subspecies (MAP) is the etiological agent of severe chronic intestinal inflammatory disease in ruminants, termed Johne's disease, and can infect many other animal species, including humans. MAP has a long incubation period prior to manifestation of clinical signs including diarrhea, weight loss, and loss of production. MAP has a high prevalence in dairy herds and results in considerable adverse impacts on animal health and productivity throughout the world. Recent investigations have leveraged the characterization of the MAP genome for the development of powerful new molecular techniques for MAP strain differentiation. These approaches are providing key insights into the epidemiology and transmission of MAP on and between dairy herds. We summarize the state of the art for MAP diagnostics and strain differentiation and our current knowledge of mechanisms of within- and between-herd transmission of MAP, along with future needs for the development of rational MAP infection control programs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Harris NB, Barletta RG. 1.  2001. Mycobacterium avium subsp. paratuberculosis in veterinary medicine. Clin. Microbiol. Rev. 14:489–512 [Google Scholar]
  2. Chiodini RJ. 2.  1993. The History of Paratuberculosis (Johne's Disease): A Review of the Literature 1895 to 1992 Providence, RI: Int. Assoc. Paratuberculosis658 [Google Scholar]
  3. Pearson L. 3.  1907. A note on the occurrence in America of chronic bacterial dysentery of cattle. Am. Vet. Rev. 33:602–5 [Google Scholar]
  4. Kreeger JM. 4.  1991. Ruminant paratuberculosis—a century of progress and frustration. J. Vet. Diagn. Investig. 3:373–82 [Google Scholar]
  5. Cocito C, Gilot P, Coene M, de Kesel M, Poupart P. 5.  et al. 1994. Paratuberculosis. Clin. Microbiol. Rev. 7:328–45 [Google Scholar]
  6. Chacon O, Bermudez LE, Barletta RG. 6.  2004. Johne's disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu. Rev. Microbiol. 58:329–63 [Google Scholar]
  7. Thorel MF, Krichevsky M, Levy-Frebault VV. 7.  1990. Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int. J. Syst. Bacteriol. 40:254–60 [Google Scholar]
  8. Mijs W, de Haas P, Rossau R, Van der Laan T, Rigouts L. 8.  et al. 2002. Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and ‘M. avium subsp. hominissuis’ for the human/porcine type of M. avium. Int. J. Syst. Evol. Microbiol. 52:1505–18 [Google Scholar]
  9. Turenne CY, Wallace R Jr, Behr MA. 9.  2007. Mycobacterium avium in the postgenomic era. Clin. Microbiol. Rev. 20:205–29 [Google Scholar]
  10. Turenne CY, Collins DM, Alexander DC, Behr MA. 10.  2008. Mycobacterium avium subsp. paratuberculosis and M. avium subsp. avium are independently evolved pathogenic clones of a much broader group of M. avium organisms. J. Bacteriol. 190:2479–87 [Google Scholar]
  11. Ronai Z, Csivincsik A, Dan A. 11.  2015. Molecular identification of Mycobacterium avium subsp. silvaticum by duplex high-resolution melt analysis and subspecies specific real-time PCR. J. Clin. Microbiol. 53:1582–87 [Google Scholar]
  12. Lambrecht RS, Carriere JF, Collins MT. 12.  1988. A model for analyzing growth kinetics of a slowly growing Mycobacterium sp. Appl. Environ. Microbiol. 54:910–16 [Google Scholar]
  13. 13. Natl. Anim. Health Monit. Syst 1997. Johne's disease on U.S. dairy operations. Rep. #N245.1097, US Dep. Agric., Anim. Plant Health Insp. Serv., Vet. Serv., Natl. Anim. Health Monit. Syst., Fort Collins, CO [Google Scholar]
  14. 14. Natl. Anim. Health Monit. Syst 2008. Johne's disease on U.S. dairies, 1991–2007 Rep. #N521.0408, US Dep. Agric., Anim. Plant Health Insp. Serv., Vet. Serv., Natl. Anim. Health Monit. Syst., Fort Collins, CO [Google Scholar]
  15. Collins MT, Gardner IA, Garry FB, Roussel AJ, Wells SJ. 15.  2006. Consensus recommendations on diagnostic testing for the detection of paratuberculosis in cattle in the United States. J. Am. Vet. Med. Assoc. 229:1912–19 [Google Scholar]
  16. 16. USDA 2005. Johne's disease on U.S. dairy operations. Rep. #N427.0205, US Dep. Agric., Anim. Plant Health Insp. Serv., Vet. Serv., Natl. Anim. Health Monit. Syst., Fort Collins, CO [Google Scholar]
