The association between chromosomal abnormalities and reduced fertility in domestic animals is well recorded and has been studied for decades. Chromosome aberrations directly affect meiosis, gametogenesis, and the viability of zygotes and embryos. In some instances, balanced structural rearrangements can be transmitted, causing fertility problems in subsequent generations. Here, we aim to give a comprehensive overview of the current status and future prospects of clinical cytogenetics of animal reproduction by focusing on the advances in molecular cytogenetics during the genomics era. We describe how advancing knowledge about animal genomes has improved our understanding of connections between gross structural or molecular chromosome variations and reproductive disorders. Further, we expand on a key area of reproduction genetics: cytogenetics of animal gametes and embryos. Finally, we describe how traditional cytogenetics is interfacing with advanced genomics approaches, such as array technologies and next-generation sequencing, and speculate about the future prospects.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Fries R, Popescu P. 1.  1999. Cytogenetics and physical chromosome maps. The Genetics of Cattle R Fries, A Ruvinsky 247–327 New York: CAB Int. [Google Scholar]
  2. Larkin D, Farré M. 2.  2015. Cytogenetics and chromosome maps. The Genetics of Cattle DJ Garrick, A Ruvinsky 103–29 New York: CAB Int. [Google Scholar]
  3. Chowdhary BP. 3.  1998. Cytogenetics and physical chromosome maps. The Genetics of the Pig MF Rothschild, A Ruvinsky 199–264 New York: CAB Int. [Google Scholar]
  4. Raudsepp T, Chowdhary BP. 4.  2011. Cytogenetics and chromosome maps. The Genetics of the Pig MF Rothschild, A Ruvinsky 134–78 New York: CAB Int. [Google Scholar]
  5. Ducos A, Berland HM, Bonnet N, Calgaro A, Billoux S. 5.  et al. 2007. Chromosomal control of pig populations in France: 2002–2006 survey. Genet. Sel. Evol. 39:583–97 [Google Scholar]
  6. Chowdhary BP, Raudsepp T. 6.  2000. Cytogenetics and physical gene maps. The Genetics of the Horse AT Bowling, A Ruvinsky 171–242 New York: CAB Int. [Google Scholar]
  7. Lear TL, Bailey E. 7.  2008. Equine clinical cytogenetics: the past and future. Cytogenet. Genome Res. 120:42–49 [Google Scholar]
  8. Lear TL, McGee RB. 8.  2012. Disorders of sexual development in the domestic horse, Equus caballus. Sex. Dev. 6:61–71 [Google Scholar]
  9. Chowdhary BP. 9.  2013. Defining the equine genome: the nuclear genome and the mitochondrial genome. Equine Genomics BP Chowdhary 1–9 Oxford, UK: Wiley-Blackwell [Google Scholar]
  10. Chowdhary BP, Raudsepp T. 10.  2006. The horse genome. Vertebrate Genomes. Genome Dynamics 2 J-N Volff 97–110 Basel, Switz: Karger [Google Scholar]
  11. Broad T, Hayes H, Long S. 11.  1997. Cytogenetics: physical chromosome maps. The Genetics of Sheep L Piper, A Ruvinsky 241–95 Wallingford, UK: CAB Int. [Google Scholar]
  12. Schibler L, Di Meo GP, Cribiu EP, Iannuzzi L. 12.  2009. Molecular cytogenetics and comparative mapping in goats (Capra hircus, 2n = 60). Cytogenet. Genome Res. 126:77–85 [Google Scholar]
  13. Poth T, Breuer W, Walter B, Hecht W, Hermanns W. 13.  2010. Disorders of sex development in the dog—adoption of a new nomenclature and reclassification of reported cases. Anim. Reprod. Sci. 121:197–207 [Google Scholar]
  14. Raudsepp T. 14.  2014. Cytogenetics and infertility. Llama and Alpaca Care: Medicine, Surgery, Reproduction, Nutrition and Herd Health C Cebra, D Anderson, A Tibary, R Van Saun, L Johnson 243–49 Philadelphia: Elsevier [Google Scholar]
  15. King W. 15.  1990. Chromosome abnormalities and pregnancy failure in domestic animals. Adv. Vet. Sci. Comp. Med. 34:229–50 [Google Scholar]
  16. King WA. 16.  2008. Chromosome variation in the embryos of domestic animals. Cytogenet. Genome Res. 120:81–90 [Google Scholar]
  17. Villagómez DA, Pinton A. 17.  2008. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals. Cytogenet. Genome Res. 120:69–80 [Google Scholar]
  18. Villagómez DA, Parma P, Radi O, Di Meo G, Pinton A. 18.  et al. 2009. Classical and molecular cytogenetics of disorders of sex development in domestic animals. Cytogenet. Genome Res. 126:110–31 [Google Scholar]
  19. Rubes J, Pinton A, Bonnet-Garnier A, Fillon V, Musilova P. 19.  et al. 2009. Fluorescence in situ hybridization applied to domestic animal cytogenetics. Cytogenet. Genome Res. 126:34–48 [Google Scholar]
  20. Raudsepp T, Chowdhary BP. 20.  2008. FISH for mapping single copy genes. Methods Mol. Biol. 422:31–49 [Google Scholar]
  21. Iannuzzi L, Di Berardino D. 21.  2008. Tools of the trade: diagnostics and research in domestic animal cytogenetics. J. Appl. Genet. 49:357–66 [Google Scholar]
  22. Chowdhary BP, Raudsepp T. 22.  2001. Chromosome painting in farm, pet and wild animal species. Methods Cell Sci. 23:37–55 [Google Scholar]
