1932

Abstract

Spontaneous cancers in client-owned dogs closely recapitulate their human counterparts with respect to clinical presentation, histological features, molecular profiles, and response and resistance to therapy, as well as the evolution of drug-resistant metastases. In several instances the incorporation of dogs with cancer into the preclinical development path of cancer therapeutics has influenced outcome by helping to establish pharmacokinetic/pharmacodynamics relationships, dose/regimen, expected clinical toxicities, and ultimately the potential for biologic activity. As our understanding regarding the molecular drivers of canine cancers has improved, unique opportunities have emerged to leverage this spontaneous model to better guide cancer drug development so that therapies likely to fail are eliminated earlier and therapies with true potential are optimized prior to human studies. Both pets and people benefit from this approach, as it provides dogs with access to cutting-edge cancer treatments and helps to insure that people are given treatments more likely to succeed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022114-110911
2016-02-15
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/animal/4/1/annurev-animal-022114-110911.html?itemId=/content/journals/10.1146/annurev-animal-022114-110911&mimeType=html&fmt=ahah

Literature Cited

  1. Dorn CR, Taylor DO, Schneider R, Hibbard HH, Klauber MR. 1.  1968. Survey of animal neoplasms in Alameda and Contra Costa Counties, California. II. Cancer morbidity in dogs and cats from Alameda County. J. Natl. Cancer Inst. 40:2307–18 [Google Scholar]
  2. Dobson JM, Samuel S, Milstein H, Rogers K, Wood JLN. 2.  2002. Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J. Small Anim. Pract. 43:6240–46 [Google Scholar]
  3. MacVean DW, Monlux AW, Anderson PS, Silberg SL, Roszel JF. 3.  1978. Frequency of canine and feline tumors in a defined population. Vet. Pathol. 15:6700–15 [Google Scholar]
  4. Lengerich EJ, Teclaw RF, Mendlein JM, Mariolis P, Garbe PL. 4.  1992. Pet populations in the catchment area of the Purdue Comparative Oncology Program. J. Am. Vet. Med. Assoc. 200:151–56 [Google Scholar]
  5. Bronson RT. 5.  1982. Variation in age at death of dogs of different sexes and breeds. Am. J. Vet. Res. 43:112057–59 [Google Scholar]
  6. Modiano JF, Breen M, Burnett RC, Parker HG, Inusah S. 6.  et al. 2005. Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk. Cancer Res. 65:135654–61 [Google Scholar]
  7. Reid-Smith RJ, Bonnett BN, Martin SW, Kruth SA, Abrams-Ogg A, Hazlett MJ. 7.  2000. The incidence of neoplasia in the canine and feline patient populations of private veterinary practices in southern Ontario. Proc. 9th Sympos. Int. Soc. Vet. Epidemiol. Econ., Breckenridge, CO [Google Scholar]
  8. Merlo DF, Rossi L, Pellegrino C, Ceppi M, Cardellino U. 8.  et al. 2008. Cancer incidence in pet dogs: findings of the animal tumor registry of Genoa, Italy. J. Vet. Intern. Med. 22:4976–84 [Google Scholar]
  9. Kelsey JL, Moore AS, Glickman LT. 9.  1998. Epidemiologic studies of risk factors for cancer in pet dogs. Epidemiol. Rev. 20:2204–17 [Google Scholar]
  10. Valli VE, Myint MS, Barthel A, Bienzle D, Caswell J. 10.  et al. 2011. Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet. Pathol. 48:1198–211 [Google Scholar]
  11. Withrow SJ, Vail DM, Page RL. 11.  2013. Withrow and MacEwen's Small Animal Clinical Oncology St. Louis: Saunders Elsevier , 5th ed.. [Google Scholar]
  12. Paoloni M, Khanna C. 12.  2008. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer 8:2147–56 [Google Scholar]
