The endometrium is a tissue newly evolved with the development of mammalian species. Its main function is the support of embryonic growth and development and the nutrition of the fetus. The species-specific differences in establishment and maintenance of pregnancy make the study of this tissue in various mammalian organisms particularly interesting. With the application of omics technologies to various mammalian species, many systematic studies of endometrial gene expression changes during the phase of establishment of pregnancy have been performed to obtain a global view of regulatory events associated with this biological process. This review summarizes the results of trancriptome studies of bovine, porcine, and equine endometrium. Furthermore, the results are compared between these species and to humans. Because an increasing number of studies suggest an important role of small regulatory RNAs (i.e., microRNAs), recent findings related to the regulation of endometrial functions and the development of the conceptus are presented.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bazer FW, Spencer TE, Johnson GA, Burghardt RC. 2011. Uterine receptivity to implantation of blastocysts in mammals. Front. Biosci. 3:745–67 [Google Scholar]
  2. Scaramuzzi RJ, Baird DT, Campbell BK, Driancourt MA, Dupont J et al. 2011. Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod. Fertil. Dev. 23:444–67 [Google Scholar]
  3. Coy P, Cánovas S, Mondéjar I, Saavedra MD, Romar R et al. 2008. Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. PNAS 105:15809–14 [Google Scholar]
  4. Messerschmidt DM, Knowles BB, Solter D. 2014. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28:812–28 [Google Scholar]
  5. Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. 2014. Fine mapping of genome activation in bovine embryos by RNA sequencing. PNAS 111:4139–44 [Google Scholar]
  6. Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. 2014. Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim. Reprod. Sci. 149:46–58 [Google Scholar]
  7. Spencer TE, Johnson GA, Burghardt RC, Bazer FW. 2004. Progesterone and placental hormone actions on the uterus: insights from domestic animals. Biol. Reprod. 71:2–10 [Google Scholar]
  8. Spencer TE, Bazer FW. 2002. Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front. Biosci. 7:d1879–98 [Google Scholar]
  9. Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G. 2009. Comparative aspects of implantation. Reproduction 138:195–209 [Google Scholar]
  10. Spencer TE, Johnson GA, Bazer FW, Burghardt RC, Palmarini M. 2007. Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod. Fertil. Dev. 19:65–78 [Google Scholar]
  11. Enders AC, Carter AM. 2006. Comparative placentation: some interesting modifications for histotrophic nutrition—a review. Placenta 27:Suppl. AS11–16 [Google Scholar]
  12. Spencer TE, Burghardt RC, Johnson GA, Bazer FW. 2004. Conceptus signals for establishment and maintenance of pregnancy. Anim. Reprod. Sci. 82–83:537–50 [Google Scholar]
  13. Klein C, Troedsson MH. 2011. Maternal recognition of pregnancy in the horse: a mystery still to be solved. Reprod. Fertil. Dev. 23:952–63 [Google Scholar]
  14. Diskin MG, Morris DG. 2008. Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43:Suppl. 2260–67 [Google Scholar]
  15. Santos JEP, Thatcher WW, Chebel RC, Cerri RLA, Galvao KN. 2004. The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Anim. Reprod. Sci. 82–83:513–35 [Google Scholar]
  16. Ginther OJ, Bergfelt DR, Leith GS, Scraba ST. 1985. Embryonic loss in mares: incidence and ultrasonic morphology. Theriogenology 24:73–86 [Google Scholar]
  17. Merkt H, Gunzel AR. 1979. A survey of early pregnancy losses in West German thoroughbred mares. Equine Vet. J. 11:256–58 [Google Scholar]