  23. Waters PD, Robinson TJ. 23.  2013. Evolution of the mammalian X chromosome. eLS [Google Scholar]
  24. Breen M, Modiano JF. 24.  2008. Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans—Man and his best friend share more than companionship. Chromosome Res. 16:145–54 [Google Scholar]
  25. Raudsepp T, Chowdhary BP. 25.  2013. Physical and comparative maps. Equine Genomics BP Chowdhary 49–71 Oxford, UK: Wiley-Blackwell [Google Scholar]
  26. Chowdhary BP, Raudsepp T. 26.  2005. Mapping genomes at the chromosome level. Mammalian Genomics A Ruvinsky, JM Graves 23–65 Wallingford, UK: CAB Int. [Google Scholar]
  27. Harewood L, Schutz F, Boyle S, Perry P, Delorenzi M. 27.  et al. 2010. The effect of translocation-induced nuclear reorganization on gene expression. Genome Res. 20:554–64 [Google Scholar]
  28. Durkin K, Raudsepp T, Chowdhary B. 28.  2011. Cytogenetic evaluation of the stallion. Equine Reproduction AO McKinnon, EL Squires, WE Vaala, DD Varner 1462–68 Wiley Blackwell [Google Scholar]
  29. Ghosh S, Qu Z, Das PJ, Fang E, Juras R. 29.  et al. 2014. Copy number variation in the horse genome. PLOS Genet. 10:e1004712 [Google Scholar]
  30. Gustavsson I. 30.  1969. Cytogenetics, distribution and phenotypic effects of a translocation in Swedish cattle. Hereditas 63:68–169 [Google Scholar]
  31. Citek J, Rubes J, Hajkova J. 31.  2009. Short communication: Robertsonian translocations, chimerism, and aneuploidy in cattle. J. Dairy Sci. 92:3481–83 [Google Scholar]
  32. Bonnet-Garnier A, Lacaze S, Beckers JF, Berland HM, Pinton A. 32.  et al. 2008. Meiotic segregation analysis in cows carrying the t(1;29) Robertsonian translocation. Cytogenet. Genome Res. 120:91–96 [Google Scholar]
  33. Di Meo GP, Perucatti A, Chaves R, Adega F, De Lorenzi L. 33.  et al. 2006. Cattle rob(1;29) originating from complex chromosome rearrangements as revealed by both banding and FISH-mapping techniques. Chromosome Res. 14:649–55 [Google Scholar]
  34. De Lorenzi L, Rossi E, Gimelli S, Parma P. 34.  2014. De novo reciprocal translocation t(5;6)(q13;q34) in cattle: cytogenetic and molecular characterization. Cytogenet. Genome Res. 142:95–100 [Google Scholar]
  35. Ducos A, Revay T, Kovacs A, Hidas A, Pinton A. 35.  et al. 2008. Cytogenetic screening of livestock populations in Europe: an overview. Cytogenet. Genome Res. 120:26–41 [Google Scholar]
  36. De Lorenzi L, Morando P, Planas J, Zannotti M, Molteni L, Parma P. 36.  2012. Reciprocal translocations in cattle: frequency estimation. J. Anim. Breed. Genet. 129:409–16 [Google Scholar]
  37. Lagerlof N, Boyd H. 37.  1953. Ovarian hypoplasia and other abnormal conditions in the sexual organs of cattle of the Swedish Highland breed; results of postmortem examination of over 6,000 cows. Cornell Vet. 43:64–79 [Google Scholar]
  38. Venhoranta H, Pausch H, Wysocki M, Szczerbal I, Hanninen R. 38.  et al. 2013. Ectopic KIT copy number variation underlies impaired migration of primordial germ cells associated with gonadal hypoplasia in cattle (Bos taurus). PLOS ONE 8:e75659 [Google Scholar]
  39. Durkin K, Coppieters W, Drögemüller C, Ahariz N, Cambisano N. 39.  et al. 2012. Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature 482:81–84 [Google Scholar]
  40. De Lorenzi L, De Giovanni A, Molteni L, Denis C, Eggen A, Parma P. 40.  2007. Characterization of a balanced reciprocal translocation, rcp(9;11)(q27;q11) in cattle. Cytogenet. Genome Res. 119:231–34 [Google Scholar]
  41. Chaves R, Adega F, Wienberg J, Guedes-Pinto H, Heslop-Harrison JS. 41.  2003. Molecular cytogenetic analysis and centromeric satellite organization of a novel 8;11 translocation in sheep: a possible intermediate in biarmed chromosome evolution. Mamm. Genome 14:706–10 [Google Scholar]
  42. Iannuzzi A, Perucatti A, Genualdo V, Pauciullo A, Incarnato D. 42.  et al. 2014. The utility of chromosome microdissection in clinical cytogenetics: a new reciprocal translocation in sheep. Cytogenet. Genome Res. 142:174–78 [Google Scholar]
  43. Pailhoux E, Vigier B, Chaffaux S, Servel N, Taourit S. 43.  et al. 2001. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat. Genet. 29:453–58 [Google Scholar]
  44. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M. 44.  et al. 2014. FOXL2 is a female sex-determining gene in the goat. Curr. Biol. 24:404–8 [Google Scholar]
  45. Pauciullo A, Perucatti A, Cosenza G, Iannuzzi A, Incarnato D. 45.  et al. 2014. Sequential cross-species chromosome painting among river buffalo, cattle, sheep and goat: a useful tool for chromosome abnormalities diagnosis within the family Bovidae. PLOS ONE 9:e110297 [Google Scholar]
  46. Di Meo GP, Perucatti A, Genualdo V, Iannuzzi A, Sarubbi F. 46.  et al. 2011. A rare case of centric fission and fusion in a river buffalo (Bubalus bubalis, 2n = 50) cow with reduced fertility. Cytogenet. Genome Res. 132:26–30 [Google Scholar]