  13. Fenger JM, London CA, Kisseberth WC. 13.  2014. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J. 55:169–85 [Google Scholar]
  14. Innes JRM, Parry HB, Berger J. 14.  1946. Record of lymphadenosis (lymphatic leukaemia) in a dog treated with urethane. Br. Vet. J. 102:12389–93 [Google Scholar]
  15. Brick JO, Roenigk WJ, Wilson GP. 15.  1968. Chemotherapy of malignant lymphoma in dogs and cats. J. Am. Vet. Med. Assoc. 153:147–52 [Google Scholar]
  16. Thomas ED. 16.  1993. Bone marrow transplantation—past, present and future: Nobel lecture, December 8, 1990. Nobel Lectures, Physiology or Medicine 1981–1990 J Lindsten 576–84 Singapore: World Sci. Publ. Co. [Google Scholar]
  17. Crow SE, Theilen GH, Benjaminini E, Torten M, Henness AM, Buhles WC. 17.  1977. Chemoimmunotherapy for canine lymphosarcoma. Cancer 40:52102–8 [Google Scholar]
  18. Benjamini E, Theilen GH, Torten M, Fong S, Crow S, Henness AM. 18.  1976. Tumor vaccines for immunotherapy of canine lymphosarcoma. Ann. N.Y. Acad. Sci. 277:305–12 [Google Scholar]
  19. LaRue SM, Withrow SJ, Powers BE, Wrigley RH, Gillette EL. 19.  et al. 1989. Limb-sparing treatment for osteosarcoma in dogs. J. Am. Vet. Med. Assoc. 195:121734–44 [Google Scholar]
  20. Gordon I, Paoloni M, Mazcko C, Khanna C. 20.  2009. The Comparative Oncology Trials Consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLOS Med. 6:10e1000161 [Google Scholar]
  21. Ostrander EA, Wayne RK. 21.  2005. The canine genome. Genome Res. 15:121706–16 [Google Scholar]
  22. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB. 22.  et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:7069803–19 [Google Scholar]
  23. Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF. 23.  et al. 2004. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res. 14:122388–96 [Google Scholar]
  24. Arendt ML, Melin M, Tonomura N, Koltookian M, Courtay-Cahen C. 24.  et al. 2015. Genome-wide association study of Golden Retrievers identifies germ-line risk factors predisposing to mast cell tumours. PLOS Genet. 1111e1005647 [Google Scholar]
  25. Takano H, Furuta K, Yamashita K, Sakanaka M, Itano N. 25.  et al. 2012. Restriction of mast cell proliferation through hyaluronan synthesis by co-cultured fibroblasts. Biol. Pharm. Bull. 35:3408–12 [Google Scholar]
  26. Girish KS, Kemparaju K. 26.  2007. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 80:211921–43 [Google Scholar]
  27. Scott MC, Sarver AL, Gavin KJ, Thayanithy V, Getzy DM. 27.  et al. 2011. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach. Bone 49:3356–67 [Google Scholar]
  28. Karlsson EK, Sigurdsson S, Ivansson E, Thomas R, Elvers I. 28.  et al. 2013. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. Genome Biol. 14:12R132 [Google Scholar]
  29. Horowitz MC, Fretz JA, Lorenzo JA. 29.  2010. How B cells influence bone biology in health and disease. Bone 47:3472–79 [Google Scholar]
  30. Hinoi E, Nakatani E, Yamamoto T, Iezaki T, Takahata Y. 30.  et al. 2012. The transcription factor paired box-5 promotes osteoblastogenesis through direct induction of Osterix and Osteocalcin. J. Bone Miner. Res. 27:122526–34 [Google Scholar]
  31. Abadie J, Hédan B, Cadieu E, De Brito C, Devauchelle P. 31.  et al. 2009. Epidemiology, pathology, and genetics of histiocytic sarcoma in the Bernese mountain dog breed. J. Hered. 100:Suppl. 1S19–S27 [Google Scholar]
  32. Hédan B, Thomas R, Motsinger-Reif A, Abadie J, André C. 32.  et al. 2011. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior. BMC Cancer 11:1201 [Google Scholar]
  33. Shearin AL, Hédan B, Cadieu E, Erich SA, Schmidt EV. 33.  et al. 2012. The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidemiol. Biomark. Prev. 21:71019–27 [Google Scholar]