  17. Nielsen SS, Toft N. 17.  2009. A review of prevalences of paratuberculosis in farmed animals in Europe. Prev. Vet. Med. 88:1–14 [Google Scholar]
  18. Kruze J, Monti G, Schulze F, Mella A, Leiva S. 18.  2013. Herd-level prevalence of Map infection in dairy herds of southern Chile determined by culture of environmental fecal samples and bulk-tank milk qPCR. Prev. Vet. Med. 111:319–24 [Google Scholar]
  19. Lombard JE. 19.  2011. Epidemiology and economics of paratuberculosis. Vet. Clin. North. Am. Food Anim. Pract. 27:525–35 [Google Scholar]
  20. Ott SL, Wells SJ, Wagner BA. 20.  1999. Herd-level economic losses associated with Johne's disease on US dairy operations. Prev. Vet. Med. 40:179–92 [Google Scholar]
  21. Stabel JR. 21.  1998. Johne's disease: a hidden threat. J. Dairy Sci. 81:283–88 [Google Scholar]
  22. Chiodini RJ, Van Kruiningen HJ, Thayer WR, Merkal RS, Coutu JA. 22.  1984. Possible role of mycobacteria in inflammatory bowel disease. I. An unclassified Mycobacterium species isolated from patients with Crohn's disease. Dig. Dis. Sci. 29:1073–79 [Google Scholar]
  23. Bull TJ, McMinn EJ, Sidi-Boumedine K, Skull A, Durkin D. 23.  et al. 2003. Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn's disease. J. Clin. Microbiol. 41:2915–23 [Google Scholar]
  24. Ellingson JL, Anderson JL, Koziczkowski JJ, Radcliff RP, Sloan SJ. 24.  et al. 2005. Detection of viable Mycobacterium avium subsp. paratuberculosis in retail pasteurized whole milk by two culture methods and PCR. J. Food Prot. 68:966–72 [Google Scholar]
  25. Pickup RW, Rhodes G, Arnott S, Sidi-Boumedine K, Bull TJ. 25.  et al. 2005. Mycobacterium avium subsp. paratuberculosis in the catchment area and water of the River Taff in South Wales, United Kingdom, and its potential relationship to clustering of Crohn's disease cases in the city of Cardiff. Appl. Environ. Microbiol. 71:2130–39 [Google Scholar]
  26. Whittington RJ, Sergeant ES. 26.  2001. Progress towards understanding the spread, detection and control of Mycobacterium avium subsp paratuberculosis in animal populations. Aust. Vet. J. 79:267–78 [Google Scholar]
  27. Sweeney RW, Collins MT, Koets AP, McGuirk SM, Roussel AJ. 27.  2012. Paratuberculosis (Johne's disease) in cattle and other susceptible species. J. Vet. Intern. Med. 26:1239–50 [Google Scholar]
  28. Donat K, Kube J, Dressel J, Einax E, Pfeffer M. 28.  et al. 2014. Detection of Mycobacterium avium subspecies paratuberculosis in environmental samples by faecal culture and real-time PCR in relation to apparent within-herd prevalence as determined by individual faecal culture. Epidemiol. Infect. 143:975–85 [Google Scholar]
  29. Doran T, Tizard M, Millar D, Ford J, Sumar N. 29.  et al. 1997. IS900 targets translation initiation signals in Mycobacterium avium subsp. paratuberculosis to facilitate expression of its hed gene. Microbiology 143:Pt. 2547–52 [Google Scholar]
  30. Li L, Bannantine JP, Zhang Q, Amonsin A, May BJ. 30.  et al. 2005. The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. PNAS 102:12344–49 [Google Scholar]
  31. Poupart P, Coene M, Van Heuverswyn H, Cocito C. 31.  1993. Preparation of a specific RNA probe for detection of Mycobacterium paratuberculosis and diagnosis of Johne's disease. J. Clin. Microbiol. 31:1601–5 [Google Scholar]
  32. Mobius P, Hotzel H, Rassbach A, Kohler H. 32.  2008. Comparison of 13 single-round and nested PCR assays targeting IS900, ISMav2, f57 and locus 255 for detection of Mycobacterium avium subsp. paratuberculosis. Vet. Microbiol. 126:324–33 [Google Scholar]
  33. Aly SS, Mangold BL, Whitlock RH, Sweeney RW, Anderson RJ. 33.  et al. 2010. Correlation between Herrold egg yolk medium culture and real-time quantitative polymerase chain reaction results for Mycobacterium avium subspecies paratuberculosis in pooled fecal and environmental samples. J. Vet. Diagn. Investig. 22:677–83 [Google Scholar]
  34. Crawford JT, Bates JH. 34.  1985. Phage typing of the Mycobacterium avium-intracellulare-scrofulaceum complex. A study of strains of diverse geographic and host origin. Am. Rev. Respir. Dis. 132:386–89 [Google Scholar]