  47. Albarella S, Ciotola F, Coletta A, Genualdo V, Iannuzzi L, Peretti V. 47.  2013. A new translocation t(1p;18) in an Italian Mediterranean river buffalo (Bubalus bubalis, 2n = 50) bull: cytogenetic, fertility and inheritance studies. Cytogenet. Genome Res. 139:17–21 [Google Scholar]
  48. Pauciullo A, Perucatti A, Iannuzzi A, Incarnato D, Genualdo V. 48.  et al. 2014. Development of a sequential multicolor-FISH approach with 13 chromosome-specific painting probes for the rapid identification of river buffalo (Bubalus bubalis, 2n = 50) chromosomes. J. Appl. Genet. 55:397–401 [Google Scholar]
  49. Quach TA, Villagómez DA, Coppola G, Pinton A, Hart EJ. 49.  et al. 2009. A cytogenetic study of breeding boars in Canada. Cytogenet. Genome Res. 126:271–80 [Google Scholar]
  50. Kociucka B, Szczerbal I, Bugaj S, Orsztynowicz M, Switonski M. 50.  2014. A high incidence of adjacent-1 meiotic segregation pattern, revealed by multicolor sperm FISH, in a carrier boar of a new reciprocal translocation t(6;16)(p13;q23). Cytogenet. Genome Res. 142:21–27 [Google Scholar]
  51. Riggs PK, Ronne M. 51.  2009. Fragile sites in domestic animal chromosomes: molecular insights and challenges. Cytogenet. Genome Res. 126:97–109 [Google Scholar]
  52. Larkin DM, Pape G, Donthu R, Auvil L, Welge M, Lewin HA. 52.  2009. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res. 19:770–77 [Google Scholar]
  53. Pinton A, Calgaro A, Bonnet N, Ferchaud S, Billoux S. 53.  et al. 2009. Influence of sex on the meiotic segregation of a t(13;17) Robertsonian translocation: a case study in the pig. Hum. Reprod. 24:2034–43 [Google Scholar]
  54. Massip K, Bonnet N, Calgaro A, Billoux S, Baquie V. 54.  et al. 2009. Male meiotic segregation analyses of peri- and paracentric inversions in the pig species. Cytogenet. Genome Res. 125:117–24 [Google Scholar]
  55. Lear TL, Raudsepp T, Lundquist JM, Brown SE. 55.  2014. Repeated early embryonic loss in a thoroughbred mare with a chromosomal translocation [64,XX,t(2;13)]. J. Equine Vet. Sci. 34:805–9 [Google Scholar]
  56. Switonski M, Szczerbal I, Nizanski W, Kociucka B, Bartz M. 56.  et al. 2011. Robertsonian translocation in a sex reversal dog (XX, SRY negative) may indicate that the causative mutation for this intersexuality syndrome resides on canine chromosome 23 (CFA23). Sex. Dev. 5:141–46 [Google Scholar]
  57. Switonski M, Szczerbal I, Skorczyk A, Yang F, Antosik P. 57.  2003. Robertsonian translocation (8;14) in an infertile bitch (Canis familiaris). J. Appl. Genet. 44:525–27 [Google Scholar]
  58. Stone DM, Mickelsen WD, Jacky PB, Prieur DJ. 58.  1991. A novel Robertsonian translocation in a family of Walker hounds. Genome 34:677–80 [Google Scholar]
  59. Larsen RE, Dias E, Flores G, Selden JR. 59.  1979. Breeding studies reveal segregation of a canine Robertsonian translocation along Mendelian proportions. Cytogenet. Cell Genet. 24:95–101 [Google Scholar]
  60. Larsen RE, Dias E, Cervenka J. 60.  1978. Centric fusion of autosomal chromosomes in a bitch and offspring. Am. J. Vet. Res. 39:861–64 [Google Scholar]
  61. Avila F, Das PJ, Kutzler M, Owens E, Perelman P. 61.  et al. 2014. Development and application of camelid molecular cytogenetic tools. J. Hered. 105:858–69 [Google Scholar]
  62. Avila F, Baily MP, Perelman P, Das PJ, Pontius J. 62.  et al. 2014. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet. Genome Res. 144:196–207 [Google Scholar]
  63. Avila F, Baily MP, Merriwether DA, Trifonov VA, Rubes J. 63.  et al. 2015. A cytogenetic and comparative map of camelid chromosome 36 and the minute in alpacas. Chromosome Res. 23:237–51 [Google Scholar]
  64. Raudsepp T, Paria N, Chowdhary BP. 64.  2013. The Y-chromosome. Equine Genomics BP Chowdhary 73–92 Oxford, UK: Wiley-Blackwell [Google Scholar]
  65. Raudsepp T, Das PJ. 65.  2013. Genomics of reproduction and fertility. Equine Genomics BP Chowdhary 199–216 Oxford, UK: Wiley-Blackwell [Google Scholar]
  66. Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T. 66.  et al. 2014. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:494–99 [Google Scholar]
  67. Deng X, Berletch JB, Nguyen DK, Disteche CM. 67.  2014. X chromosome regulation: diverse patterns in development, tissues and disease. Nat. Rev. Genet. 15:367–78 [Google Scholar]
  68. Raudsepp T, Das PJ, Avila F, Chowdhary BP. 68.  2012. The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex. Dev. 6:72–83 [Google Scholar]
  69. Perucatti A, Genualdo V, Iannuzzi A, Rebl A, Di Berardino D. 69.  et al. 2012. Advanced comparative cytogenetic analysis of X chromosomes in river buffalo, cattle, sheep, and human. Chromosome Res. 20:413–25 [Google Scholar]
  70. Das PJ, Chowdhary BP, Raudsepp T. 70.  2009. Characterization of the bovine pseudoautosomal region and comparison with sheep, goat, and other mammalian pseudoautosomal regions. Cytogenet. Genome Res. 126:139–47 [Google Scholar]