  34. Karyadi DM, Karlins E, Decker B, vonHoldt BM, Carpintero-Ramirez G. 34.  et al. 2013. A copy number variant at the KITLG locus likely confers risk for canine squamous cell carcinoma of the digit. PLOS Genet. 9:3e1003409 [Google Scholar]
  35. Rapley EA, Turnbull C, Al Olama AA, Dermitzakis ET, Linger R. 35.  et al. 2009. A genome-wide association study of testicular germ cell tumor. Nat. Genet. 41:7807–10 [Google Scholar]
  36. Kanetsky PA, Mitra N, Vardhanabhuti S, Li M, Vaughn DJ. 36.  et al. 2009. Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat. Genet. 41:7811–15 [Google Scholar]
  37. Paoloni M, Davis S, Lana S, Withrow S, Sangiorgi L. 37.  et al. 2009. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 10:625 [Google Scholar]
  38. Nasir L, Argyle DJ, McFarlane ST, Reid SW. 38.  1997. Nucleotide sequence of a highly conserved region of the canine p53 tumour suppressor gene. DNA Seq. 8:1–283–86 [Google Scholar]
  39. Kirpensteijn J, Kik M, Teske E, Rutteman GR. 39.  2008. TP53 gene mutations in canine osteosarcoma. Vet. Surg. 37:5454–60 [Google Scholar]
  40. van Leeuwen IS, Cornelisse CJ, Misdorp W, Goedegebuure SA, Kirpensteijn J, Rutteman GR. 40.  1997. P53 gene mutations in osteosarcomas in the dog. Cancer Lett. 111:1–2173–78 [Google Scholar]
  41. Mendoza S, Konishi T, Dernell WS, Withrow SJ, Miller CW. 41.  1998. Status of the p53, Rb and MDM2 genes in canine osteosarcoma. Anticancer Res. 18:6A4449–53 [Google Scholar]
  42. Gokgoz N, Wunder JS, Mousses S, Eskandarian S, Bell RS, Andrulis IL. 42.  2001. Comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma. Cancer 92:82181–89 [Google Scholar]
  43. Toguchida J, Yamaguchi T, Ritchie B, Beauchamp RL, Dayton SH. 43.  et al. 1992. Mutation spectrum of the p53 gene in bone and soft tissue sarcomas. Cancer Res. 52:226194–99 [Google Scholar]
  44. Sandberg AA, Bridge JA. 44.  2003. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet. Cytogenet. 145:11–30 [Google Scholar]
  45. Thomas R, Wang HJ, Tsai P-C, Langford CF, Fosmire SP. 45.  et al. 2009. Influence of genetic background on tumor karyotypes: evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res. 17:3365–77 [Google Scholar]
  46. Feugeas O, Guriec N, Babin-Boilletot A, Marcellin L, Simon P. 46.  et al. 1996. Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J. Clin. Oncol. 14:2467–72 [Google Scholar]
  47. Wadayama B, Toguchida J, Shimizu T, Ishizaki K, Sasaki MS. 47.  et al. 1994. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res. 54:113042–48 [Google Scholar]
  48. Buettner R, Mora LB, Jove R. 48.  2002. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 8:4945–54 [Google Scholar]
  49. Fossey SL, Liao AT, McCleese JK, Bear MD, Lin J. 49.  et al. 2009. Characterization of STAT3 activation and expression in canine and human osteosarcoma. BMC Cancer 9:181 [Google Scholar]
  50. Chen C-L, Loy A, Cen L, Chan C, Hsieh F-C. 50.  et al. 2007. Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells. BMC Cancer 7:1111 [Google Scholar]
  51. Ryu K, Choy E, Yang C, Susa M, Hornicek FJ. 51.  et al. 2010. Activation of signal transducer and activator of transcription 3 (Stat3) pathway in osteosarcoma cells and overexpression of phosphorylated-Stat3 correlates with poor prognosis. J. Orthop. Res. 28:7971–78 [Google Scholar]
  52. Onimoe G-I, Liu A, Lin L, Wei C-C, Schwartz EB. 52.  et al. 2012. Small molecules, LLL12 and FLLL32, inhibit STAT3 and exhibit potent growth suppressive activity in osteosarcoma cells and tumor growth in mice. Investig. New Drugs 30:3916–26 [Google Scholar]
