The rapid pace of advances in genome technology, with concomitant reductions in cost, makes it feasible that one day in our lifetime we will have available extant genomes of entire classes of species, including vertebrates. I recently helped cocoordinate the large-scale Avian Phylogenomics Project, which collected and sequenced genomes of 48 bird species representing most currently classified orders to address a range of questions in phylogenomics and comparative genomics. The consortium was able to answer questions not previously possible with just a few genomes. This success spurred on the creation of a project to sequence the genomes of at least one individual of all extant ∼10,500 bird species. The initiation of this project has led us to consider what questions now impossible to answer could be answered with all genomes, and could drive new questions now unimaginable. These include the generation of a highly resolved family tree of extant species, genome-wide association studies across species to identify genetic substrates of many complex traits, redefinition of species and the species concept, reconstruction of the genomes of common ancestors, and generation of new computational tools to address these questions. Here I present visions for the future by posing and answering questions regarding what scientists could potentially do with available genomes of an entire vertebrate class.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. 1.  et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921 [Google Scholar]
  2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ. 2.  et al. 2001. The sequence of the human genome. Science 291:55071304–51 [Google Scholar]
  3. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H. 3.  et al. 2002. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:6915563–73 [Google Scholar]
  4. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF. 4.  et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:6915520–62 [Google Scholar]
  5. 5. Int. Chick. Genome Seq. Consort 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:7018695–716 [Google Scholar]
  6. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW. 6.  et al. 2010. The genome of a songbird. Nature 464:7289757–62 [Google Scholar]
  7. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. 7.  2014. Ten years of next-generation sequencing technology. Trends Genet. 30:9418–26 [Google Scholar]
  8. 8. Genome 10K Community Sci 2009. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered. 100:6659–74 [Google Scholar]
  9. Koepfli KP, Paten B. 9.  Genome 10K Community Sci., O'Brien SJ 2014. The Genome 10K Project: a way forward. Annu. Rev. Anim. Biosci. 3:57–111 [Google Scholar]
  10. Li R, Fan W, Tian G, Zhu H, He L. 10.  et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature 463:7279311–17 [Google Scholar]
  11. Zhang GJ, Jarvis ED, Gilbert MTP. 11.  2014. A flock of genomes. Science 346:62151308–9 [Google Scholar]
  12. Zhang GJ, Li C, Li Q, Li B, Larkin DM. 12.  et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:62151311–20 [Google Scholar]
  13. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P. 13.  et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:62151320–31 [Google Scholar]
  14. Meredith RW, Zhang G, Gilbert MT, Jarvis ED, Springer MS. 14.  2014. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346:62151254390 [Google Scholar]
  15. Opazo JC, Hoffmann FG, Natarajan C, Witt CW, Berenbrink M, Storz JF. 15.  2015. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol. Biol. Evol. 32:4871–87 [Google Scholar]
  16. Ribeiro AM, Zepeda-Mendoza ML, Bertelsen MF, Kristensen AT, Jarvis ED. 16.  et al. 2015. A refined model of the genomic basis for phenotypic variation in vertebrate hemostasis. BMC Evol. Biol. 15:124 [Google Scholar]
  17. Zhou Q, Zhang J, Bachtrog D, An N, Huang Q. 17.  et al. 2014. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346:62151246338 [Google Scholar]
  18. Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R. 18.  et al. 2014. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:62151256846 [Google Scholar]
  19. Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F. 19.  et al. 2014. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346:62151256780 [Google Scholar]
  20. Wirthlin M, Lovell PV, Jarvis ED, Mello CV. 20.  2014. Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genom. 15:11082 [Google Scholar]
  21. Petkov CI, Jarvis ED. 21.  2012. Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Front. Evol. Neurosci. 4:12 [Google Scholar]