  71. Bugno M, Slota E, Pienkowska-Schelling A, Schelling C. 71.  2009. Identification of chromosome abnormalities in the horse using a panel of chromosome-specific painting probes generated by microdissection. Acta Vet. Hung. 57:369–81 [Google Scholar]
  72. Romano JE, Raussdepp T, Mulon PY, Villadoniga GB. 72.  2015. Non-mosaic monosomy 59,X in cattle: a case report. Anim. Reprod. Sci. 156:83–90 [Google Scholar]
  73. Szczerbal I, Nizanski W, Dzimira S, Nowacka-Woszuk J, Ochota M, Switonski M. 73.  2015. X monosomy in a virilized female cat. Reprod. Domest. Anim. 50:344–48 [Google Scholar]
  74. Power MM. 74.  1987. Equine half sibs with an unbalanced X;15 translocation or trisomy 28. Cytogenet. Cell Genet. 45:163–68 [Google Scholar]
  75. Basrur PK, Reyes ER, Farazmand A, King WA, Popescu PC. 75.  2001. X-autosome translocation and low fertility in a family of crossbred cattle. Anim. Reprod. Sci. 67:1–16 [Google Scholar]
  76. Neal MS, Reyes ER, Fisher KS, King WA, Basrur PK. 76.  1998. Reproductive consequences of an X-autosome translocation in a swine herd. Can. Vet. J. 39:232–37 [Google Scholar]
  77. De Lorenzi L, Rossi E, Genualdo V, Gimelli S, Lasagna E. 77.  et al. 2012. Molecular characterization of Xp chromosome deletion in a fertile cow. Sex. Dev. 6:298–302 [Google Scholar]
  78. Li G, Davis BW, Raudsepp T, Pearks Wilkerson AJ, Mason VC. 78.  et al. 2013. Comparative analysis of mammalian Y chromosomes illuminates ancestral structure and lineage-specific evolution. Genome Res. 23:1486–95 [Google Scholar]
  79. Paria N, Raudsepp T, Pearks Wilkerson AJ, O'Brien PC, Ferguson-Smith MA. 79.  et al. 2011. A gene catalogue of the euchromatic male-specific region of the horse Y chromosome: comparison with human and other mammals. PLOS ONE 6:e21374 [Google Scholar]
  80. Chang TC, Yang Y, Retzel EF, Liu WS. 80.  2013. Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. PNAS 110:12373–78 [Google Scholar]
  81. Kakoi H, Hirota K, Gawahara H, Kurosawa M, Kuwajima M. 81.  2005. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers. Equine Vet. J. 37:143–47 [Google Scholar]
  82. Raudsepp T, Durkin K, Lear TL, Das PJ, Avila F. 82.  et al. 2010. Molecular heterogeneity of XY sex reversal in horses. Anim. Genet. 41:Suppl. 241–52 [Google Scholar]
  83. Das PJ, Lyle SK, Beehan D, Chowdhary BP, Raudsepp T. 83.  2012. Cytogenetic and molecular characterization of Y isochromosome in a 63XO/64Xi(Yq) mosaic karyotype of an intersex horse. Sex. Dev. 6:117–27 [Google Scholar]
  84. Kawakura K, Miyake Y, Murakami RK, Kondoh S, Hirata TI, Kaneda Y. 84.  1997. Abnormal structure of the Y chromosome detected in bovine gonadal hypoplasia (XY female) by FISH. Cytogenet. Cell Genet. 76:36–38 [Google Scholar]
  85. Padula AM. 85.  2005. The freemartin syndrome: an update. Anim. Reprod. Sci. 87:93–109 [Google Scholar]
  86. Juras R, Raudsepp T, Das PJ, Conant E, Cothran EG. 86.  2010. XX/XY blood lymphocyte chimerism in heterosexual dizygotic American Bashkir Curly horse twins. J. Equine Vet. Sci. 30:575–80 [Google Scholar]
  87. Hughes IA. 87.  2008. Disorders of sex development: a new definition and classification. Best Pract. Res. Clin. Endocrinol. Metab. 22:119–34 [Google Scholar]
  88. Szczerbal I, Stachowiak M, Dzimira S, Sliwa K, Switonski M. 88.  2015. The first case of 38,XX (SRY-positive) disorder of sex development in a cat. Mol. Cytogenet. 8:22 [Google Scholar]
  89. Nowacka-Woszuk J, Nizanski W, Klimowicz M, Switonski M. 89.  2007. Normal male chromosome complement and a lack of the SRY and SOX9 gene mutations in a male pseudohermaphrodite dog. Anim. Reprod. Sci. 98:371–76 [Google Scholar]
  90. Whyte A, Monteagudo LV, Díaz-Otero A, Lebrero ME, Tejedor MT. 90.  et al. 2009. Malformations of the epididymis, incomplete regression of the mesonephric tubules and hyperplasia of Leydig cells in canine persistence of Mullerian duct syndrome. Anim. Reprod. Sci. 115:328–33 [Google Scholar]
  91. Ferrer LM, Monteagudo LV, García de Jalón JA, Tejedor MT, Ramos JJ, Lacasta D. 91.  2009. A case of ovine female XY sex reversal syndrome not related to anomalies in the sex-determining region Y (SRY). Cytogenet. Genome Res. 126:329–32 [Google Scholar]
  92. Lange J, Skaletsky H, van Daalen SK, Embry SL, Korver CM. 92.  et al. 2009. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 138:855–69 [Google Scholar]
  93. Ball BA. 93.  1988. Embryonic loss in mares. Incidence, possible causes, and diagnostic considerations. Vet. Clin. North Am. Equine Pract. 4:263–90 [Google Scholar]
  94. Hornak M, Oracova E, Hulinska P, Urbankova L, Rubes J. 94.  2012. Aneuploidy detection in pigs using comparative genomic hybridization: from the oocytes to blastocysts. PLOS ONE 7:e30335 [Google Scholar]
  95. Hornak M, Hulinska P, Musilova P, Kubickova S, Rubes J. 95.  2009. Investigation of chromosome aneuploidies in early porcine embryos using comparative genomic hybridization. Cytogenet. Genome Res. 126:210–16 [Google Scholar]