  35. Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN. 35.  et al. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51:873–84 [Google Scholar]
  36. Green EP, Tizard ML, Moss MT, Thompson J, Winterbourne DJ. 36.  et al. 1989. Sequence and characteristics of IS900, an insertion element identified in a human Crohn's disease isolate of Mycobacterium paratuberculosis. Nucleic Acids Res. 17:9063–73 [Google Scholar]
  37. Collins DM, Gabric DM, De Lisle GW. 37.  1989. Identification of a repetitive DNA sequence specific to Mycobacterium paratuberculosis. FEMS Microbiol. Lett. 51:175–78 [Google Scholar]
  38. Collins DM, Gabric DM, de Lisle GW. 38.  1990. Identification of two groups of Mycobacterium paratuberculosis strains by restriction endonuclease analysis and DNA hybridization. J. Clin. Microbiol. 28:1591–96 [Google Scholar]
  39. Motiwala AS, Li L, Kapur V, Sreevatsan S. 39.  2006. Current understanding of the genetic diversity of Mycobacterium avium subsp. paratuberculosis. Microbes Infect. 8:1406–18 [Google Scholar]
  40. de Juan L, Álvarez J, Aranaz A, Rodriguez A, Romero B. 40.  et al. 2006. Molecular epidemiology of Types I/III strains of Mycobacterium avium subspecies paratuberculosis isolated from goats and cattle. Vet. Microbiol. 115:102–10 [Google Scholar]
  41. Biet F, Sevilla IA, Cochard T, Lefrancois LH, Garrido JM. 41.  et al. 2012. Inter- and intra-subtype genotypic differences that differentiate Mycobacterium avium subspecies paratuberculosis strains. BMC Microbiol. 12:264 [Google Scholar]
  42. Stevenson K, Alvarez J, Bakker D, Biet F, de Juan L. 42.  et al. 2009. Occurrence of Mycobacterium avium subspecies paratuberculosis across host species and European countries with evidence for transmission between wildlife and domestic ruminants. BMC Microbiol. 9:212 [Google Scholar]
  43. Whittington R, Marsh I, Choy E, Cousins D. 43.  1998. Polymorphisms in IS1311, an insertion sequence common to Mycobacterium avium and M. avium subsp. paratuberculosis, can be used to distinguish between and within these species. Mol. Cell Probes 12:349–58 [Google Scholar]
  44. Bull TJ, Hermon-Taylor J, Pavlik II, El-Zaatari F, Tizard M. 44.  2000. Characterization of IS900 loci in Mycobacterium avium subsp. paratuberculosis and development of multiplex PCR typing. Microbiology 146:Pt. 123285 [Google Scholar]
  45. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T. 45.  et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–14 [Google Scholar]
  46. O'Shea B, Khare S, Bliss K, Klein P, Ficht TA. 46.  et al. 2004. Amplified fragment length polymorphism reveals genomic variability among Mycobacterium avium subsp. paratuberculosis isolates. J. Clin. Microbiol. 42:3600–6 [Google Scholar]
  47. Amonsin A, Li LL, Zhang Q, Bannantine JP, Motiwala AS. 47.  et al. 2004. Multilocus short sequence repeat sequencing approach for differentiating among Mycobacterium avium subsp. paratuberculosis strains. J. Clin. Microbiol. 42:1694–702 [Google Scholar]
  48. Harris NB, Payeur JB, Kapur V, Sreevatsan S. 48.  2006. Short-sequence-repeat analysis of Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium isolates collected from animals throughout the United States reveals both stability of loci and extensive diversity. J. Clin. Microbiol. 44:2970–73 [Google Scholar]
  49. Kasnitz N, Kohler H, Weigoldt M, Gerlach GF, Mobius P. 49.  2013. Stability of genotyping target sequences of Mycobacterium avium subsp. paratuberculosis upon cultivation on different media, in vitro- and in vivo passage, and natural infection. Vet. Microbiol. 167:573–83 [Google Scholar]
  50. Ahlstrom C, Barkema HW, De Buck J. 50.  2014. Improved short-sequence-repeat genotyping of Mycobacterium avium subsp. paratuberculosis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 80:534–39 [Google Scholar]
  51. Bull TJ, Sidi-Boumedine K, McMinn EJ, Stevenson K, Pickup R. 51.  et al. 2003. Mycobacterial interspersed repetitive units (MIRU) differentiate Mycobacterium avium subspecies paratuberculosis from other species of the Mycobacterium avium complex. Mol. Cell Probes 17:157–64 [Google Scholar]
