We review DNA-based studies of elephants and recently extinct proboscideans. The evidence indicates that little or no nuclear gene flow occurs between African savanna elephants () and African forest elephants (), establishing that they comprise separate species. In all elephant species, males disperse, whereas females remain with their natal social group, leading to discordance in the phylogeography of nuclear and mitochondrial DNA patterns. Improvements in ancient DNA methods have permitted sequences to be generated from an increasing number of proboscidean fossils and have definitively established that the Asian elephant () is the closest living relative of the extinct woolly mammoth (). DNA-based methods have been developed to determine the geographic provenance of confiscated ivory in an effort to aid the conservation of elephants.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Douglas-Hamilton I. 1972. On the ecology and behaviour of the African elephant: the elephants of Lake Manyara PhD Thesis, Univ. Oxford
  2. Moss CJ. 2001. The demography of an African elephant (Loxodonta africana) population in Amboseli, Kenya. J. Zool. 255:145–56 [Google Scholar]
  3. Poole JH, Moss CJ. 1981. Musth in the African elephant, Loxodonta africana. Nature 292:830–31 [Google Scholar]
  4. Sukumar R. 1989. The Asian Elephant: Ecology and Management Cambridge, UK: Cambridge Univ. Press
  5. Sukumar R. 2003. The Living Elephants: Evolutionary Ecology, Behavior, and Conservation Oxford, UK: Oxford Univ. Press
  6. Shoshani J, Tassy P. 1996. The Proboscidea: Evolution and Palaeoecology of Elephants and Their Relatives Oxford, UK: Oxford Univ. Press
  7. Ellerman JR, Morrison-Scott TCS, Hayman RW. 1953. Southern African Mammals, 1758–1951: A Reclassification London: Nat. Hist. Mus. Publ.
  8. Maglio VJ. 1973. Origin and evolution of the Elephantidae. Trans. Am. Phil. Soc. Phila. New Ser. 63:1–149 [Google Scholar]
  9. Laursen L, Bekoff M. 1978. Loxodonta africana. Mamm. Species 92:1–8 [Google Scholar]
  10. Kingdon J. 1979. East African Mammals: An Atlas of Evolution in Africa Vol. III, Part B: Large Mammals. London: Academic
  11. Matschie P. 1900. Über geographische Abarten des afrikanischen Elefanten. Sitz. Ges. Naturforschender Freund Berl. 8:189–97 [Google Scholar]
  12. Frade F. 1934. Sur l'existence en Afrique de deux espéces d'elephants. Bull. Soc. Port. Sci. Nat. 11:135–38 [Google Scholar]
  13. Frade F. 1955. Ordre des Proboscidiens. Traité de zoologie: anatomie, systématique, biologie. Tome XVII Mammifères Grassé P-P. 715–875 Paris: Masson [Google Scholar]
  14. Backhaus D. 1958. Zur Variabilität der äusseren systematischen Merkmale des afrikanischen Elefanten (Loxodonta Cuvier, 1825). Säugetierkd. Mitt. 6:166–73 [Google Scholar]
  15. Grubb P, Groves CP, Dudley JP, Shoshani J. 2000. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900). Elephant 2:1–4 [Google Scholar]
  16. Groves CP, Grubb P. 2000. Do Loxodonta cyclotis and L. africana interbreed?. Elephant 2:4–7 [Google Scholar]
  17. Roca AL, Georgiadis N, Pecon-Slattery J, O'Brien SJ. 2001. Genetic evidence for two species of elephant in Africa. Science 293:1473–77 [Google Scholar]
  18. Comstock KE, Georgiadis N, Pecon-Slattery J, Roca AL, Ostrander EA et al. 2002. Patterns of molecular genetic variation among African elephant populations. Mol. Ecol. 11:2489–98 [Google Scholar]
  19. Nyakaana S, Arctander P, Siegismund HR. 2002. Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci. Heredity 89:90–98 [Google Scholar]