  96. Ocaña-Quero JM, Pinedo-Merlin M, Moreno-Millan M. 96.  1999. Cytogenetic study of in vitro-derived bovine embryos. Vet. J. 158:228–33 [Google Scholar]
  97. Jakobsen AS, Thomsen PD, Avery B. 97.  2006. Few polyploid blastomeres in morphologically superior bovine embryos produced in vitro. Theriogenology 65:870–81 [Google Scholar]
  98. Li GP, Liu Y, White KL, Bunch TD. 98.  2005. Cytogenetic analysis of diploidy in cloned bovine embryos using an improved air-dry karyotyping method. Theriogenology 63:2434–44 [Google Scholar]
  99. Villamediana P, Vidal F, Paramio MT. 99.  2001. Cytogenetic analysis of caprine 2- to 4-cell embryos produced in vitro. Zygote 9:193–99 [Google Scholar]
  100. Coppola G, Alexander B, Di Berardino D, St John E, Basrur PK, King WA. 100.  2007. Use of cross-species in-situ hybridization (ZOO-FISH) to assess chromosome abnormalities in day-6 in-vivo- or in-vitro-produced sheep embryos. Chromosome Res. 15:399–408 [Google Scholar]
  101. Alexander B, Coppola G, Di Berardino D, Rho GJ, St John E. 101.  et al. 2006. The effect of 6-dimethylaminopurine (6-DMAP) and cycloheximide (CHX) on the development and chromosomal complement of sheep parthenogenetic and nuclear transfer embryos. Mol. Reprod. Dev. 73:20–30 [Google Scholar]
  102. Rambags BP, Krijtenburg PJ, Drie HF, Lazzari G, Galli C. 102.  et al. 2005. Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol. Reprod. Dev. 72:77–87 [Google Scholar]
  103. Long SE. 103.  1978. Reproductive performance of ewes mated to rams heterozygous for the Massey I (t1) centric fusion (Robertsonian) translocation. Vet. Rec. 102:399–401 [Google Scholar]
  104. King WA, Gustavsson I, Popescu CP, Linares T. 104.  1981. Gametic products transmitted by rcp(13q–;14q+) translocation heterozygous pigs, and resulting embryonic loss. Hereditas 95:239–46 [Google Scholar]
  105. Lear TL, Lundquist J, Zent WW, Fishback WD Jr, Clark A. 105.  2008. Three autosomal chromosome translocations associated with repeated early embryonic loss (REEL) in the domestic horse (Equus caballus). Cytogenet. Genome Res. 120:117–22 [Google Scholar]
  106. Viuff D, Rickords L, Offenberg H, Hyttel P, Avery B. 106.  et al. 1999. A high proportion of bovine blastocysts produced in vitro are mixoploid. Biol. Reprod. 60:1273–78 [Google Scholar]
  107. Zudova D, Rezacova O, Kubickova S, Rubes J. 107.  2003. Aneuploidy detection in porcine embryos using fluorescence in situ hybridization. Cytogenet. Genome Res. 102:179–83 [Google Scholar]
  108. Fragouli E, Lenzi M, Ross R, Katz-Jaffe M, Schoolcraft WB, Wells D. 108.  2008. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum. Reprod. 23:2596–608 [Google Scholar]
  109. Wells D, Kaur K, Grifo J, Glassner M, Taylor JC. 109.  et al. 2014. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J. Med. Genet. 51:553–62 [Google Scholar]
  110. Switonski M, Stranzinger G. 110.  1998. Studies of synaptonemal complexes in farm mammals—a review. J. Hered. 89:473–80 [Google Scholar]
  111. Koykul W, Baguma-Nibasheka M, King WA, Basrur PK. 111.  2000. Meiosis and apoptosis in germ cells of X-autosome translocation carrier boars. Mol. Reprod. Dev. 56:448–57 [Google Scholar]
  112. Villagómez DA, Ayala-Valdovinos MA, Galindo-García J, Sánchez-Chipres DR, Mora-Galindo J, Taylor-Preciado JJ. 112.  2008. Extensive nonhomologous meiotic synapsis between normal chromosome axes of an rcp(3;6)(p14;q21) translocation in a hairless Mexican boar. Cytogenet. Genome Res. 120:112–16 [Google Scholar]
  113. Switonski M, Andersson M, Nowacka-Woszuk J, Szczerbal I, Sosnowski J. 113.  et al. 2008. Identification of a new reciprocal translocation in an AI bull by synaptonemal complex analysis, followed by chromosome painting. Cytogenet. Genome Res. 121:245–48 [Google Scholar]
  114. Ansari HA, Jung HR, Hediger R, Fries R, Konig H, Stranzinger G. 114.  1993. A balanced autosomal reciprocal translocation in an azoospermic bull. Cytogenet. Cell Genet. 62:117–23 [Google Scholar]
  115. Scavone MD, Oliveira C, Trinca LA, Foresti F. 115.  2001. Synaptonemal complex analysis of the Holstein-Friesian, Piemontese and Simmental breeds of Bos taurus taurus. Cytobios 105:55–63 [Google Scholar]
  116. Dai K, Gillies C, Dollin A, Hilmi M. 116.  1994. Synaptonemal complex analysis of hybrid and purebred water buffaloes (Bubalus bubalis). Hereditas 121:171–84 [Google Scholar]
  117. Hart EJ, Pinton A, Powell A, Wall R, King WA. 117.  2008. Meiotic recombination in normal and clone bulls and their offspring. Cytogenet. Genome Res. 120:97–101 [Google Scholar]
  118. Al-Jaru A, Goodwin W, Skidmore J, Khazanehdari K. 118.  2014. Distribution of MLH1 foci in horse male synaptonemal complex. Cytogenet. Genome Res. 142:87–94 [Google Scholar]
  119. Al-Jaru A, Goodwin W, Skidmore J, Raudsepp T, Khazanehdari K. 119.  2014. Male horse meiosis: metaphase I chromosome configuration and chiasmata distribution. Cytogenet. Genome Res. 143:225–31 [Google Scholar]