  53. Miklossy G, Hilliard TS, Turkson J. 53.  2013. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12:8611–29 [Google Scholar]
  54. Lin L, Hutzen B, Li P-K, Ball S, Zuo M. 54.  et al. 2010. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia 12:139–50 [Google Scholar]
  55. Couto JI, Bear MD, Lin J, Pennel M, Kulp SK. 55.  et al. 2012. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines. BMC Vet. Res. 8:1244 [Google Scholar]
  56. Fossey SL, Bear MD, Lin J, Li C, Schwartz EB. 56.  et al. 2011. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines. BMC Cancer 11:1112 [Google Scholar]
  57. Hansen K, Khanna C. 57.  2004. Spontaneous and genetically engineered animal models: use in preclinical cancer drug development. Eur. J. Cancer 40:6858–80 [Google Scholar]
  58. Shiels MS, Engels EA, Linet MS, Clarke CA, Li J. 58.  et al. 2013. The epidemic of non-Hodgkin lymphoma in the United States: disentangling the effect of HIV, 1992–2009. Cancer Epidemiol. Biomark. Prev. 22:61069–78 [Google Scholar]
  59. Lurie DM, Lucroy MD, Griffey SM, Simonson E, Madewell BR. 59.  2004. T-cell-derived malignant lymphoma in the boxer breed. Vet. Comp. Oncol. 2:3171–75 [Google Scholar]
  60. Lurie DM, Milner RJ, Suter SE, Vernau W. 60.  2008. Immunophenotypic and cytomorphologic subclassification of T-cell lymphoma in the boxer breed. Vet. Immunol. Immunopathol. 125:1–2102–10 [Google Scholar]
  61. Wang SS, Vose JM. 61.  2013. Epidemiology and prognosis of T-cell lymphoma. T-Cell Lymphomas F Foss 25–39 Totowa, NJ: Humana Press [Google Scholar]
  62. Breen M, Modiano JF. 62.  2008. Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans—man and his best friend share more than companionship. Chromosome Res. 16:1145–54 [Google Scholar]
  63. Thomas R, Seiser EL, Motsinger-Reif A, Borst L, Valli VE. 63.  et al. 2011. Refining tumor-associated aneuploidy through “genomic recoding” of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas. Leuk. Lymphoma 52:71321–35 [Google Scholar]
  64. Aricò A, Ferraresso S, Bresolin S, Marconato L, Comazzi S. 64.  et al. 2014. Array-based comparative genomic hybridization analysis reveals chromosomal copy number aberrations associated with clinical outcome in canine diffuse large B-cell lymphoma. PLOS ONE 9:11e111817 [Google Scholar]
  65. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS. 65.  et al. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:6769503–11 [Google Scholar]
  66. Frantz AM, Sarver AL, Ito D, Phang TL, Karimpour-Fard A. 66.  et al. 2013. Molecular profiling reveals prognostically significant subtypes of canine lymphoma. Vet. Pathol. 50:4693–703 [Google Scholar]
  67. Richards KL, Motsinger-Reif AA, Chen H-W, Fedoriw Y, Fan C. 67.  et al. 2013. Gene profiling of canine B-cell lymphoma reveals germinal center and postgerminal center subtypes with different survival times, modeling human DLBCL. Cancer Res. 73:165029–39 [Google Scholar]
  68. Lossos IS, Alizadeh AA, Eisen MB, Chan WC, Brown PO. 68.  et al. 2000. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. PNAS 97:1810209–13 [Google Scholar]
  69. Mudaliar MAV, Haggart RD, Miele G, Sellar G, Tan KAL. 69.  et al. 2013. Comparative gene expression profiling identifies common molecular signatures of NF-κB activation in canine and human diffuse large B cell lymphoma (DLBCL). PLOS ONE 8:9e72591 [Google Scholar]
  70. Gaurnier-Hausser A, Patel R, Baldwin AS, May MJ, Mason NJ. 70.  2011. NEMO-binding domain peptide inhibits constitutive NF-κB activity and reduces tumor burden in a canine model of relapsed, refractory diffuse large B-cell lymphoma. Clin. Cancer Res. 17:144661–71 [Google Scholar]