  22. Zhang G. 22.  2015. Genomics: Bird sequencing project takes off. Nature 522:755434 [Google Scholar]
  23. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP. 23.  et al. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–73 [Google Scholar]
  24. Ganapathy G, Howard JT, Ward JM, Li J, Li B. 24.  et al. 2014. High-coverage sequencing and annotated assemblies of the budgerigar genome. GigaScience 3:11 [Google Scholar]
  25. Zhang J, Li C, Zhou Q, Zhang G. 25.  2015. Improving the ostrich genome assembly using optical mapping data. GigaScience 4:24 [Google Scholar]
  26. Borges R, Khan I, Johnson WE, Gilbert MTP, Zhang G. 26.  et al. 2015. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds. BMC Genom. 16:1751 [Google Scholar]
  27. Haug-Baltzell A, Jarvis ED, McCarthy FM, Lyons E. 27.  2015. Identification of dopamine receptors across the extant avian family tree and analysis with other clades uncovers a polyploid expansion among vertebrates. Front. Neurosci. 9:361 [Google Scholar]
  28. Romanov MN, Farré M, Lithgow PE, Fowler KE, Skinner BM. 28.  et al. 2014. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genom. 15:11060 [Google Scholar]
  29. Nguyen N, Hickey G, Zerbino DR, Raney B, Earl D. 29.  et al. 2015. Building a pan-genome reference for a population. J. Comput. Biol. 22:5387–401 [Google Scholar]
  30. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M. 30.  et al. 2013. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience 2:110 [Google Scholar]
  31. Rahbek C, Graves GR. 31.  2001. Multiscale assessment of patterns of avian species richness. PNAS 98:84534–39 [Google Scholar]
  32. Arriaga G, Jarvis ED. 32.  2013. Mouse vocal communication system: Are ultrasounds learned or innate. Brain Lang. 124:196–116 [Google Scholar]
  33. Rokas A, Williams BL, King N, Carroll SB. 33.  2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:6960798–804 [Google Scholar]
  34. Mirarab S, Bayzid MS, Boussau B, Warnow T. 34.  2014. Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science 346:62151250463 [Google Scholar]
  35. Kozlov AM, Aberer AJ, Stamatakis A. 35.  2015. ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics 31:2577–79 [Google Scholar]
  36. Vachaspati P, Warnow T. 36.  2015. ASTRID: Accurate Species TRees from Internode Distances. BMC Genom. 16:Suppl. 10S3 [Google Scholar]
  37. Zepeda Mendoza ML, Nygaard S, da Fonseca RR. 37.  2014. DivA: detection of non-homologous and very divergent regions in protein sequence alignments. BMC Res. Notes 7:806 [Google Scholar]
  38. Nguyen NP, Mirarab S, Kumar K, Warnow T. 38.  2015. Ultra-large alignments using phylogeny-aware profiles. Genome Biol. 16:124 [Google Scholar]
  39. Suh A, Smeds L, Ellegren H. 39.  2015. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLOS Biol. 13:8e1002224 [Google Scholar]
  40. Ksepka DT, Ware JL, Lamm KS. 40.  2014. Flying rocks and flying clocks: disparity in fossil and molecular dates for birds. Proc. Biol. Sci. 281:178820140677 [Google Scholar]
  41. Donoghue PC, Benton MJ. 41.  2007. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol. Evol. 22:8424–31 [Google Scholar]
  42. Mitchell KJ, Cooper A, Phillips MJ. 42.  2015. Comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds.”. Science 349:62551460 [Google Scholar]
  43. Cracraft J, Houde P, Ho SYW, Mindell DP, Fjeldså J. 43.  et al. 2015. Response to Comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds.”. Science 349:62551460 [Google Scholar]
  44. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ. 44.  et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:59701214–18 [Google Scholar]
  45. Benton MJ. 45.  2010. The origins of modern biodiversity on land. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365:15583667–79 [Google Scholar]
  46. Cooper A, Penny D. 46.  1997. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science 275:53031109–13 [Google Scholar]
  47. Green RE, Braun EL, Armstrong J, Earl D, Nguyen N. 47.  et al. 2014. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:62151254449 [Google Scholar]
  48. de Queiroz K. 48.  2005. Ernst Mayr and the modern concept of species. PNAS 102:6600–7 [Google Scholar]
  49. Silcox MT. 49.  2014. A pragmatic approach to the species problem from a paleontological perspective. Evol. Anthropol. 23:124–26 [Google Scholar]
  50. Isomura N, Iwao K, Fukami H. 50.  2013. Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates. PLOS ONE 8:2e56701 [Google Scholar]