  120. Borodin P, Karamysheva T, Rubtsov N. 120.  2007. Immunofluorescent analysis of meiotic recombination in the domestic cat. Cell Tissue Biol. 1:503–7 [Google Scholar]
  121. Basheva EA, Bidau CJ, Borodin PM. 121.  2008. General pattern of meiotic recombination in male dogs estimated by MLH1 and RAD51 immunolocalization. Chromosome Res. 16:709–19 [Google Scholar]
  122. Federici F, Mulugeta E, Schoenmakers S, Wassenaar E, Hoogerbrugge JW. 122.  et al. 2015. Incomplete meiotic sex chromosome inactivation in the domestic dog. BMC Genomics 16:291 [Google Scholar]
  123. Tateno H, Miyake YI, Mori H, Kamiguchi Y, Mikamo K. 123.  1994. Sperm chromosome study of two bulls heterozygous for different Robertsonian translocations. Hereditas 120:7–11 [Google Scholar]
  124. Bird JM, Houghton JA. 124.  1990. Cytogenetics of porcine sperm chromosomes following IVF of zona-free hamster oocytes. Arch. Androl. 25:45–57 [Google Scholar]
  125. Hassanane M, Kovacs A, Laurent P, Lindblad K, Gustavsson I. 125.  1999. Simultaneous detection of X- and Y-bearing bull spermatozoa by double colour fluorescence in situ hybridization. Mol. Reprod. Dev. 53:407–12 [Google Scholar]
  126. Nicodemo D, Pauciullo A, Castello A, Roldan E, Gomendio M. 126.  et al. 2009. X-Y sperm aneuploidy in 2 cattle (Bos taurus) breeds as determined by dual color fluorescent in situ hybridization (FISH). Cytogenet. Genome Res. 126:217–25 [Google Scholar]
  127. Pauciullo A, Cosenza G, Peretti V, Iannuzzi A, Di Meo GP. 127.  et al. 2011. Incidence of X-Y aneuploidy in sperm of two indigenous cattle breeds by using dual color fluorescent in situ hybridization (FISH). Theriogenology 76:328–33 [Google Scholar]
  128. Rybar R, Prinosilova P, Kopecka V, Hlavicova J, Veznik Z. 128.  et al. 2012. The effect of bacterial contamination of semen on sperm chromatin integrity and standard semen parameters in men from infertile couples. Andrologia 44:Suppl. 1410–18 [Google Scholar]
  129. Rubes J, Vozdova M, Kubickova S. 129.  1999. Aneuploidy in pig sperm: multicolor fluorescence in situ hybridization using probes for chromosomes 1, 10, and Y. Cytogenet. Cell Genet. 85:200–4 [Google Scholar]
  130. Pinton A, Ducos A, Yerle M. 130.  2004. Estimation of the proportion of genetically unbalanced spermatozoa in the semen of boars carrying chromosomal rearrangements using FISH on sperm nuclei. Genet. Sel. Evol. 36:123–37 [Google Scholar]
  131. Kawarasaki T, Matsumoto K, Chikyu M, Itagaki Y, Horiuchi A. 131.  2000. Sexing of porcine embryo by in situ hybridization using chromosome Y- and 1-specific DNA probes. Theriogenology 53:1501–9 [Google Scholar]
  132. Parrilla I, Vázquez JM, Oliver-Bonet M, Navarro J, Yelamos J. 132.  et al. 2003. Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by nick translation. Reproduction 126:317–25 [Google Scholar]
  133. Bugno-Poniewierska M, Jablonska Z, Slota E. 133.  2009. Modification of equine sperm chromatin decondensation method to use fluorescence in situ hybridization (FISH). Folia Histochem. Cytobiol. 47:663–66 [Google Scholar]
  134. Bugno-Poniewierska M, Kozub D, Pawlina K, Tischner M Jr, Tischner M. 134.  et al. 2011. Determination of the correlation between stallion's age and number of sex chromosome aberrations in spermatozoa. Reprod. Domest. Anim. 46:787–92 [Google Scholar]
  135. Bugno M, Jablonska Z, Tischner M, Klukowska-Rotzler J, Pienkowska-Schelling A. 135.  et al. 2010. Detection of sex chromosome aneuploidy in equine spermatozoa using fluorescence in situ hybridization. Reprod. Domest. Anim. 45:1015–19 [Google Scholar]
  136. Komaki H, Oi M, Suzuki H. 136.  2014. Detection of sex chromosome aneuploidy in dog spermatozoa by triple color fluorescence in situ hybridization. Theriogenology 82:652–56 [Google Scholar]
  137. Oi M, Yamada K, Hayakawa H, Suzuki H. 137.  2013. Sexing of dog sperm by fluorescence in situ hybridization. J. Reprod. Dev. 59:92–96 [Google Scholar]
  138. Cassatella D, Martino NA, Valentini L, Guaricci AC, Cardone MF. 138.  et al. 2013. Male infertility and copy number variants (CNVs) in the dog: a two-pronged approach using Computer Assisted Sperm Analysis (CASA) and Fluorescent In Situ Hybridization (FISH). BMC Genomics 14:921 [Google Scholar]
  139. Di Berardino D, Vozdova M, Kubickova S, Cernohorska H, Coppola G. 139.  et al. 2004. Sexing river buffalo (Bubalus bubalis L.), sheep (Ovis aries L.), goat (Capra hircus L.), and cattle spermatozoa by double color FISH using bovine (Bos taurus L.) X- and Y-painting probes. Mol. Reprod. Dev. 67:108–15 [Google Scholar]
  140. Massip K, Yerle M, Billon Y, Ferchaud S, Bonnet N. 140.  et al. 2010. Studies of male and female meiosis in inv(4)(p1.4;q2.3) pig carriers. Chromosome Res. 18:925–38 [Google Scholar]
  141. Bonnet-Garnier A, Guardia S, Pinton A, Ducos A, Yerle M. 141.  2009. Analysis using sperm-FISH of a putative interchromosomal effect in boars carrying reciprocal translocations. Cytogenet. Genome Res. 126:194–201 [Google Scholar]