  18. Wessels JM, Linton NF, Croy BA, Tayade C. 2007. A review of molecular contrasts between arresting and viable porcine attachment sites. Am. J. Reprod. Immunol. 58:470–80 [Google Scholar]
  19. Wilson ME, Biensen NJ, Ford SP. 1999. Novel insight into the control of litter size in pigs, using placental efficiency as a selection tool. J. Anim. Sci. 77:1654–58 [Google Scholar]
  20. Spencer TE, Sandra O, Wolf E. 2008. Genes involved in conceptus-endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 135:165–79 [Google Scholar]
  21. Bazer FW, Johnson GA. 2014. Pig blastocyst-uterine interactions. Differentiation 87:52–65 [Google Scholar]
  22. Bauersachs S, Wolf E. 2012. Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase. Anim. Reprod. Sci. 134:84–94 [Google Scholar]
  23. Forde N, Lonergan P. 2012. Transcriptomic analysis of the bovine endometrium: What is required to establish uterine receptivity to implantation in cattle?. J. Reprod. Dev. 58:189–95 [Google Scholar]
  24. Ulbrich SE, Groebner AE, Bauersachs S. 2013. Transcriptional profiling to address molecular determinants of endometrial receptivity—lessons from studies in livestock species. Methods 59:108–15 [Google Scholar]
  25. Bauersachs S, Wolf E. 2011. Molecular networks as sensors and drivers of uterine receptivity in livestock. Systems Biology and Livestock Science te Pas M, Woelders H, Bannink A. 161–90 Hoboken, NJ: John Wiley & Sons, Ltd. [Google Scholar]
  26. Bauersachs S. 2014. Combined analysis of transcriptome studies of bovine endometrium during the preimplantation phase and comparison to results from ovine and porcine preimplantation endometrium. Soc. Reprod. Fertil.Suppl. In press [Google Scholar]
  27. Bauersachs S. 2013. Transcriptome analyses of porcine endometrium during the pre-implantation phase. Control of Pig Reproduction IX Rodriguez-Martinez H, Soede NM. 301–11 Leicestershire, UK: Context Products [Google Scholar]
  28. Godkin JD, Bazer FW, Thatcher WW, Roberts RM. 1984. Proteins released by cultured day 15–16 conceptuses prolong luteal maintenance when introduced into the uterine lumen of cyclic ewes. J. Reprod. Fertil. 71:57–64 [Google Scholar]
  29. Spencer TE, Becker WC, George P, Mirando MA, Ogle TF, Bazer FW. 1995. Ovine interferon-tau inhibits estrogen receptor up-regulation and estrogen-induced luteolysis in cyclic ewes. Endocrinology 136:4932–44 [Google Scholar]
  30. Hansen TR, Imakawa K, Polites HG, Marotti KR, Anthony RV, Roberts RM. 1988. Interferon RNA of embryonic origin is expressed transiently during early pregnancy in the ewe. J. Biol. Chem. 263:12801–4 [Google Scholar]
  31. Dorniak P, Bazer FW, Wu G, Spencer TE. 2012. Conceptus-derived prostaglandins regulate endometrial function in sheep. Biol. Reprod. 87:9 [Google Scholar]
  32. Bauersachs S, Ulbrich SE, Reichenbach HD, Reichenbach M, Büttner M et al. 2012. Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium. Biol. Reprod. 86:46 [Google Scholar]
  33. Forde N, Duffy GB, McGettigan PA, Browne JA, Mehta JP et al. 2012. Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiol. Genomics 44:799–810 [Google Scholar]
  34. Forde N, Carter F, Spencer TE, Bazer FW, Sandra O et al. 2011. Conceptus-induced changes in the endometrial transcriptome: How soon does the cow know she is pregnant?. Biol. Reprod. 85:144–56 [Google Scholar]
  35. Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD. 2010. Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 11:474 [Google Scholar]
  36. Meier S, Walker CG, Mitchell MD, Littlejohn MD, Roche JR. 2011. Modification of endometrial fatty acid concentrations by the pre-implantation conceptus in pasture-fed dairy cows. J. Dairy Res. 78:263–69 [Google Scholar]
