertil. Suppl. 43:255–60 [Google Scholar]
  154. Notarianni E, Laurie S, Moor RM, Evans MJ. 154.  1990. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J. Reprod. Fertil. Suppl. 41:51–56 [Google Scholar]
  155. Piedrahita JA, Anderson GB, Bondurant RH. 155.  1990. On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology 34:879–901 [Google Scholar]
  156. Chen LR, Shiue YL, Bertolini L, Medrano JF, BonDurant RH, Anderson GB. 156.  1999. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52:195–212 [Google Scholar]
  157. Li M, Zhang D, Hou Y, Jiao L, Zheng X, Wang WH. 157.  2003. Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. Dev. 65:429–34 [Google Scholar]
  158. Vackova I, Ungrova A, Lopes F. 158.  2007. Putative embryonic stem cell lines from pig embryos. J. Reprod. Dev. 53:1137–49 [Google Scholar]
  159. Keefer CL, Pant D, Blomberg L, Talbot NC. 159.  2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98:147–68 [Google Scholar]
  160. Brevini TA, Antonini S, Cillo F, Crestan M, Gandolfi F. 160.  2007. Porcine embryonic stem cells: facts, challenges and hopes. Theriogenology 68:Suppl. 1S206–S13 [Google Scholar]
  161. Talbot NC, Blomberg LA. 161.  2008. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev. 4:235–54 [Google Scholar]
  162. Prather RS. 162.  2007. Nuclear remodeling and nuclear reprogramming for making transgenic pigs by nuclear transfer. Adv. Exp. Med. Biol. 591:1–13 [Google Scholar]
  163. Welsh MJ, Rogers CS, Stoltz DA, Meyerholz DK, Prather RS. 163.  2009. Development of a porcine model of cystic fibrosis. Trans. Am. Clin. Climatol. Assoc. 120:149–62 [Google Scholar]
  164. Gu M, Nguyen PK, Lee AS, Xu D, Hu S. 164.  et al. 2012. Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ. Res. 111:882–93 [Google Scholar]
  165. Bui HT, Kwon DN, Kang MH, Oh MH, Park MR. 165.  et al. 2012. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development 139:4330–40 [Google Scholar]
  166. Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM. 166.  2009. Derivation of induced pluripotent stem cells from pig somatic cells. PNAS 106:10993–98 [Google Scholar]
  167. Esteban MA, Xu J, Yang J, Peng M, Qin D. 167.  et al. 2009. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284:17634–40 [Google Scholar]
  168. Yang JY, Mumaw JL, Liu Y, Stice SL, West FD. 168.  2012. SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplant. 22:945–59 [Google Scholar]
  169. Hall VJ, Kristensen M, Rasmussen MA, Ujhelly O, Dinnyes A, Hyttel P. 169.  2012. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell. Reprogr. 14:204–16 [Google Scholar]
  170. Liu Y, Yang JY, Lu Y, Yu P, Dove CR. 170.  et al. 2013. α-1,3-Galactosyltransferase knockout pig induced pluripotent stem cells: a cell source for the production of xenotransplant pigs. Cell. Reprogr. 15:107–16 [Google Scholar]
  171. Li X, Shan ZY, Wu YS, Shen XH, Liu CJ. 171.  et al. 2014. Generation of neural progenitors from induced Bama miniature pig pluripotent cells. Reproduction 147:65–72 [Google Scholar]
  172. Montserrat N, de Oñate L, Garreta E, González F, Adamo A. 172.  et al. 2012. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant. 21:815–25 [Google Scholar]
  173. Kwon DJ, Jeon H, Oh KB, Ock SA, Im GS. 173.  et al. 2013. Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. Biomed. Res. Int. 2013:140639 [Google Scholar]
  174. Park KM, Cha SH, Ahn C, Woo HM. 174.  2013. Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Vet. Res. Commun. 37:293–301 [Google Scholar]
  175. Ma K, Song G, An X, Fan A, Tan W. 175.  et al. 2014. miRNAs promote generation of porcine-induced pluripotent stem cells. Mol. Cell. Biochem. 389:209–18 [Google Scholar]
  176. Mizukami Y, Abe T, Shibata H, Makimura Y, Fujishiro SH. 176.  et al. 2014. MHC-matched induced pluripotent stem cells can attenuate cellular and humoral immune responses but are still susceptible to innate immunity in pigs. PLOS ONE 9:e98319 [Google Scholar]
  177. Liu K, Ji G, Mao J, Liu M, Wang L. 177.  et al. 2012. Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell. Reprogr. 14:505–13 [Google Scholar]