  52. Overduin P, Schouls L, Roholl P, van der Zanden A, Mahmmod N. 52.  et al. 2004. Use of multilocus variable-number tandem-repeat analysis for typing Mycobacterium avium subsp. paratuberculosis. J. Clin. Microbiol. 42:5022–28 [Google Scholar]
  53. Ricchi M, Barbieri G, Taddei R, Belletti GL, Carra E. 53.  et al. 2011. Effectiveness of combination of Mini-and Microsatellite loci to sub-type Mycobacterium avium subsp. paratuberculosis Italian type C isolates. BMC Vet. Res. 7:54 [Google Scholar]
  54. Fritsch I, Luyven G, Kohler H, Lutz W, Mobius P. 54.  2012. Suspicion of Mycobacterium avium subsp. paratuberculosis transmission between cattle and wild-living red deer (Cervus elaphus) by multitarget genotyping. Appl. Environ. Microbiol. 78:1132–39 [Google Scholar]
  55. Castellanos E, de Juan L, Domínguez L, Aranaz A. 55.  2012. Progress in molecular typing of Mycobacterium avium subspecies paratuberculosis. Res. Vet. Sci. 92:169–79 [Google Scholar]
  56. Wynne JW, Bull TJ, Seemann T, Bulach DM, Wagner J. 56.  et al. 2011. Exploring the zoonotic potential of Mycobacterium avium subspecies paratuberculosis through comparative genomics. PLOS ONE 6:e22171 [Google Scholar]
  57. Ahlstrom C, Barkema HW, Stevenson K, Zadoks RN, Biek R. 57.  et al. 2015. Limitations of variable number of tandem repeat typing identified through whole genome sequencing of Mycobacterium avium subsp. paratuberculosis on a national and herd level. BMC Genomics 16:161 [Google Scholar]
  58. Al-Hajoj SA, Akkerman O, Parwati I, al-Gamdi S, Rahim Z. 58.  et al. 2010. Microevolution of Mycobacterium tuberculosis in a tuberculosis patient. J. Clin. Microbiol. 48:3813–16 [Google Scholar]
  59. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G. 59.  et al. 2012. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13:137–46 [Google Scholar]
  60. Whittington RJ, Windsor PA. 60.  2009. In utero infection of cattle with Mycobacterium avium subsp. paratuberculosis: a critical review and meta-analysis. Vet. J. 179:60–69 [Google Scholar]
  61. Sweeney RW, Whitlock RH, Rosenberger AE. 61.  1992. Mycobacterium paratuberculosis isolated from fetuses of infected cows not manifesting signs of the disease. Am. J. Vet. Res. 53:477–80 [Google Scholar]
  62. Mitchell RM, Whitlock RH, Grohn YT, Schukken YH. 62.  2015. Back to the real world: connecting models with data. Prev. Vet. Med. 118:215–25 [Google Scholar]
  63. Streeter RN, Hoffsis GF, Bech-Nielsen S, Shulaw WP, Rings DM. 63.  1995. Isolation of Mycobacterium paratuberculosis from colostrum and milk of subclinically infected cows. Am. J. Vet. Res. 56:1322–24 [Google Scholar]
  64. Pithua P, Wells SJ, Godden SM, Stabel JR. 64.  2011. Evaluation of the association between fecal excretion of Mycobacterium avium subsp. paratuberculosis and detection in colostrum and on teat skin surfaces of dairy cows. J. Am. Vet. Med. Assoc. 238:94–100 [Google Scholar]
  65. Stabel JR. 65.  2008. Pasteurization of colostrum reduces the incidence of paratuberculosis in neonatal dairy calves. J. Dairy Sci. 91:3600–6 [Google Scholar]
  66. Pithua P, Godden SM, Wells SJ, Oakes MJ. 66.  2009. Efficacy of feeding plasma-derived commercial colostrum replacer for the prevention of transmission of Mycobacterium avium subsp paratuberculosis in Holstein calves. J. Am. Vet. Med. Assoc. 234:1167–76 [Google Scholar]
  67. Windsor PA, Whittington RJ. 67.  2009. Evidence for age susceptibility of cattle to Johne's disease. Vet. J. 184:37–44 [Google Scholar]
  68. Espejo LA, Kubat N, Godden SM, Wells SJ. 68.  2013. Effect of delayed exposure of cattle to Mycobacterium avium subsp paratuberculosis on the development of subclinical and clinical Johne's disease. Am. J. Vet. Res. 74:1304–10 [Google Scholar]
  69. Kovich DA, Wells SJ, Friendshuh K. 69.  2006. Evaluation of the Voluntary Johne's Disease Herd Status Program as a source of replacement cattle. J. Dairy Sci. 89:3466–70 [Google Scholar]
  70. Dore E, Pare J, Cote G, Buczinski S, Labrecque O. 70.  et al. 2012. Risk factors associated with transmission of Mycobacterium avium subsp. paratuberculosis to calves within dairy herd: a systematic review. J. Vet. Intern. Med. 26:32–45 [Google Scholar]