  37. Ulbrich SE, Schulke K, Groebner AE, Reichenbach HD, Angioni C et al. 2009. Quantitative characterization of prostaglandins in the uterus of early pregnant cattle. Reproduction 138:371–82 [Google Scholar]
  38. Dorniak P, Bazer FW, Spencer TE. 2011. Prostaglandins regulate conceptus elongation and mediate effects of interferon tau on the ovine uterine endometrium. Biol. Reprod. 84:1119–27 [Google Scholar]
  39. Ward S, Jauniaux E, Shannon C, Rodeck C, Boyd R, Sibley C. 1998. Electrical potential difference between exocelomic fluid and maternal blood in early pregnancy. Am. J. Physiol. 274:R1492–95 [Google Scholar]
  40. Mellor DJ. 1970. Distribution of ions and electrical potential differences between mother and foetus at different gestational ages in goats and sheep. J. Physiol. 207:133–50 [Google Scholar]
  41. Salker MS, Christian M, Steel JH, Nautiyal J, Lavery S et al. 2011. Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat. Med. 17:1509–13 [Google Scholar]
  42. Mamo S, Mehta JP, Forde N, McGettigan P, Lonergan P. 2012. Conceptus-endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol. Reprod. 87:6 [Google Scholar]
  43. Clemente M, de La Fuente J, Fair T, Al Naib A, Gutierrez-Adan A et al. 2009. Progesterone and conceptus elongation in cattle: A direct effect on the embryo or an indirect effect via the endometrium?. Reproduction 138:507–17 [Google Scholar]
  44. Forde N, Beltman ME, Duffy GB, Duffy P, Mehta JP et al. 2011. Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84:266–78 [Google Scholar]
  45. Forde N, Carter F, Fair T, Crowe MA, Evans AC et al. 2009. Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81:784–94 [Google Scholar]
  46. Forde N, Mehta JP, Minten M, Crowe MA, Roche JF et al. 2012. Effects of low progesterone on the endometrial transcriptome in cattle. Biol. Reprod. 87:124 [Google Scholar]
  47. Mansouri-Attia N, Sandra O, Aubert J, Degrelle S, Everts RE et al. 2009. Endometrium as an early sensor of in vitro embryo manipulation technologies. PNAS 106:5687–92 [Google Scholar]
  48. Bauersachs S, Ulbrich SE, Zakhartchenko V, Minten M, Reichenbach M et al. 2009. The endometrium responds differently to cloned versus fertilized embryos. PNAS 106:5681–86 [Google Scholar]
  49. Groebner AE, Zakhartchenko V, Bauersachs S, Rubio-Aliaga I, Daniel H et al. 2011. Reduced amino acids in the bovine uterine lumen of cloned versus in vitro fertilized pregnancies prior to implantation. Cell. Reprogr. 13:403–10 [Google Scholar]
  50. Bazer FW, Kim J, Ka H, Johnson GA, Wu G, Song G. 2012. Select nutrients in the uterine lumen of sheep and pigs affect conceptus development. J. Reprod. Dev. 58:180–88 [Google Scholar]
  51. Minten MA, Bilby TR, Bruno RG, Allen CC, Madsen CA et al. 2013. Effects of fertility on gene expression and function of the bovine endometrium. PLOS ONE 8:e69444 [Google Scholar]
  52. Walker CG, Littlejohn MD, Mitchell MD, Roche JR, Meier S. 2012. Endometrial gene expression during early pregnancy differs between fertile and subfertile dairy cow strains. Physiol. Genomics 44:47–58 [Google Scholar]
  53. Bazer FW, Thatcher WW. 1977. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2α by the uterine endometrium. Prostaglandins 14:397–400 [Google Scholar]
  54. Lefèvre F, Martinat-Botté F, Guillomot M, Zouari K, Charley B, La Bonnardière C. 1990. Interferon-gamma gene and protein are spontaneously expressed by the porcine trophectoderm early in gestation. Eur. J. Immunol. 20:2485–90 [Google Scholar]
  55. Lefèvre F, Martinat-Botté F, Locatelli A, De Niu P, Terqui M, La Bonnardière C. 1998. Intrauterine infusion of high doses of pig trophoblast interferons has no antiluteolytic effect in cyclic gilts. Biol. Reprod. 58:1026–31 [Google Scholar]