  20. Eggert LS, Rasner CA, Woodruff DS. 2002. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers. Proc. R. Soc. Lond. B Biol. Sci. 269:1993–2006 [Google Scholar]
  21. Debruyne R. 2005. A case study of apparent conflict between molecular phylogenies: the interrelationships of African elephants. Cladistics 21:31–50 [Google Scholar]
  22. Johnson MB, Clifford SL, Goossens B, Nyakaana S, Curran B et al. 2007. Complex phylogeographic history of central African forest elephants and its implications for taxonomy. BMC Evol. Biol. 7:244 [Google Scholar]
  23. Roca AL, Georgiadis N, O'Brien SJ. 2005. Cytonuclear genomic dissociation in African elephant species. Nat. Genet. 37:96–100 [Google Scholar]
  24. Roca AL, O'Brien SJ. 2005. Genomic inferences from Afrotheria and the evolution of elephants. Curr. Opin. Genet. Dev. 15:652–59 [Google Scholar]
  25. Roca AL, Georgiadis N, O'Brien SJ. 2007. Cyto-nuclear genomic dissociation and the African elephant species question. Quat. Int. 169–170:4–16 [Google Scholar]
  26. Ishida Y, Oleksyk TK, Georgiadis NJ, David VA, Zhao K et al. 2011. Reconciling apparent conflicts between mitochondrial and nuclear phylogenies in African elephants. PLOS ONE 6:e20642 [Google Scholar]
  27. Petit RJ, Excoffier L. 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24:386–93 [Google Scholar]
  28. Shetty NR, Vidya TNC. 2011. To split or not to split: the case of the African elephant. Curr. Sci. 100:810–12 [Google Scholar]
  29. Mayr E. 1942. Systematics and the Origin of Species, from the Viewpoint of a Zoologist New York: Columbia Univ. Press
  30. Mayr E. 1963. Animal Species and Evolution Cambridge, MA: Harvard Univ. Press.
  31. Mayr E. 1969. Principles of Systematic Zoology New York: McGraw-Hill
  32. Capelli C, MacPhee RD, Roca AL, Brisighelli F, Georgiadis N et al. 2006. A nuclear DNA phylogeny of the woolly mammoth (Mammuthus primigenius). Mol. Phylogenet. Evol. 40:620–27 [Google Scholar]
  33. Coyne JA, Orr HA. 2004. Speciation Sunderland, MA: Sinauer Assoc.
  34. Lei R, Brenneman RA, Louis EE. 2008. Genetic diversity in the North American captive African elephant collection. J. Zool. 275:252–67 [Google Scholar]
  35. Lei R, Brenneman RA, Schmitt DL, Louis EE Jr. 2009. Detection of cytonuclear genomic dissociation in the North American captive African elephant collection. J. Hered. 100:675–80 [Google Scholar]
  36. Debruyne R. 2004. Contribution of molecular phylogeny and morphometrics to the systematics of African elephants. J. Soc. Biol. 198:335–42 [Google Scholar]
  37. Groves CP. 2000. What are the elephants of West Africa?. Elephant 2:7–8 [Google Scholar]
  38. Sanders WJ, Gheerbrant E, Harris JM, Saegusa H, Delmer C. 2010. Proboscidea. Cenozoic Mammals of Africa Werdelin L, Sanders WJ. Berkeley: Univ. Calif. Press [Google Scholar]
  39. Rohland N, Reich D, Mallick S, Meyer M, Green RE et al. 2010. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLOS Biol. 8:e1000564 [Google Scholar]
  40. Brandt AL, Ishida Y, Georgiadis NJ, Roca AL. 2012. Forest elephant mitochondrial genomes reveal that elephantid diversification in Africa tracked climate transitions. Mol. Ecol. 21:1175–89 [Google Scholar]
  41. Ishida Y, Georgiadis NJ, Hondo T, Roca AL. 2013. Triangulating the provenance of African elephants using mitochondrial DNA. Evol. Appl. 6:253–65 [Google Scholar]
  42. Mayr E. 1996. What is a species, and what is not?. Philos. Sci. 63:262–77 [Google Scholar]
  43. Meier R, Wheeler Q. 2000. Species Concepts and Phylogenetic Theory: A Debate New York: Columbia Univ. Press