  51. Green RE, Kraus J, Briggs AW, Maricic T, Stenzel U. 51.  et al. 2010. A draft sequence of the Neandertal genome. Science 328:5979710–22 [Google Scholar]
  52. Hawks J. 52.  2013. Significance of Neandertal and Denisovan genomes in human evolution. Annu. Rev. Anthropol. 42:433–49 [Google Scholar]
  53. Qin P, Stoneking M. 53.  2015. Denisovan ancestry in East Eurasian and Native American populations. Mol. Biol. Evol. 32:102665–74 [Google Scholar]
  54. Antrosio J. 54.  2012. Denisovans, Neandertals, archaics as human races. Living Anthropologically Aug. 7 [Google Scholar]
  55. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R. 55.  et al. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22:3148–55 [Google Scholar]
  56. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. 56.  2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14:60 [Google Scholar]
  57. Baker RJ, Bradley RD. 57.  2006. Speciation in mammals and the genetic species concept. J. Mammal. 87:4643–62 [Google Scholar]
  58. Palumbi SR. 58.  1989. Rates of molecular evolution and the fraction of nucleotide positions free to vary. J. Mol. Evol. 29:2180–87 [Google Scholar]
  59. Sangster G. 59.  2014. The application of species criteria in avian taxonomy and its implications for the debate over species concepts. Biol. Rev. Camb. Philos. Soc. 89:1199–214 [Google Scholar]
  60. Cui J, Zhao W, Huang Z, Jarvis ED, Gilbert MTP. 60.  et al. 2014. Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol. 15:12539 [Google Scholar]
  61. Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H. 61.  2014. Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biol. 15:12549 [Google Scholar]
  62. Suh A, Churakov G, Ramakodi MP, Platt RN II, Jurka J. 62.  et al. 2015. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Genome Biol. Evol. 7:1205–17 [Google Scholar]
  63. Catchpole CK, Slater PJB. 63.  1995. Bird Song: Biological Themes and Variations Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  64. Li S, Li B, Cheng C, Xiong Z, Liu Q. 64.  et al. 2014. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol. 15:12557 [Google Scholar]
  65. Blanchette M, Green ED, Miller W, Haussler D. 65.  2004. Reconstructing large regions of an ancestral mammalian genome in silico. Genome Res. 14:122412–23 [Google Scholar]
  66. Pollard DA, Iyer VN, Moses AM, Eisen MB. 66.  2006. Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLOS Genet. 2:10e173 [Google Scholar]
  67. Dekker J, Misteli T. 67.  2015. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. In press [Google Scholar]
  68. Deakin JE, Ezaz T. 68.  2014. Tracing the evolution of amniote chromosomes. Chromosoma 123:201–16 [Google Scholar]
  69. Romanov MN, Farré M, Lithgow PE, Fowler KE, Skinner BM. 69.  et al. 2014. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genom. 15:1060 [Google Scholar]
  70. Orlando L, Gilbert MT, Willerslev E. 70.  2015. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16:7395–408 [Google Scholar]
  71. Der Sarkissian C, Allentoft ME, Ávila-Arcos MC, Barnett R, Campos PF. 71.  et al. 2015. Ancient genomics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:166020130387 [Google Scholar]
  72. Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G. 72.  et al. 2005. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–17 [Google Scholar]
  73. Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC. 73.  et al. 2006. Reconstructing contiguous regions of an ancestral genome. Genome Res. 16:1557–65 [Google Scholar]
  74. Lynch VJ, Bedoya-Reina OC, Ratan A, Sulak M, Drautz-Moses DI. 74.  et al. 2015. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep. 12:2217–28 [Google Scholar]
  75. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. 75.  2015. Genetic rescue to the rescue. Trends Ecol. Evol. 30:142–49 [Google Scholar]
  76. Loi P, Saragusty J, Ptak G. 76.  2014. Cloning the mammoth: A complicated task or just a dream?. Adv. Exp. Med. Biol. 753:489–502 [Google Scholar]
  77. Cardona CJ, Xing Z, Sandrock CE, Davis CE. 77.  2009. Avian influenza in birds and mammals. Comp. Immunol. Microbiol. Infect. Dis. 32:4255–73 [Google Scholar]
  78. Carroll SP, Jørgensen PS, Kinnison MT, Bergstrom CT, Denison RF. 78.  et al. 2014. Applying evolutionary biology to address global challenges. Science 346:62071245993 [Google Scholar]
  79. Cheng A, Mayes S, Dalle G, Demissew S, Massawe F. 79.  2015. Diversifying crops for food and nutrition security—a case of teff. Biol. Rev. Camb. Philos. Soc.In press [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error