  71. Raizman EA, Wells SJ, Godden SM, Bey RF, Oakes MJ. 71.  et al. 2004. The distribution of Mycobacterium avium ssp. paratuberculosis in the environment surrounding Minnesota dairy farms. J. Dairy Sci. 87:2959–66 [Google Scholar]
  72. Eisenberg SW, Nielen M, Santema W, Houwers DJ, Heederik D. 72.  et al. 2010. Detection of spatial and temporal spread of Mycobacterium avium subsp. paratuberculosis in the environment of a cattle farm through bio-aerosols. Vet. Microbiol. 143:284–92 [Google Scholar]
  73. Wells SJ, Wagner BA. 73.  2000. Herd-level risk factors for infection with Mycobacterium paratuberculosis in US dairies and association between familiarity of the herd manager with the disease or prior diagnosis of the disease in that herd and use of preventive measures. J. Am. Vet. Med. Assoc. 216:1450–57 [Google Scholar]
  74. Whitlock RH, Wells SJ, Sweeney RW, Van Tiem J. 74.  2000. ELISA and fecal culture for paratuberculosis (Johne's disease): sensitivity and specificity of each method. Vet. Microbiol. 77:387–98 [Google Scholar]
  75. Whitlock RH, Sweeney RW, Fyock T, Smith J. 75.  2005. MAP supershedders: another factor in the control of Johne's disease. Proc. 8th Int. Colloq. Paratuberculosis EJB Manning, SS Nielsen 164 Madison, WI: Int. Assoc. Paratuberculosis [Google Scholar]
  76. Crossley BM, Zagmutt-Vergara FJ, Fyock TL, Whitlock RH, Gardner IA. 76.  2005. Fecal shedding of Mycobacterium avium subsp. paratuberculosis by dairy cows. Vet. Microbiol. 107:257–63 [Google Scholar]
  77. Aly SS, Anderson RJ, Whitlock RH, Fyock TL, McAdams SC. 77.  et al. 2012. Cost-effectiveness of diagnostic strategies to identify Mycobacterium avium subspecies paratuberculosis super-shedder cows in a large dairy herd using antibody enzyme-linked immunosorbent assays, quantitative real-time polymerase chain reaction, and bacterial culture. J. Vet. Diagn. Investig. 24:821–32 [Google Scholar]
  78. Nennich TD, Harrison JH, VanWieringen LM, Meyer D, Heinrichs AJ. 78.  et al. 2005. Prediction of manure and nutrient excretion from dairy cattle. J. Dairy Sci. 88:3721–33 [Google Scholar]
  79. Van Horn HH, Wilkie AC, Powers WJ, Nordstedt RA. 79.  1994. Components of dairy manure management systems. J. Dairy Sci. 77:2008–30 [Google Scholar]
  80. Aly SS, Anderson RJ, Whitlock RH, Fyock TL, McAdams S. 80.  et al. 2009. Reliability of environmental sampling to quantify Mycobacterium avium subspecies paratuberculosis on California free-stall dairies. J. Dairy Sci. 92:3634–42 [Google Scholar]
  81. Smith RL, Schukken YH, Pradhan AK, Smith JM, Whitlock RH. 81.  et al. 2011. Environmental contamination with Mycobacterium avium subsp. paratuberculosis in endemically infected dairy herds. Prev. Vet. Med. 102:1–9 [Google Scholar]
  82. Pradhan AK, Van Kessel JS, Karns JS, Wolfgang DR, Hovingh E. 82.  et al. 2009. Dynamics of endemic infectious diseases of animal and human importance on three dairy herds in the northeastern United States. J. Dairy Sci. 92:1811–25 [Google Scholar]
  83. Pradhan AK, Mitchell RM, Kramer AJ, Zurakowski MJ, Fyock TL. 83.  et al. 2011. Molecular epidemiology of Mycobacterium avium subsp. paratuberculosis in a longitudinal study of three dairy herds. J. Clin. Microbiol. 49:893–901 [Google Scholar]
  84. Kalis CH, Collins MT, Barkema HW, Hesselink JW. 84.  2004. Certification of herds as free of Mycobacterium paratuberculosis infection: actual pooled faecal results versus certification model predictions. Prev. Vet. Med. 65:189–204 [Google Scholar]
  85. Nielsen SS, Toft N. 85.  2008. Ante mortem diagnosis of paratuberculosis: a review of accuracies of ELISA, interferon-γ assay and faecal culture techniques. Vet. Microbiol. 129:217–35 [Google Scholar]
  86. Collins MT, Morgan IR. 86.  1991. Epidemiological model of paratuberculosis in dairy cattle. Prev. Vet. Med. 11:131–46 [Google Scholar]
  87. Collins MT, Morgan IR. 87.  1992. Simulation model of paratuberculosis control in a dairy herd. Prev. Vet. Med. 14:21–32 [Google Scholar]
  88. Groenendaal H, Galligan DT. 88.  1999. Report: Economical Consequences of Johne's Disease Control Programs Kennett Square, PA: Univ. Pa. [Google Scholar]