  44. Barriel V, Thuet E, Tassy P. 1999. Molecular phylogeny of Elephantidae. Extreme divergence of the extant forest African elephant. C. R. Acad. Sci. III 322:447–54 [Google Scholar]
  45. Georgiadis N, Bischof L, Templeton A, Patton J, Karesh W, Western D. 1994. Structure and history of African elephant populations: I. Eastern and southern Africa. J. Hered. 85:100–4 [Google Scholar]
  46. Ishida Y, Demeke Y, van Coeverden de Groot PJ, Georgiadis NJ, Leggett KE et al. 2011. Distinguishing forest and savanna African elephants using short nuclear DNA sequences. J. Hered. 102:610–16 [Google Scholar]
  47. Cahill JA, Green RE, Fulton TL, Stiller M, Jay F et al. 2013. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLOS Genet. 9:e1003345 [Google Scholar]
  48. Nagao Y, Totsuka Y, Atomi Y, Kaneda H, Lindahl KF et al. 1998. Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome. Genes Genet. Syst. 73:21–27 [Google Scholar]
  49. Archie EA, Moss CJ, Alberts SC. 2006. The ties that bind: Genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proc. Biol. Sci. 273:513–22 [Google Scholar]
  50. Archie EA, Hollister-Smith JA, Poole JH, Lee PC, Moss CJ et al. 2007. Behavioural inbreeding avoidance in wild African elephants. Mol. Ecol. 16:4138–48 [Google Scholar]
  51. Nyakaana S, Arctander P. 1999. Population genetic structure of the African elephant in Uganda based on variation at mitochondrial and nuclear loci: evidence for male-biased gene flow. Mol. Ecol. 8:1105–15 [Google Scholar]
  52. Okello JB, Masembe C, Rasmussen HB, Wittemyer G, Omondi P et al. 2008. Population genetic structure of savannah elephants in Kenya: conservation and management implications. J. Hered. 99:443–52 [Google Scholar]
  53. Toews DP, Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21:3907–30 [Google Scholar]
  54. Finch TM, Zhao N, Korkin D, Frederick KH, Eggert LS. 2014. Evidence of positive selection in mitochondrial complexes I and V of the African elephant. PLOS ONE 9:e92587 [Google Scholar]
  55. Ahlering MA, Eggert LS, Western D, Estes A, Munishi L et al. 2012. Identifying source populations and genetic structure for savannah elephants in human-dominated landscapes and protected areas in the Kenya-Tanzania borderlands. PLOS ONE 7:e52288 [Google Scholar]
  56. Eggert LS, Eggert JA, Woodruff DS. 2003. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol. Ecol. 12:1389–402 [Google Scholar]
  57. Munshi-South J. 2011. Relatedness and demography of African forest elephants: inferences from noninvasive fecal DNA analyses. J. Hered. 102:391–98 [Google Scholar]
  58. Schuttler SG, Philbrick JA, Jeffery KJ, Eggert LS. 2014. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant. PLOS ONE 9:e88074 [Google Scholar]
  59. Eggert LS, Buij R, Lee ME, Campbell P, Dallmeier F et al. 2014. Using genetic profiles of African forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in Gabon. Conserv. Biol. 28:107–18 [Google Scholar]
  60. Slotow R, van Dyk G, Poole J, Page B, Klocke A. 2000. Older bull elephants control young males. Nature 408:425–26 [Google Scholar]
  61. Poole JH. 1999. Signals and assessment in African elephants: evidence from playback experiments. Anim. Behav. 58:185–93 [Google Scholar]
  62. Hollister-Smith JA, Poole JH, Archie EA, Vance EA, Georgiadis NJ et al. 2007. Age, musth and paternity success in wild male African elephants, Loxodonta africana. Anim. Behav. 74:287–96 [Google Scholar]