  71. Habineza Ndikuyeze G, Gaurnier-Hausser A, Patel R, Baldwin AS, May MJ. 71.  et al. 2014. A phase I clinical trial of systemically delivered NEMO binding domain peptide in dogs with spontaneous activated B-cell like diffuse large B-cell lymphoma. PLOS ONE 9:5e95404 [Google Scholar]
  72. Bushell KR, Kim Y, Chan FC, Ben-Neriah S, Jenks A. 72.  et al. 2014. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma. Blood 125:6999–1005 [Google Scholar]
  73. Tasca S, Carli E, Caldin M, Menegazzo L, Furlanello T, Gallego LS. 73.  2009. Hematologic abnormalities and flow cytometric immunophenotyping results in dogs with hematopoietic neoplasia: 210 cases (2002–2006). Vet. Clin. Pathol. 38:12–12 [Google Scholar]
  74. Adam F, Villiers E, Watson S, Coyne K, Blackwood L. 74.  2009. Clinical pathological and epidemiological assessment of morphologically and immunologically confirmed canine leukaemia. Vet. Comp. Oncol. 7:3181–95 [Google Scholar]
  75. Carulli G, Cannizzo E, Zucca A, Buda G, Orciuolo E. 75.  et al. 2008. CD45 expression in low-grade B-cell non-Hodgkin's lymphomas. Leuk. Res. 32:2263–67 [Google Scholar]
  76. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A. 76.  et al. 2000. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 343:261910–16 [Google Scholar]
  77. Deininger M, Buchdunger E, Druker BJ. 77.  2005. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:72640–53 [Google Scholar]
  78. Cruz Cardona JA, Milner R, Alleman AR, Williams C, Vernau W. 78.  et al. 2011. BCR-ABL translocation in a dog with chronic monocytic leukemia. Vet. Clin. Pathol. 40:140–47 [Google Scholar]
  79. Figueiredo JF, Culver S, Behling-Kelly E, Breen M, Friedrichs KR. 79.  2012. Acute myeloblastic leukemia with associated BCR-ABL translocation in a dog. Vet. Clin. Pathol. 41:3362–68 [Google Scholar]
  80. Gilliland DG, Griffin JD. 80.  2002. The roles of FLT3 in hematopoiesis and leukemia. Blood 100:51532–42 [Google Scholar]
  81. Usher SG, Radford AD, Villiers EJ, Blackwood L. 81.  2009. RAS, FLT3, and C-KIT mutations in immunophenotyped canine leukemias. Exp. Hematol. 37:165–77 [Google Scholar]
  82. Suter SE, Small GW, Seiser EL, Thomas R, Breen M, Richards KL. 82.  2011. FLT3 mutations in canine acute lymphocytic leukemia. BMC Cancer 11:138 [Google Scholar]
  83. Knapp DW, Ramos-Vara JA, Moore GE, Dhawan D, Bonney PL, Young KE. 83.  2014. Urinary bladder cancer in dogs, a naturally occurring model for cancer biology and drug development. ILAR J. 55:1100–18 [Google Scholar]
  84. Stone EA, George TF, Gilson SD, Page RL. 84.  1996. Partial cystectomy for urinary bladder neoplasia: surgical technique and outcome in 11 dogs. J. Small Anim. Pract. 37:10480–85 [Google Scholar]
  85. Knapp DW, Richardson RC, Bottoms GD, Teclaw R, Chan TC. 85.  1992. Phase I trial of piroxicam in 62 dogs bearing naturally occurring tumors. Cancer Chemother. Pharmacol. 29:3214–18 [Google Scholar]
  86. Mohammed SI, Bennett PF, Craig BA, Glickman NW, Mutsaers AJ. 86.  et al. 2002. Effects of the cyclooxygenase inhibitor, piroxicam, on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Cancer Res. 62:2356–58 [Google Scholar]
  87. Knapp DW, Richardson RC, Chan TC, Bottoms GD, Widmer WR. 87.  et al. 1994. Piroxicam therapy in 34 dogs with transitional cell carcinoma of the urinary bladder. J. Vet. Intern. Med. 8:4273–78 [Google Scholar]
  88. Dhawan D, Craig BA, Cheng L, Snyder PW, Mohammed SI. 88.  et al. 2010. Effects of short-term celecoxib treatment in patients with invasive transitional cell carcinoma of the urinary bladder. Mol. Cancer Ther. 9:51371–77 [Google Scholar]