  89. Groenendaal H, Galligan DT. 89.  2003. Economic consequences of control programs for paratuberculosis in midsize dairy farms in the United States. J. Am. Vet. Med. Assoc. 223:1757–63 [Google Scholar]
  90. Mitchell RM, Whitlock RH, Stehman SM, Benedictus A, Chapagain PP. 90.  et al. 2008. Simulation modeling to evaluate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) on commercial dairy farms in the United States. Prev. Vet. Med. 83:360–80 [Google Scholar]
  91. Marce C, Ezanno P, Weber MF, Seegers H, Pfeiffer DU. 91.  et al. 2010. Invited review: modeling within-herd transmission of Mycobacterium avium subspecies paratuberculosis in dairy cattle: a review. J. Dairy Sci. 93:4455–70 [Google Scholar]
  92. Lu Z, Schukken YH, Smith RL, Grohn YT. 92.  2010. Stochastic simulations of a multi-group compartmental model for Johne's disease on US dairy herds with test-based culling intervention. J. Theor. Biol. 264:1190–201 [Google Scholar]
  93. Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddacliff LA. 93.  2004. Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl. Environ. Microbiol. 70:2989–3004 [Google Scholar]
  94. Jorgensen JB. 94.  1977. Survival of Mycobacterium paratuberculosis in slurry. Nord. Vet. Med. 29:267–70 [Google Scholar]
  95. Whittington RJ, Marsh IB, Reddacliff LA. 95.  2005. Survival of Mycobacterium avium subsp. paratuberculosis in dam water and sediment. Appl. Environ. Microbiol. 71:5304–8 [Google Scholar]
  96. Ghosh J, Larsson P, Singh B, Pettersson BM, Islam NM. 96.  et al. 2009. Sporulation in mycobacteria. PNAS 106:10781–86 [Google Scholar]
  97. Mura M, Bull TJ, Evans H, Sidi-Boumedine K, McMinn L. 97.  et al. 2006. Replication and long-term persistence of bovine and human strains of Mycobacterium avium subsp. paratuberculosis within Acanthamoeba polyphaga. Appl. Environ. Microbiol. 72:854–59 [Google Scholar]
  98. Lamont EA, Bannantine JP, Armien A, Ariyakumar DS, Sreevatsan S. 98.  2012. Identification and characterization of a spore-like morphotype in chronically starved Mycobacterium avium subsp. paratuberculosis cultures. PLOS ONE 7:e30648 [Google Scholar]
  99. Traag BA, Driks A, Stragier P, Bitter W, Broussard G. 99.  et al. 2010. Do mycobacteria produce endospores?. PNAS 107:878–81 [Google Scholar]
  100. Finlay BJ, Fenchel T. 100.  2004. Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155:237–44 [Google Scholar]
  101. Salgado M, Collins MT, Salazar F, Kruze J, Bolske G. 101.  et al. 2011. Fate of Mycobacterium avium subsp. paratuberculosis after application of contaminated dairy cattle manure to agricultural soils. Appl. Environ. Microbiol. 77:2122–29 [Google Scholar]
  102. Dungan RS, Klein M, Leytem AB. 102.  2012. Quantification of bacterial indicators and zoonotic pathogens in dairy wastewater ponds. Appl. Environ. Microbiol. 78:8089–95 [Google Scholar]
  103. Unc A, Goss MJ. 103.  2004. Transport of bacteria from manure and protection of water resources. Appl. Soil Ecol. 25:1–18 [Google Scholar]
  104. Klanicova B, Seda J, Slana I, Slany M, Pavlik I. 104.  2013. The tracing of mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs. Curr. Microbiol. 67:725–31 [Google Scholar]
  105. Aboagye G, Rowe MT. 105.  2011. Occurrence of Mycobacterium avium subsp. paratuberculosis in raw water and water treatment operations for the production of potable water. Water Res. 45:3271–78 [Google Scholar]
  106. Kaevska M, Lvoncik S, Slana I, Kulich P, Kralik P. 106.  2014. Microscopy, culture, and quantitative real-time PCR examination confirm internalization of mycobacteria in plants. Appl. Environ. Microbiol. 80:3888–94 [Google Scholar]
  107. Pillars RB, Grooms DL, Gardiner JC, Kaneene JB. 107.  2011. Association between risk-assessment scores and individual-cow Johne's disease-test status over time on seven Michigan, USA dairy herds. Prev. Vet. Med. 98:10–18 [Google Scholar]
  108. Pavlik I, Bartl J, Dvorska L, Svastova P, du Maine R. 108.  et al. 2000. Epidemiology of paratuberculosis in wild ruminants studied by restriction fragment length polymorphism in the Czech Republic during the period 1995–1998. Vet. Microbiol. 77:231–51 [Google Scholar]