  63. Rasmussen HB, Okello JBA, Wittemyer G, Siegismund HR, Arctander P et al. 2008. Age- and tactic-related paternity success in male African elephants. Behav. Ecol. 19:9–15 [Google Scholar]
  64. Cappellini E, Gentry A, Palkopoulou E, Ishida Y, Cram D et al. 2014. Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170:222–32 [Google Scholar]
  65. Sharma R, Goossens B, Kun-Rodrigues C, Teixeira T, Othman N et al. 2012. Two different high throughput sequencing approaches identify thousands of de novo genomic markers for the genetically depleted Bornean elephant. PLOS ONE 7:e49533 [Google Scholar]
  66. Dastjerdi A, Robert C, Watson M. 2014. Low coverage sequencing of two Asian elephant (Elephas maximus) genomes. GigaScience 3:12 [Google Scholar]
  67. Ilmberger N, Gullert S, Dannenberg J, Rabausch U, Torres J et al. 2014. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLOS ONE 9:e106707 [Google Scholar]
  68. Greenwood AD, Englbrecht CC, MacPhee RD. 2004. Characterization of an endogenous retrovirus class in elephants and their relatives. BMC Evol. Biol. 4:38 [Google Scholar]
  69. Greenwood AD, Lee F, Capelli C, DeSalle R, Tikhonov A et al. 2001. Evolution of endogenous retrovirus-like elements of the woolly mammoth (Mammuthus primigenius) and its relatives. Mol. Biol. Evol. 18:840–47 [Google Scholar]
  70. Gilbert C, Pace JK 2nd, Waters PD. 2008. Target site analysis of RTE1_LA and its AfroSINE partner in the elephant genome. Gene 425:1–8 [Google Scholar]
  71. Nikaido M, Nishihara H, Hukumoto Y, Okada N. 2003. Ancient SINEs from African endemic mammals. Mol. Biol. Evol. 20:522–27 [Google Scholar]
  72. Niimura Y, Matsui A, Touhara K. 2003. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 24:1485–96 [Google Scholar]
  73. Archie EA, Henry T, Maldonado JE, Moss CJ, Poole JH et al. 2010. Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants. Immunogenetics 62:85–100 [Google Scholar]
  74. Sreekumar E, Janki MB, Arathy DS, Hariharan R, Premraj CA, Rasool TJ. 2007. Molecular characterization and expression of interferon-γ of Asian elephant (Elephas maximus). Vet. Immunol. Immunopathol. 118:75–83 [Google Scholar]
  75. Guo Y, Bao Y, Wang H, Hu X, Zhao Z et al. 2011. A preliminary analysis of the immunoglobulin genes in the African elephant (Loxodonta africana). PLOS ONE 6:e16889 [Google Scholar]
  76. Roth G, Dicke U. 2005. Evolution of the brain and intelligence. Trends Cogn. Sci. 9:250–57 [Google Scholar]
  77. Cozzi B, Spagnoli S, Bruno L. 2001. An overview of the central nervous system of the elephant through a critical appraisal of the literature published in the XIX and XX centuries. Brain Res. Bull. 54:219–27 [Google Scholar]
  78. Goodman M, Sterner KN, Islam M, Uddin M, Sherwood CC et al. 2009. Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries. PNAS 106:20824–29 [Google Scholar]
  79. McGowen MR, Grossman LI, Wildman DE. 2012. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown. Proc. Biol. Sci. 279:3643–51 [Google Scholar]
  80. Yasui S, Konno A, Tanaka M, Idani G, Ludwig A et al. 2013. Personality assessment and its association with genetic factors in captive Asian and African elephants. Zoo Biol. 32:70–78 [Google Scholar]
  81. Coppens Y, Maglio VJ, Madden CT, Beden M. 1978. Proboscidea. Evolution of African Mammals Maglio VJ, Cooke HBS. 336–67 Cambridge, MA: Harvard Univ. Press [Google Scholar]
  82. Shoshani J, Tassy P. 2005. Advances in proboscidean taxonomy & classification, anatomy & physiology, and ecology & behavior. Quat. Int. 126–28:5–20 [Google Scholar]