  56. Bazer FW, Spencer TE, Johnson GA. 2009. Interferons and uterine receptivity. Semin. Reprod. Med. 27:90–102 [Google Scholar]
  57. Samborski A, Graf A, Krebs S, Kessler B, Reichenbach M et al. 2013. Transcriptome changes in the porcine endometrium during the preattachment phase. Biol. Reprod. 89:134 [Google Scholar]
  58. Østrup E, Bauersachs S, Blum H, Wolf E, Hyttel P. 2010. Differential endometrial gene expression in pregnant and nonpregnant sows. Biol. Reprod. 83:277–85 [Google Scholar]
  59. Samborski A, Graf A, Krebs S, Kessler B, Bauersachs S. 2013. Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol. Reprod. 88:84 [Google Scholar]
  60. Franczak A, Wojciechowicz B, Kotwica G. 2013. Transcriptomic analysis of the porcine endometrium during early pregnancy and the estrous cycle. Reprod. Biol. 13:229–37 [Google Scholar]
  61. Seo H, Choi Y, Shim J, Yoo I, Ka H. 2014. Comprehensive analysis of prostaglandin metabolic enzyme expression during pregnancy and the characterization of AKR1B1 as a prostaglandin F synthase at the maternal-conceptus interface in pigs. Biol. Reprod. 90:99 [Google Scholar]
  62. Seo H, Choi Y, Shim J, Yoo I, Ka H. 2014. Prostaglandin transporters, ABCC4 and SLCO2A1, in the uterine endometrium and conceptus during pregnancy in pigs. Biol. Reprod. 90:100 [Google Scholar]
  63. Ross JW, Ashworth MD, Stein DR, Couture OP, Tuggle CK, Geisert RD. 2009. Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium. Physiol. Genomics 36:140–48 [Google Scholar]
  64. Arvanitis D, Davy A. 2008. Eph/ephrin signaling: networks. Genes Dev. 22:416–29 [Google Scholar]
  65. Erikson DW, Burghardt RC, Bayless KJ, Johnson GA. 2009. Secreted phosphoprotein 1 (SPP1, osteopontin) binds to integrin alphavbeta6 on porcine trophectoderm cells and integrin alphavbeta3 on uterine luminal epithelial cells, and promotes trophectoderm cell adhesion and migration. Biol. Reprod. 81:814–25 [Google Scholar]
  66. Allen WR, Wilsher S. 2009. A review of implantation and early placentation in the mare. Placenta 30:1005–15 [Google Scholar]
  67. Allen WR. 2001. Fetomaternal interactions and influences during equine pregnancy. Reproduction 121:513–27 [Google Scholar]
  68. McDowell KJ, Sharp DC, Grubaugh W, Thatcher WW, Wilcox CJ. 1988. Restricted conceptus mobility results in failure of pregnancy maintenance in mares. Biol. Reprod. 39:340–48 [Google Scholar]
  69. Raeside JI, Christie HL, Renaud RL, Waelchli RO, Betteridge KJ. 2004. Estrogen metabolism in the equine conceptus and endometrium during early pregnancy in relation to estrogen concentrations in yolk-sac fluid. Biol. Reprod. 71:1120–27 [Google Scholar]
  70. Stout TAE, Allen WR. 2002. Prostaglandin E2 and F2α production by equine conceptuses and concentrations in conceptus fluids and uterine flushings recovered from early pregnant and dioestrous mares. Reproduction 123:261–68 [Google Scholar]
  71. Goff AK, Leduc S, Poitras P, Vaillancourt D. 1993. Steroid synthesis by equine conceptuses between days 7 and 14 and endometrial steroid metabolism. Domest. Anim. Endocrinol. 10:229–36 [Google Scholar]
  72. Wooding FB, Morgan G, Fowden AL, Allen WR. 2001. A structural and immunological study of chorionic gonadotrophin production by equine trophoblast girdle and cup cells. Placenta 22:749–67 [Google Scholar]
  73. Antczak DF, de Mestre AM, Wilsher S, Allen WR. 2013. The equine endometrial cup reaction: a fetomaternal signal of significance. Annu. Rev. Anim. Biosci. 1:419–42 [Google Scholar]
  74. Goff AK. 1987. Oxytocin stimulation of plasma 15-keto-13,14-dihydro prostaglandin F-2a during the oestrus cycle and early pregnancy in the mare. J. Reprod. Fertil. Suppl. 35:253–60 [Google Scholar]