  109. O'Doherty A, O'Grady D, O'Farrell K, Smith T, Egan J. 109.  2002. Survey of Johne's disease in imported animals in the Republic of Ireland. Vet. Rec. 150:634–36 [Google Scholar]
  110. Oakey J, Gavey L, Singh SV, Platell J, Waltisbuhl D. 110.  2014. Variable-number tandem repeats genotyping used to aid and inform management strategies for a bovine Johne's disease incursion in tropical and subtropical Australia. J. Vet. Diagn. Investig. 26:651–57 [Google Scholar]
  111. Ruzante JM, Gardner IA, Cullor JS, Smith WL, Kirk JH. 111.  et al. 2008. Isolation of Mycobacterium avium subsp. paratuberculosis from waste milk delivered to California calf ranches. Foodborne Pathog. Dis. 5:681–86 [Google Scholar]
  112. Carta T, Álvarez J, Pérez de la Lastra JM, Gortázar C. 112.  2012. Wildlife and paratuberculosis: a review. Res. Vet. Sci. 94:191–97 [Google Scholar]
  113. Daniels MJ, Henderson D, Greig A, Stevenson K, Sharp JM. 113.  et al. 2003. The potential role of wild rabbits Oryctolagus cuniculus in the epidemiology of paratuberculosis in domestic ruminants. Epidemiol. Infect. 130:553–59 [Google Scholar]
  114. Shaughnessy LJ, Smith LA, Evans J, Anderson D, Caldow G. 114.  et al. 2013. High prevalence of paratuberculosis in rabbits is associated with difficulties in controlling the disease in cattle. Vet. J. 198:267–70 [Google Scholar]
  115. Corn JL, Manning EJ, Sreevatsan S, Fischer JR. 115.  2005. Isolation of Mycobacterium avium subsp. paratuberculosis from free-ranging birds and mammals on livestock premises. Appl. Environ. Microbiol. 71:6963–67 [Google Scholar]
  116. Palmer MV, Stoffregen WC, Carpenter JG, Stabel JR. 116.  2005. Isolation of Mycobacterium avium subsp paratuberculosis (Map) from feral cats on a dairy farm with Map-infected cattle. J. Wildl. Dis. 41:629–35 [Google Scholar]
  117. Kukanich KS, Vinasco J, Scott HM. 117.  2013. Detection of Mycobacterium avium subspecies paratuberculosis from intestinal and nodal tissue of dogs and cats. ISRN Vet. Sci. 2013:323671 [Google Scholar]
  118. Nugent G, Whitford EJ, Hunnam JC, Wilson PR, Cross M. 118.  et al. 2011. Mycobacterium avium subsp. paratuberculosis infection in wildlife on three deer farms with a history of Johne's disease. N. Z. Vet. J. 59:293–98 [Google Scholar]
  119. Cleland PC, Lehmann DR, Phillips PH, Cousins DV, Reddacliff LA. 119.  et al. 2012. A survey to detect the presence of Mycobacterium avium subspecies paratuberculosis in Kangaroo Island macropods. Vet. Microbiol. 145:339–46 [Google Scholar]
  120. Crohn BB, Ginzburg L, Oppenheimer GD. 120.  1984. Regional ileitis: a pathological and clinical entity. JAMA 251:73–79 [Google Scholar]
  121. Economou M, Pappas G. 121.  2008. New global map of Crohn's disease: genetic, environmental, and socioeconomic correlations. Inflamm. Bowel Dis. 14:709–20 [Google Scholar]
  122. Greenstein RJ. 122.  2003. Is Crohn's disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne's disease. Lancet Infect. Dis. 3:507–14 [Google Scholar]
  123. Hermon-Taylor J, Barnes N, Clarke C, Finlayson C. 123.  1998. Mycobacterium paratuberculosis cervical lymphadenitis, followed five years later by terminal ileitis similar to Crohn's disease. BMJ 316:449–53 [Google Scholar]
  124. Naser SA, Ghobrial G, Romero C, Valentine JF. 124.  2004. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn's disease. Lancet 364:1039–44 [Google Scholar]
  125. Allen AJ, Park KT, Barrington GM, Lahmers KK, Abdellrazeq GS. 125.  et al. 2011. Experimental infection of a bovine model with human isolates of Mycobacterium avium subsp. paratuberculosis. Vet. Immunol. Immunopathol. 141:258–66 [Google Scholar]
  126. Zhang F, Liu H, Chen S, Low H, Sun L. 126.  et al. 2011. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat. Genet. 43:1247–51 [Google Scholar]
  127. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP. 127.  et al. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24 [Google Scholar]
  128. Autschbach F, Eisold S, Hinz U, Zinser S, Linnebacher M. 128.  et al. 2005. High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn's disease. Gut 54:944–49 [Google Scholar]