  83. Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A et al. 2007. Molecular and genomic data identify the closest living relative of primates. Science 318:792–94 [Google Scholar]
  84. Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG et al. 1997. Endemic African mammals shake the phylogenetic tree. Nature 388:61–64 [Google Scholar]
  85. Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W. 2007. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res. 17:413–21 [Google Scholar]
  86. Haile J, Froese DG, MacPhee RDE, Roberts RG, Arnold LJ et al. 2009. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. PNAS 106:22352–57 [Google Scholar]
  87. Haynes G. 1991. Mammoths, Mastodonts, and Elephants: Biology, Behavior, and the Fossil Record Cambridge, UK: Cambridge Univ. Press
  88. Orlando L, Hanni C, Douady CJ. 2007. Mammoth and elephant phylogenetic relationships: Mammut americanum, the missing outgroup. Evol. Bioinform. Online 3:45–51 [Google Scholar]
  89. Shoshani J, Walter RC, Abraha M, Berhe S, Tassy P et al. 2006. A proboscidean from the late Oligocene of Eritrea, a “missing link” between early Elephantiformes and Elephantimorpha, and biogeographic implications. PNAS 103:17296–301 [Google Scholar]
  90. Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J et al. 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:359–64 [Google Scholar]
  91. Hauf J, Baur A, Chalwatzis N, Zimmermann FK, Joger U, Lazarev PA. 1995. Selective amplification of a mammoth mitochondrial cytochrome b fragment using an elephant-specific primer. Curr. Genet. 27:486–87 [Google Scholar]
  92. Noro M, Masuda R, Dubrovo IA, Yoshida MC, Kato M. 1998. Molecular phylogenetic inference of the woolly mammoth (Mammuthus primigenius), based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. J. Mol. Evol. 46:314–26 [Google Scholar]
  93. Thomas MG, Hagelberg E, Jones HB, Yang Z, Lister AM. 2000. Molecular and morphological evidence on the phylogeny of the Elephantidae. Proc. R. Soc. Lond. B Biol. Sci. 267:2493–500 [Google Scholar]
  94. Debruyne R, Barriel V, Tassy P. 2003. Mitochondrial cytochrome b of the Lyakhov mammoth (Proboscidea, Mammalia): new data and phylogenetic analyses of Elephantidae. Mol. Phylogenet. Evol. 26:421–34 [Google Scholar]
  95. Hauf J, Waddell PJ, Chalwatzis N, Joger U, Zimmermann FK. 2000. The complete mitochondrial genome sequence of the African elephant (Loxodonta africana), phylogenetic relationships of Proboscidea to other mammals and D-loop heteroplasmy. Zoology 102:184–95 [Google Scholar]
  96. Krause J, Dear PH, Pollack JL, Slatkin M, Spriggs H et al. 2006. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 439:724–27 [Google Scholar]
  97. Rogaev EI, Moliaka YK, Malyarchuk BA, Kondrashov FA, Derenko MV et al. 2006. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLOS Biol. 4:e73 [Google Scholar]
  98. Gilbert MT, Tomsho LP, Rendulic S, Packard M, Drautz DI et al. 2007. Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science 317:1927–30 [Google Scholar]
  99. Rohland N, Malaspinas AS, Pollack JL, Slatkin M, Matheus P, Hofreiter M. 2007. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup. PLOS Biol. 5:e207 [Google Scholar]
  100. Roca AL. 2008. The mastodon mitochondrial genome: a mammoth accomplishment. Trends Genet. 24:49–52 [Google Scholar]
  101. Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RD et al. 2006. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311:392–94 [Google Scholar]