  75. Betteridge KJ. 2000. Comparative aspects of equine embryonic development. Anim. Reprod. Sci. 60–61:691–702 [Google Scholar]
  76. Cochet M, Vaiman D, Lefèvre F. 2009. Novel interferon delta genes in mammals: cloning of one gene from the sheep, two genes expressed by the horse conceptus and discovery of related sequences in several taxa by genomic database screening. Gene 433:88–99 [Google Scholar]
  77. Rivera Del Alamo MM, Reilas T, Kindahl H, Katila T. 2008. Mechanisms behind intrauterine device-induced luteal persistence in mares. Anim. Reprod. Sci. 107:94–106 [Google Scholar]
  78. Wilsher S, Allen WR. 2011. Intrauterine administration of plant oils inhibits luteolysis in the mare. Equine Vet. J. 43:99–105 [Google Scholar]
  79. Merkl M, Ulbrich SE, Otzdorff C, Herbach N, Wanke R et al. 2010. Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biol. Reprod. 83:874–86 [Google Scholar]
  80. Klein C, Scoggin KE, Ealy AD, Troedsson MH. 2010. Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy. Biol. Reprod. 83:102–13 [Google Scholar]
  81. Klein C, Troedsson MH. 2011. Transcriptional profiling of equine conceptuses reveals new aspects of embryo-maternal communication in the horse. Biol. Reprod. 84:872–85 [Google Scholar]
  82. Iwaki T, Sandoval-Cooper MJ, Paiva M, Kobayashi T, Ploplis VA, Castellino FJ. 2002. Fibrinogen stabilizes placental-maternal attachment during embryonic development in the mouse. Am. J. Pathol. 160:1021–34 [Google Scholar]
  83. Asahina T, Kobayashi T, Okada Y, Itoh M, Yamashita M et al. 1998. Studies on the role of adhesive proteins in maintaining pregnancy. Horm. Res. 50:Suppl. 237–45 [Google Scholar]
  84. Oriol JG, Sharom FJ, Betteridge KJ. 1993. Developmentally regulated changes in the glycoproteins of the equine embryonic capsule. J. Reprod. Fertil. 99:653–64 [Google Scholar]
  85. Hayes AM, Quinn BA, Lillie BN, Côté O, Bienzle D et al. 2012. Changes in various endometrial proteins during cloprostenol-induced failure of early pregnancy in mares. Anim. Reprod. 9:723–41 [Google Scholar]
  86. Ababneh MM, Troedsson MH. 2013. Ovarian steroid regulation of endometrial phospholipase A2 isoforms in horses. Reprod. Domest. Anim. 48:311–16 [Google Scholar]
  87. Ababneh MM, Troedsson MH. 2013. Endometrial phospholipase A2 activity during the oestrous cycle and early pregnancy in mares. Reprod. Domest. Anim. 48:46–52 [Google Scholar]
  88. Ababneh M, Ababneh H, Shidaifat F. 2011. Expression of cytosolic phospholipase A2 in equine endometrium during the oestrous cycle and early pregnancy. Reprod. Domest. Anim. 46:268–74 [Google Scholar]
  89. Song G, Spencer TE, Bazer FW. 2005. Cathepsins in the ovine uterus: regulation by pregnancy, progesterone, and interferon tau. Endocrinology 146:4825–33 [Google Scholar]
  90. Song G, Bailey DW, Dunlap KA, Burghardt RC, Spencer TE et al. 2010. Cathepsin B, cathepsin L, and cystatin C in the porcine uterus and placenta: potential roles in endometrial/placental remodeling and in fluid-phase transport of proteins secreted by uterine epithelia across placental areolae. Biol. Reprod. 82:854–64 [Google Scholar]
  91. Mason RW. 2008. Emerging functions of placental cathepsins. Placenta 29:385–90 [Google Scholar]
  92. Ulbrich SE, Frohlich T, Schulke K, Englberger E, Waldschmitt N et al. 2009. Evidence for estrogen-dependent uterine serpin (SERPINA14) expression during estrus in the bovine endometrial glandular epithelium and lumen. Biol. Reprod. 81:795–805 [Google Scholar]
  93. Song G, Dunlap KA, Kim J, Bailey DW, Spencer TE et al. 2009. Stanniocalcin 1 is a luminal epithelial marker for implantation in pigs regulated by progesterone and estradiol. Endocrinology 150:936–45 [Google Scholar]