  178. Rodríguez A, Allegrucci C, Alberio R. 178.  2012. Modulation of pluripotency in the porcine embryo and iPS cells. PLOS ONE 7:e49079 [Google Scholar]
  179. Zhang Y, Wei C, Zhang P, Li X, Liu T. 179.  et al. 2014. Efficient reprogramming of naive-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLOS ONE 9:e85089 [Google Scholar]
  180. Gu Q, Hao J, Hai T, Wang J, Jia Y. 180.  et al. 2014. Efficient generation of mouse ESCs-like pig induced pluripotent stem cells. Protein Cell 5:338–42 [Google Scholar]
  181. Han X, Han J, Ding F, Cao S, Lim SS. 181.  et al. 2011. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res. 21:1509–12 [Google Scholar]
  182. Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ. 182.  2011. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J. Anim. Sci. 89:2708–16 [Google Scholar]
  183. Cao H, Yang P, Pu Y, Sun X, Yin H. 183.  et al. 2012. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int. J. Biol. Sci. 8:498–511 [Google Scholar]
  184. Bao L, He L, Chen J, Wu Z, Liao J. 184.  et al. 2011. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res. 21:600–8 [Google Scholar]
  185. Ren J, Pak Y, He L, Qian L, Gu Y. 185.  et al. 2011. Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res. 21:849–53 [Google Scholar]
  186. Khodadadi K, Sumer H, Pashaiasl M, Lim S, Williamson M, Verma PJ. 186.  2012. Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells Int. 2012:429160 [Google Scholar]
  187. Mascetti VL, Pedersen RA. 187.  2014. Naiveté of the human pluripotent stem cell. Nat. Biotechnol. 32:68–70 [Google Scholar]
  188. German SD, Campbell KH, Thornton E, McLachlan G, Sweetman D, Alberio R. 188.  2015. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell. Reprogr. 17:19–27 [Google Scholar]
  189. du Puy L, Lopes SM, Haagsman HP, Roelen BA. 189.  2011. Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology 75:513–26 [Google Scholar]
  190. Vackova I, Novakova Z, Krylov V, Okada K, Kott T. 190.  et al. 2011. Analysis of marker expression in porcine cell lines derived from blastocysts produced in vitro and in vivo. J. Reprod. Dev. 57:594–603 [Google Scholar]
  191. Tan G, Ren L, Huang Y, Tang X, Zhou Y. 191.  et al. 2012. Isolation and culture of embryonic stem-like cells from pig nuclear transfer blastocysts of different days. Zygote 20:347–52 [Google Scholar]
  192. Vassiliev I, Vassilieva S, Truong KP, Beebe LF, McIlfatrick SM. 192.  et al. 2011. Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. Cell. Reprogr. 13:205–13 [Google Scholar]
  193. Vassiliev I, Vassilieva S, Beebe LF, Harrison SJ, McIlfatrick SM, Nottle MB. 193.  2010. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell. Reprogr. 12:223–30 [Google Scholar]
  194. Montserrat N, de Onate L, Garreta E, Gonzalez F, Adamo A. 194.  et al. 2012. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant. 21:815–25 [Google Scholar]
  195. Petkov S, Hyttel P, Niemann H. 195.  2014. The small molecule inhibitors PD0325091 and CHIR99021 reduce expression of pluripotency-related genes in putative porcine induced pluripotent stem cells. Cell. Reprogr. 16:235–40 [Google Scholar]
  196. Liu K, Ji G, Mao J, Liu M, Wang L. 196.  et al. 2012. Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell. Reprogr. 14:505–13 [Google Scholar]
  197. Gong G, Roach ML, Jiang L, Yang X, Tian XC. 197.  2010. Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell. Reprogr. 12:151–60 [Google Scholar]
  198. Maruotti J, Muñoz M, Degrelle SA, Gómez E, Louet C. 198.  et al. 2012. Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol. Reprod. Dev. 79:461–77 [Google Scholar]
  199. Kim EY, Noh EJ, Park HY, Park MJ, Noh EH. 199.  et al. 2012. Establishment of bovine embryonic stem cell lines using a minimized feeder cell drop. Cell. Reprogr. 14:520–29 [Google Scholar]
  200. Lim ML, Vassiliev I, Richings NM, Firsova AB, Zhang C, Verma PJ. 200.  2011. A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 76:133–42 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error