  102. Miller W, Drautz DI, Ratan A, Pusey B, Qi J et al. 2008. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387–90 [Google Scholar]
  103. Noguchi H, Campbell KL, Ho C, Unzai S, Park SY, Tame JR. 2012. Structures of haemoglobin from woolly mammoth in liganded and unliganded states. Acta Crystallogr. D Biol. Crystallogr. 68:1441–49 [Google Scholar]
  104. Roca AL, Ishida Y, Nikolaidis N, Kolokotronis SO, Fratpietro S et al. 2009. Genetic variation at hair length candidate genes in elephants and the extinct woolly mammoth. BMC Evol. Biol. 9:232 [Google Scholar]
  105. Enk J, Devault A, Debruyne R, King CE, Treangen T et al. 2011. Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths. Genome Biol. 12:R51 [Google Scholar]
  106. d'Abbadie M, Hofreiter M, Vaisman A, Loakes D, Gasparutto D et al. 2007. Molecular breeding of polymerases for amplification of ancient DNA. Nat. Biotechnol. 25:939–43 [Google Scholar]
  107. Rohland N, Hofreiter M. 2007. Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–52 [Google Scholar]
  108. Shapiro B. 2008. Engineered polymerases amplify the potential of ancient DNA. Trends Biotechnol. 26:285–87 [Google Scholar]
  109. Allentoft ME, Oskam C, Houston J, Hale ML, Gilbert MT et al. 2011. Profiling the dead: generating microsatellite data from fossil bones of extinct megafauna—protocols, problems, and prospects. PLOS ONE 6:e16670 [Google Scholar]
  110. Ishida Y, Roca AL, Fratpietro S, Greenwood AD. 2012. Successful genotyping of microsatellites in the woolly mammoth. J. Hered. 103:459–64 [Google Scholar]
  111. Enk JM, Devault AM, Kuch M, Murgha YE, Rouillard JM, Poinar HN. 2014. Ancient whole genome enrichment using baits built from modern DNA. Mol. Biol. Evol. 31:1292–94 [Google Scholar]
  112. Shapiro B, Hofreiter M. 2014. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343:6169 [Google Scholar]
  113. Palkopoulou E, Dalén L, Lister AM, Vartanyan S, Sablin M et al. 2013. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. Biol. Sci. 280:1770 [Google Scholar]
  114. Thomas MG. 2012. The flickering genes of the last mammoths. Mol. Ecol. 21:3379–81 [Google Scholar]
  115. Nystrom V, Dalén L, Vartanyan S, Lidén K, Ryman N, Angerbjörn A. 2010. Temporal genetic change in the last remaining population of woolly mammoth. Proc. Biol. Sci. 277:2331–37 [Google Scholar]
  116. Nystrom V, Humphrey J, Skoglund P, McKeown NJ, Vartanyan S et al. 2012. Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation. Mol. Ecol. 21:3391–402 [Google Scholar]
  117. Barnes I, Shapiro B, Lister A, Kuznetsova T, Sher A et al. 2007. Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius. Curr. Biol. 17:1072–75 [Google Scholar]
  118. Gilbert MT, Drautz DI, Lesk AM, Ho SY, Qi J et al. 2008. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. PNAS 105:8327–32 [Google Scholar]
  119. Debruyne R, Chu G, King CE, Bos K, Kuch M et al. 2008. Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths. Curr. Biol. 18:1320–26 [Google Scholar]
  120. Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA et al. 2012. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J. Proteome Res. 11:917–26 [Google Scholar]
  121. Callaway E. 2013. Proteins help solve taxonomy riddle. Nature 503:18–19 [Google Scholar]
  122. Fernando P, Pfrender ME, Encalada SE, Lande R. 2000. Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant. Heredity 84:362–72 [Google Scholar]
  123. Fleischer RC, Perry EA, Muralidharan K, Stevens EE, Wemmer CM. 2001. Phylogeography of the Asian elephant (Elephas maximus) based on mitochondrial DNA. Evolution 55:1882–92 [Google Scholar]