  142. Vozdova M, Kubickova S, Cernohorska H, Rubes J. 142.  2008. Detection of translocation rob(1;29) in bull sperm using a specific DNA probe. Cytogenet. Genome Res. 120:102–5 [Google Scholar]
  143. Bou G, Sun M, Lv M, Zhu J, Li H. 143.  et al. 2014. A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay. Transgenic Res. 23:679–89 [Google Scholar]
  144. Jones KT, Lane SI. 144.  2013. Molecular causes of aneuploidy in mammalian eggs. Development 140:3719–30 [Google Scholar]
  145. Koykul W, Basrur PK. 145.  1994. Synaptic anomalies in fetal bovine oocytes. Genome 37:83–91 [Google Scholar]
  146. Rho G, Coppola G, Sosnowski J, Kasimanickam R, Johnson W. 146.  et al. 2007. Use of somatic cell nuclear transfer to study meiosis in female cattle carrying a sex-dependent fertility-impairing X-chromosome abnormality. Cloning Stem Cells 9:118–29 [Google Scholar]
  147. Vozdova M, Machatkova M, Kubikova S, Zudova D, Jokesova E, Rubes J. 147.  2001. Frequency of aneuploidy in pig oocytes matured in vitro and of the corresponding first polar bodies detected by fluorescent in situ hybridization. Theriogenology 56:771–76 [Google Scholar]
  148. Lechniak D, Warzych E, Pers-Kamczyc E, Sosnowski J, Antosik P, Rubes J. 148.  2007. Gilts and sows produce similar rate of diploid oocytes in vitro whereas the incidence of aneuploidy differs significantly. Theriogenology 68:755–62 [Google Scholar]
  149. Ocaña-Quero JM, Pinedo-Merlín M, Moreno-Millán M. 149.  1999. Influence of follicle size, medium, temperature and time on the incidence of diploid bovine oocytes matured in vitro. Theriogenology 51:667–72 [Google Scholar]
  150. Bai C, Liu H, Liu Y, Wu X, Cheng L. 150.  et al. 2011. Diploid oocyte formation and tetraploid embryo development induced by cytochalasin B in bovine. Cell. Reprogr. 13:37–45 [Google Scholar]
  151. Sosnowski J, Switonski M, Lechniak D, Molinski K. 151.  1996. Cytogenetic evaluation of in vitro matured bovine oocytes collected from ovaries of individual donors. Theriogenology 45:865–72 [Google Scholar]
  152. Nicodemo D, Pauciullo A, Cosenza G, Peretti V, Perucatti A. 152.  et al. 2010. Frequency of aneuploidy in in vitro-matured MII oocytes and corresponding first polar bodies in two dairy cattle (Bos taurus) breeds as determined by dual-color fluorescent in situ hybridization. Theriogenology 73:523–29 [Google Scholar]
  153. Lechniak D, Kaczmarek D, Stanislawski D, Adamowicz T. 153.  2002. The ploidy of in vitro matured bovine oocytes is related to the diameter. Theriogenology 57:1303–8 [Google Scholar]
  154. Yadav B, King W, Xu K, Pollard J, Plante L. 154.  1991. Chromosome analysis of bovine oocytes cultured in vitro. Genet. Sel. Evol. 23:191–96 [Google Scholar]
  155. King WA, Bezard J, Bousquet D, Palmer E, Betteridge KJ. 155.  1987. The meiotic stage of preovulatory oocytes in mares. Genome 29:679–82 [Google Scholar]
  156. Lechniak D, Wieczorek M, Sosnowski J. 156.  2002. Low incidence of diploidy among equine oocytes matured in vitro. Equine Vet. J. 34:738–40 [Google Scholar]
  157. Wells D, Delhanty JD. 157.  2000. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol. Hum. Reprod. 6:1055–62 [Google Scholar]
  158. Riegel M. 158.  2014. Human molecular cytogenetics: from cells to nucleotides. Genet. Mol. Biol. 37:194–209 [Google Scholar]
  159. De Lorenzi L, Kopecna O, Gimelli S, Cernohorska H, Zannotti M. 159.  et al. 2010. Reciprocal translocation t(4;7)(q14;q28) in cattle: molecular characterization. Cytogenet. Genome Res. 129:298–304 [Google Scholar]
  160. Holl HM, Lear TL, Nolen-Walston RD, Slack J, Brooks SA. 160.  2013. Detection of two equine trisomies using SNP-CGH. Mamm. Genome 24:252–56 [Google Scholar]
  161. Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C. 161.  et al. 2011. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am. J. Hum. Genet. 88:469–81 [Google Scholar]
  162. Chen CK, Yu HT, Soong YK, Lee CL. 162.  2014. New perspectives on preimplantation genetic diagnosis and preimplantation genetic screening. Taiwan. J. Obstet. Gynecol. 53:146–50 [Google Scholar]
  163. Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E. 163.  et al. 2014. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum. Reprod. 29:2802–13 [Google Scholar]
  164. Sago H, Sekizawa A. 164.  Japan NIPT Consort 2015. Nationwide demonstration project of next-generation sequencing of cell-free DNA in maternal plasma in Japan: 1-year experience. Prenat. Diagn. 35:331–36 [Google Scholar]
  165. Panagopoulos I, Thorsen J, Gorunova L, Micci F, Heim S. 165.  2014. Sequential combination of karyotyping and RNA-sequencing in the search for cancer-specific fusion genes. Int. J. Biochem. Cell Biol. 53:462–65 [Google Scholar]
  166. Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M. 166.  et al. 2014. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24:688–96 [Google Scholar]