  94. Song G, Bazer FW, Wagner GF, Spencer TE. 2006. Stanniocalcin (STC) in the endometrial glands of the ovine uterus: regulation by progesterone and placental hormones. Biol. Reprod. 74:913–22 [Google Scholar]
  95. Brosnahan MM, Miller DC, Adams M, Antczak DF. 2012. IL-22 is expressed by the invasive trophoblast of the equine (Equus caballus) chorionic girdle. J. Immunol. 188:4181–87 [Google Scholar]
  96. Male V, Hughes T, McClory S, Colucci F, Caligiuri MA, Moffett A. 2010. Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. J. Immunol. 185:3913–18 [Google Scholar]
  97. Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM et al. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–28 [Google Scholar]
  98. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S et al. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–67 [Google Scholar]
  99. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–98 [Google Scholar]
  100. Christodoulou DC, Gorham JM, Herman DS, Seidman JG. 2011. Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease. Curr. Protoc. Mol. Biol. 94:4.12 [Google Scholar]
  101. Bauersachs S, Ulbrich SE, Gross K, Schmidt SE, Meyer HH et al. 2006. Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 132:319–31 [Google Scholar]
  102. Spencer TE, Johnson GA, Bazer FW, Burghardt RC. 2004. Implantation mechanisms: insights from the sheep. Reproduction 128:657–68 [Google Scholar]
  103. Bauersachs S, Mitko K, Ulbrich SE, Blum H, Wolf E. 2008. Transcriptome studies of bovine endometrium reveal molecular profiles characteristic for specific stages of estrous cycle and early pregnancy. Exp. Clin. Endocrinol. Diabetes 116:371–84 [Google Scholar]
  104. Bauersachs S, Wolf E. 2013. Immune aspects of embryo-maternal cross-talk in the bovine uterus. J. Reprod. Immunol. 97:20–26 [Google Scholar]
  105. Menezes ME, Mitra A, Shevde LA, Samant RS. 2012. DNAJB6 governs a novel regulatory loop determining Wnt/β-catenin signalling activity. Biochem. J. 444:573–80 [Google Scholar]
  106. Altmäe S, Reimand J, Hovatta O, Zhang P, Kere J et al. 2012. Research resource: interactome of human embryo implantation: identification of gene expression pathways, regulation, and integrated regulatory networks. Mol. Endocrinol. 26:203–17 [Google Scholar]
  107. Satterfield MC, Song G, Hayashi K, Bazer FW, Spencer TE. 2008. Progesterone regulation of the endometrial WNT system in the ovine uterus. Reprod. Fertil. Dev. 20:935–46 [Google Scholar]
  108. Shimizu T, Krebs S, Bauersachs S, Blum H, Wolf E, Miyamoto A. 2010. Actions and interactions of progesterone and estrogen on transcriptome profiles of the bovine endometrium. Physiol. Genomics 42A:290–300 [Google Scholar]
  109. Riesewijk A, Martín J, van Os R, Horcajadas JA, Polman J et al. 2003. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol. Hum. Reprod. 9:253–64 [Google Scholar]
  110. Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE. 2014. Extracellular vesicles in luminal fluid of the ovine uterus. PLOS ONE 9:e90913 [Google Scholar]
  111. Ng YH, Rome S, Jalabert A, Forterre A, Singh H et al. 2013. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLOS ONE 8:e58502 [Google Scholar]
  112. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A et al. 2009. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 81:717–29 [Google Scholar]
  113. Geng Y, He J, Ding Y, Chen X, Zhou Y et al. 2014. The differential expression of microRNAs between implantation sites and interimplantation sites in early pregnancy in mice and their potential functions. Reprod. Sci. 21:1296–306 [Google Scholar]
  114. Wessels JM, Edwards AK, Khalaj K, Kridli RT, Bidarimath M, Tayade C. 2013. The microRNAome of pregnancy: deciphering miRNA networks at the maternal-fetal interface. PLOS ONE 8:e72264 [Google Scholar]