  124. Fernando P, Vidya TN, Payne J, Stuewe M, Davison G et al. 2003. DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. PLOS Biol. 1:E6 [Google Scholar]
  125. Vidya TN, Sukumar R, Melnick DJ. 2009. Range-wide mtDNA phylogeography yields insights into the origins of Asian elephants. Proc. Biol. Sci. 276:893–902 [Google Scholar]
  126. Lei R, Brenneman RA, Schmitt DL, Louis EE Jr. 2012. Genetic diversity in North American captive Asian elephants. J. Zool. 286:38–47 [Google Scholar]
  127. Vidya TN, Fernando P, Melnick DJ, Sukumar R. 2005. Population differentiation within and among Asian elephant (Elephas maximus) populations in southern India. Heredity 94:71–80 [Google Scholar]
  128. Gray TNE, Vidya TNC, Potdar S, Bharti DK, Sovanna P. 2014. Population size estimation of an Asian elephant population in eastern Cambodia through non-invasive mark-recapture sampling. Conserv. Genet. 15:803–10 [Google Scholar]
  129. Chakraborty S, Boominathan D, Desai AA, Vidya TNC. 2014. Using genetic analysis to estimate population size, sex ratio, and social organization in an Asian elephant population in conflict with humans in Alur, southern India. Conserv. Genet. 15:897–907 [Google Scholar]
  130. Deraniyagala PEP. Ceylon Dep. Natl. Mus. 1955. Some Extinct Elephants, Their Relatives, and the Two Living Species Colombo, Ceylon: Gov. Press161
  131. Wilson DE, Reeder DM. 2005. Mammal Species of the World: A Taxonomic and Geographic Reference Baltimore: Johns Hopkins Univ. Press
  132. O'Brien SJ, Mayr E. 1991. Bureaucratic mischief: recognizing endangered species and subspecies. Science 251:1187–88 [Google Scholar]
  133. Lair RC. 1997. Gone Astray: The Care and Management of the Asian Elephant in Domesticity Bangkok, Thail.: FAO Reg. Off. Asia Pac.
  134. Shim PS. 2003. Another look at the Borneo elephant. Sabah Soc. J. 20:7–14 [Google Scholar]
  135. Blanc JJ, Barnes RFW, Craig CG, Dublin HT, Thouless CR et al. 2007. African Elephant Status Report 2007 Gland, Switz.: IUCN
  136. Shrader AM, Ferreira SM, McElveen ME, Lee PC, Moss CJ, van Aarde RJ. 2006. Growth and age determination of African savanna elephants. J. Zool. 270:40–48 [Google Scholar]
  137. Debruyne R, Van Holt A, Barriel V, Tassy P. 2003. Status of the so-called African pygmy elephant (Loxodonta pumilio [NOACK 1906]): phylogeny of cytochrome b and mitochondrial control region sequences. C. R. Biol. 326:687–97 [Google Scholar]
  138. White F. 1983. The Vegetation of Africa Paris: UNESCO
  139. Wasser SK, Shedlock AM, Comstock K, Ostrander EA, Mutayoba B, Stephens M. 2004. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. PNAS 101:14847–52 [Google Scholar]
  140. Epps CW, Wasser SK, Keim JL, Mutayoba BM, Brashares JS. 2013. Quantifying past and present connectivity illuminates a rapidly changing landscape for the African elephant. Mol. Ecol. 22:1574–88 [Google Scholar]
  141. Okello JB, Wittemyer G, Rasmussen HB, Douglas-Hamilton I, Nyakaana S et al. 2005. Noninvasive genotyping and Mendelian analysis of microsatellites in African savannah elephants. J. Hered. 96:679–87 [Google Scholar]
  142. Brandt AL, Hagos Y, Yacob Y, David VA, Georgiadis NJ et al. 2014. The elephants of Gash-Barka, Eritrea: nuclear and mitochondrial genetic patterns. J. Hered. 105:82–90 [Google Scholar]
  143. Wittemyer G, Douglas-Hamilton I, Getz WM. 2005. The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim. Behav. 69:1357–71 [Google Scholar]