  167. Di Berardino D, Nicodemo D, Coppola G, King AW, Ramunno L. 167.  et al. 2006. Cytogenetic characterization of alpaca (Lama pacos, fam. Camelidae) prometaphase chromosomes. Cytogenet. Genome Res. 115:138–44 [Google Scholar]
  168. Balmus G, Trifonov VA, Biltueva LS, O'Brien PC, Alkalaeva ES. 168.  et al. 2007. Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res. 15:499–515 [Google Scholar]
  169. Cho KW, Youn HY, Watari T, Tsujimoto H, Hasegawa A, Satoh H. 169.  1997. A proposed nomenclature of the domestic cat karyotype. Cytogenet. Cell Genet. 79:71–78 [Google Scholar]
  170. Rettenberger G, Klett C, Zechner U, Bruch J, Just W. 170.  et al. 1995. ZOO-FISH analysis: Cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res. 3:479–86 [Google Scholar]
  171. Willet CE, Haase B. 171.  2014. An updated felCat5 SNP manifest for the Illumina Feline 63k SNP genotyping array. Anim. Genet. 45:614–15 [Google Scholar]
  172. 172. ISCNDB 2001. ISCNDB (2000) International System for Chromosome Nomenclature of Domestic Bovids, Di Berardino D, Di Meo GP, Gallagher DS, Hayes H, Iannuzzi L (coordinator) (eds). Cytogenet. Cell Genet. 92:283–99 [Google Scholar]
  173. Chowdhary BP, Fronicke L, Gustavsson I, Scherthan H. 173.  1996. Comparative analysis of the cattle and human genomes: detection of ZOO-FISH and gene mapping-based chromosomal homologies. Mamm. Genome 7:297–302 [Google Scholar]
  174. Clop A, Vidal O, Amills M. 174.  2012. Copy number variation in the genomes of domestic animals. Anim. Genet. 43:503–17 [Google Scholar]
  175. Breen M, Bullerdiek J, Langford CF. 175.  1999. The DAPI banded karyotype of the domestic dog (Canis familiaris) generated using chromosome-specific paint probes. Chromosome Res. 7:401–6 [Google Scholar]
  176. Breen M, Thomas R, Binns MM, Carter NP, Langford CF. 176.  1999. Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61:145–55 [Google Scholar]
  177. Raudsepp T, Christensen K, Chowdhar BP. 177.  2000. Cytogenetics of donkey chromosomes: nomenclature proposal based on GTG-banded chromosomes and depiction of NORs and telomeric sites. Chromosome Res. 8:659–70 [Google Scholar]
  178. Yang F, Fu B, O'Brien PC, Nie W, Ryder OA, Ferguson-Smith MA. 178.  2004. Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res. 12:65–76 [Google Scholar]
  179. 179. ISCNH 1997. ISCNH (1997) International System for Cytogenetic Nomenclature of the Domestic Horse, Bowling AT, Breen M, Chowdhary BP, Hirota K, Lear T, Millon LV, Ponce de Leon FA, Raudsepp T, Stranzinger G (committee). Chromosome Res. 5:433–43 [Google Scholar]
  180. Raudsepp T, Fronicke L, Scherthan H, Gustavsson I, Chowdhary BP. 180.  1996. Zoo-FISH delineates conserved chromosomal segments in horse and man. Chromosome Res. 4:218–25 [Google Scholar]
  181. Gustavsson I. 181.  1988. Standard karyotype of the domestic pig: Committee for the Standardized Karyotype of the Domestic Pig. Hereditas 109:150–57 [Google Scholar]
  182. Fronicke L, Chowdhary BP, Scherthan H, Gustavsson I. 182.  1996. A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm. Genome 7:285–90 [Google Scholar]
  183. Hayes H, Rogel-Gaillard C, Zijlstra C, De Haan NA, Urien C. 183.  et al. 2002. Establishment of an R-banded rabbit karyotype nomenclature by FISH localization of 23 chromosome-specific genes on both G- and R-banded chromosomes. Cytogenet. Genome Res. 98:199–205 [Google Scholar]
  184. Korstanje R, O'Brien PC, Yang F, Rens W, Bosma AA. 184.  et al. 1999. Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet. Cell Genet. 86:317–22 [Google Scholar]
  185. Fontanesi L, Martelli PL, Scotti E, Russo V, Rogel-Gaillard C. 185.  et al. 2012. Exploring copy number variation in the rabbit (Oryctolagus cuniculus) genome by array comparative genome hybridization. Genomics 100:245–51 [Google Scholar]
  186. Iannuzzi L, Di Meo GP, Perucatti A, Ferrara L. 186.  1990. The high resolution G- and R-banding pattern in chromosomes of river buffalo (Bubalus bubalis L.). Hereditas 112:209–15 [Google Scholar]
  187. Iannuzzi L, Di Meo GP, Perucatti A, Bardaro T. 187.  1998. ZOO-FISH and R-banding reveal extensive conservation of human chromosome regions in euchromatic regions of river buffalo chromosomes. Cytogenet. Cell Genet. 82:210–14 [Google Scholar]
  188. Iannuzzi L, Di Meo GP, Perucatti A, Incarnato D. 188.  1999. Comparison of the human with the sheep genomes by use of human chromosome-specific painting probes. Mamm. Genome 10:719–23 [Google Scholar]
  189. Orsztynowicz M, Pawlak P, Oles D, Kubickova S, Lechniak D. 189.  2011. Low incidence of chromosome aberrations in spermatozoa of fertile boars. Reprod. Biol. 11:224–35 [Google Scholar]
  190. Ghosh S, Das PJ, Avila F, Thwaits BK, Chowdhary BP, Rausdepp T. 190.  2016. A non-reciprocal autosomal translocation 64,XX, t(4;10)(q21;p15) in an Arabian Mare with repeated early embryonic loss. Reprod. Domest. Anim 51:171–74 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error