  115. Su L, Liu R, Cheng W, Zhu M, Li X et al. 2014. Expression patterns of microRNAs in porcine endometrium and their potential roles in embryo implantation and placentation. PLOS ONE 9:e87867 [Google Scholar]
  116. Joyce MM, Burghardt JR, Burghardt RC, Hooper RN, Jaeger LA et al. 2007. Pig conceptuses increase uterine interferon-regulatory factor 1 (IRF1), but restrict expression to stroma through estrogen-induced IRF2 in luminal epithelium. Biol. Reprod. 77:292–302 [Google Scholar]
  117. Choi Y, Johnson GA, Burghardt RC, Berghman LR, Joyce MM et al. 2001. Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus. Biol. Reprod. 65:1038–49 [Google Scholar]
  118. Lê Cao KA, Rohart F, McHugh L, Korn O, Wells CA. 2014. YuGene: a simple approach to scale gene expression data derived from different platforms for integrated analyses. Genomics 103:239–51 [Google Scholar]
  119. Walsh SW, Williams EJ, Evans AC. 2011. A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci. 123:127–38 [Google Scholar]
  120. Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC et al. 2010. Glucose intolerance and reduced proliferation of pancreatic β-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59:1228–38 [Google Scholar]
  121. Renner S, Römisch-Margl W, Prehn C, Krebs S, Adamski J et al. 2012. Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced β-cell mass. Diabetes 61:2166–75 [Google Scholar]
  122. Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D et al. 2013. Permanent neonatal diabetes in INSC94Y transgenic pigs. Diabetes 62:1505–11 [Google Scholar]
  123. Wolf E, Braun-Reichhart C, Streckel E, Renner S. 2014. Genetically engineered pig models for diabetes research. Transgenic Res. 23:27–38 [Google Scholar]
  124. Pimentel EC, Bauersachs S, Tietze M, Simianer H, Tetens J et al. 2011. Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim. Genet. 42:251–62 [Google Scholar]
  125. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL et al. 1997. Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–87 [Google Scholar]
  126. Lo YM, Chan KC, Sun H, Chen EZ, Jiang P et al. 2010. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2:61ra91 [Google Scholar]
  127. Lo YM. 2013. Non-invasive prenatal testing using massively parallel sequencing of maternal plasma DNA: from molecular karyotyping to fetal whole-genome sequencing. Reprod. Biomed. Online 27:593–98 [Google Scholar]
  128. Tsui NB, Jiang P, Wong YF, Leung TY, Chan KC et al. 2014. Maternal plasma RNA sequencing for genomewide transcriptomic profiling and identification of pregnancy-associated transcripts. Clin. Chem. 60:954–62 [Google Scholar]
  129. Bauersachs S. 2014. Is maternal plasma transcriptome analysis a new tool for monitoring high-risk pregnancies?. Clin. Chem. 60:914–15 [Google Scholar]
  130. Klymiuk N, Fezert P, Wunsch A, Kurome M, Kessler B, Wolf E. 2014. Homologous recombination contributes to the repair of zinc-finger-nuclease induced double strand breaks in pig primary cells and facilitates recombination with exogenous DNA. J. Biotechnol. 177:74–81 [Google Scholar]
  131. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C et al. 2012. Efficient TALEN-mediated gene knockout in livestock. PNAS 109:17382–87 [Google Scholar]
  132. Hai T, Teng F, Guo R, Li W, Zhou Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24:372–75 [Google Scholar]
  133. Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C et al. 2013. Live pigs produced from genome edited zygotes. Sci. Rep. 3:2847 [Google Scholar]
  134. Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA et al. 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. PNAS 110:16526–31 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error