  144. Wittemyer G, Okello JB, Rasmussen HB, Arctander P, Nyakaana S et al. 2009. Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants. Proc. Biol. Sci. 276:3513–21 [Google Scholar]
  145. Gobush K, Kerr B, Wasser S. 2009. Genetic relatedness and disrupted social structure in a poached population of African elephants. Mol. Ecol. 18:722–34 [Google Scholar]
  146. Nyakaana S, Abe EL, Arctander P, Siegismund HR. 2001. DNA evidence for elephant social behaviour breakdown in Queen Elizabeth National Park, Uganda. Anim. Conserv. 4:231–37 [Google Scholar]
  147. Bradshaw GA, Schore AN, Brown JL, Poole JH, Moss CJ. 2005. Elephant breakdown. Nature 433:807 [Google Scholar]
  148. Maisels F, Strindberg S, Blake S, Wittemyer G, Hart J et al. 2013. Devastating decline of forest elephants in Central Africa. PLOS ONE 8:e59469 [Google Scholar]
  149. Wasser SK, Clark B, Laurie C. 2009. The ivory trail. Sci. Am. 301:68–74, 76 [Google Scholar]
  150. Mailand C, Wasser SK. 2007. Isolation of DNA from small amounts of elephant ivory. Nat. Protoc. 2:2228–32 [Google Scholar]
  151. Wasser SK, Mailand C, Booth R, Mutayoba B, Kisamo E et al. 2007. Using DNA to track the origin of the largest ivory seizure since the 1989 trade ban. PNAS 104:4228–33 [Google Scholar]
  152. Wasser SK, Clark WJ, Drori O, Kisamo ES, Mailand C et al. 2008. Combating the illegal trade in African elephant ivory with DNA forensics. Conserv. Biol. 22:1065–71 [Google Scholar]
  153. Mondol S, Mailand CR, Wasser SK. 2014. Male biased sex ratio of poached elephants is negatively related to poaching intensity over time. Conserv. Genet. 15:1259–63 [Google Scholar]
  154. Ishida Y, Demeke Y, de Groot PJV, Georgiadis NJ, Leggett KEA et al. 2012. Short amplicon microsatellite markers for low quality elephant DNA. Conserv. Genet. Resour. 4:491–94 [Google Scholar]
  155. de Flamingh A, Sole CL, van Aarde RJ. 2014. Microsatellite repeat motif and amplicon length affect amplification success of degraded faecal DNA. Conserv. Genet. Resour 6:503–5 [Google Scholar]
  156. Ahlering MA, Hailer F, Roberts MT, Foley C. 2011. A simple and accurate method to sex savannah, forest and Asian elephants using noninvasive sampling techniques. Mol. Ecol. Resour. 11:831–34 [Google Scholar]
  157. Gupta SK, Thangaraj K, Singh L. 2006. A simple and inexpensive molecular method for sexing and identification of the forensic samples of elephant origin. J. Forensic Sci. 51:805–7 [Google Scholar]
  158. Kinuthia J, Harper C, Muya S, Kimwele C, Alakonya A et al. 2014. The selection of a standard STR panel for DNA profiling of the African elephant (Loxodonta africana) in Kenya. Conserv. Genet. Resour In press [Google Scholar]
  159. Lee JC, Hsieh HM, Huang LH, Kuo YC, Wu JH et al. 2009. Ivory identification by DNA profiling of cytochrome b gene. Int. J. Legal Med. 123:117–21 [Google Scholar]
  160. Gupta SK, Thangaraj K, Singh L. 2011. Identification of the source of ivory idol by DNA analysis. J. Forensic Sci. 56:1343–45 [Google Scholar]
  161. Wozney KM, Wilson PJ. 2012. Real-time PCR detection and quantification of elephantid DNA: species identification for highly processed samples associated with the ivory trade. Forensic Sci. Int. 219:106–12 [Google Scholar]
  162. Lee EJ, Lee YH, Moon SH, Kim NY, Kim SH et al. 2013. The identification of elephant ivory evidences of illegal trade with mitochondrial cytochrome b gene and hypervariable D-loop region. J. Forensic Leg. Med. 20:174–78 [Google Scholar]
  163. Lisiecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error