  129. Mendoza JL, San-Pedro A, Culebras E, Cíes R, Taxonera C. 129.  et al. 2010. High prevalence of viable Mycobacterium avium subspecies paratuberculosis in Crohn's disease. World J. Gastroenterol. 16:4558–63 [Google Scholar]
  130. Ellingson JL, Cheville JC, Brees D, Miller JM, Cheville NF. 130.  2003. Absence of Mycobacterium avium subspecies paratuberculosis components from Crohn's disease intestinal biopsy tissues. Clin. Med. Res. 1:217–26 [Google Scholar]
  131. Dumonceau JM, Van Gossum A, Adler M, Fonteyne PA, Van Vooren JP. 131.  et al. 1996. No Mycobacterium paratuberculosis found in Crohn's disease using polymerase chain reaction. Dig. Dis. Sci. 41:421–26 [Google Scholar]
  132. Qual DA, Kaneene JB, Varty TJ, Miller R, Thoen CO. 132.  2010. Lack of association between the occurrence of Crohn's disease and occupational exposure to dairy and beef cattle herds infected with Mycobacterium avium subspecies paratuberculosis. J. Dairy Sci. 93:2371–76 [Google Scholar]
  133. Chamberlin W, Ghobrial G, Chehtane M, Naser SA. 133.  2007. Successful treatment of a Crohn's disease patient infected with bacteremic Mycobacterium paratuberculosis. Am. J. Gastroenterol. 102:689–91 [Google Scholar]
  134. Selby W, Pavli P, Crotty B, Florin T, Radford-Smith G. 134.  et al. 2007. Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn's disease. Gastroenterology 132:2313–19 [Google Scholar]
  135. Behr MA, Kapur V. 135.  2008. The evidence for Mycobacterium paratuberculosis in Crohn's disease. Curr. Opin. Gastroenterol. 24:17–21 [Google Scholar]
  136. Grant IR, Hitchings EI, McCartney A, Ferguson F, Rowe MT. 136.  2002. Effect of commercial-scale high-temperature, short-time pasteurization on the viability of Mycobacterium paratuberculosis in naturally infected cows' milk. Appl. Environ. Microbiol. 68:602–7 [Google Scholar]
  137. Ayele WY, Svastova P, Roubal P, Bartos M, Pavlik I. 137.  2005. Mycobacterium avium subspecies paratuberculosis cultured from locally and commercially pasteurized cow's milk in the Czech Republic. Appl. Environ. Microbiol. 71:1210–14 [Google Scholar]
  138. Ikonomopoulos J, Pavlik I, Bartos M, Svastova P, Ayele WY. 138.  et al. 2005. Detection of Mycobacterium avium subsp. paratuberculosis in retail cheeses from Greece and the Czech Republic. Appl. Environ. Microbiol. 71:8934–36 [Google Scholar]
  139. 139. US Dep. Agric 2002. Uniform Program Standards for the Voluntary Bovine Johne's Disease Control Program (APHIS # 91-45-014) Riverdale, MD: US Dep. Agric., Anim. Plant Health Inspect. Serv. [Google Scholar]
  140. 140. USDA 2010. Uniform Program Standards for the Voluntary Bovine Johne's Disease Control Program (APHIS# 91-45-016) Riverdale, MD: US Dep. Agric., Anim. Plant Health Inspect. Serv. [Google Scholar]
  141. Pithua P, Espejo LA, Godden SM, Wells SJ. 141.  2013. Is an individual calving pen better than a group calving pen for preventing transmission of Mycobacterium avium subsp paratuberculosis in calves? Results from a field trial. Res. Vet. Sci. 95:398–404 [Google Scholar]
  142. Collins MT, Eggleston V, Manning EJ. 142.  2010. Successful control of Johne's disease in nine dairy herds: results of a six-year field trial. J. Dairy Sci. 93:1638–43 [Google Scholar]
  143. Groenendaal H, Nielen M, Hesselink JW. 143.  2003. Development of the Dutch Johne's disease control program supported by a simulation model. Prev. Vet. Med. 60:69–90 [Google Scholar]
  144. Kunzler R, Torgerson P, Keller S, Wittenbrink M, Stephan R. 144.  et al. 2014. Observed management practices in relation to the risk of infection with paratuberculosis and to the spread of Mycobacterium avium subsp. paratuberculosis in Swiss dairy and beef herds. BMC Vet. Res. 10:132 [Google Scholar]
  145. Wells SJ, Hartmann WL, Anderson PL. 145.  2008. Evaluation of progress made by dairy and beef herds enrolled in the Minnesota Johne's Disease Control Program. J. Am. Vet. Med. Assoc. 233:1920–26 [Google Scholar]
  146. Hines ME 2nd, Turnquist SE, Ilha MR, Rajeev S, Jones AL. 146.  et al. 2014. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease. Front. Cell Infect. Microbiol. 4:26 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error