  89. Decker B, Parker HG, Dhawan D, Kwon EM, Karlins E. 89.  et al. 2015. Homologous mutation to human BRAF V600E is common in naturally occurring canine bladder cancer—evidence for a relevant model system and urine-based diagnostic test. Mol. Cancer Res. 13:993–1002 [Google Scholar]
  90. Davies H, Bignell GR, Cox C, Stephens P, Edkins S. 90.  et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:6892949–54 [Google Scholar]
  91. Rowell JL, McCarthy DO, Alvarez CE. 91.  2011. Dog models of naturally occurring cancer. Trends Mol. Med. 17:7380–88 [Google Scholar]
  92. Stojadinovic A, Leung DHY, Allen P, Lewis JJ, Jaques DP, Brennan MF. 92.  2002. Primary adult soft tissue sarcoma: time-dependent influence of prognostic variables. J. Clin. Oncol. 20:214344–52 [Google Scholar]
  93. Kolb EA, Kushner BH, Gorlick R, Laverdiere C, Healey JH. 93.  et al. 2003. Long-term event-free survival after intensive chemotherapy for Ewing's family of tumors in children and young adults. J. Clin. Oncol. 21:183423–30 [Google Scholar]
  94. Sargan DR, Milne BS, Hernandez JA, O'Brien PCM, Ferguson-Smith MA. 94.  et al. 2005. Chromosome rearrangements in canine fibrosarcomas. J. Hered. 96:7766–73 [Google Scholar]
  95. Clark MA, Fisher C, Judson I, Thomas JM. 95.  2005. Soft-tissue sarcomas in adults. N. Engl. J. Med. 353:7701–11 [Google Scholar]
  96. Aguirre-Hernández J, Milne BS, Queen C, O'Brien PCM, Hoather T. 96.  et al. 2009. Disruption of chromosome 11 in canine fibrosarcomas highlights an unusual variability of CDKN2B in dogs. BMC Vet. Res. 5:127 [Google Scholar]
  97. Orlow I, Drobnjak M, Zhang ZF, Lewis J, Woodruff JM. 97.  et al. 1999. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival. J. Natl. Cancer Inst. 91:173–79 [Google Scholar]
  98. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T. 98.  et al. 1998. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:5350577–80 [Google Scholar]
  99. Gregory-Bryson E, Bartlett E, Kiupel M, Hayes S. 99.  2010. Canine and human gastrointestinal stromal tumors display similar mutations in c-KIT exon 11. BMC Immunol. 10:559 [Google Scholar]
  100. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen C-J. 100.  et al. 2003. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299:5607708–10 [Google Scholar]
  101. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M. 101.  et al. 2003. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21:234342–49 [Google Scholar]
  102. Santos AA, Lopes CC, Ribeiro JR, Martins LR, Santos JC. 102.  et al. 2013. Identification of prognostic factors in canine mammary malignant tumours: a multivariable survival study. BMC Vet. Res. 9:11 [Google Scholar]
  103. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS. 103.  et al. 2000. Molecular portraits of human breast tumours. Nature 406:6797747–52 [Google Scholar]
  104. Hallett RM, Dvorkin-Gheva A, Bane A, Hassell JA. 104.  2012. A gene signature for predicting outcome in patients with basal-like breast cancer. Sci. Rep. 2:227 [Google Scholar]
  105. Prat A, Parker JS, Karginova O, Fan C, Livasy C. 105.  et al. 2010. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12:5R68 [Google Scholar]
  106. Rivera P, Melin M, Biagi T, Fall T, Häggström J. 106.  et al. 2009. Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Res. 69:228770–74 [Google Scholar]
  107. Uva P, Aurisicchio L, Watters J, Loboda A, Kulkarni A. 107.  et al. 2009. Comparative expression pathway analysis of human and canine mammary tumors. BMC Genomics 10:1135 [Google Scholar]
  108. Klopfleisch R, Klose P, Gruber AD. 108.  2010. The combined expression pattern of BMP2, LTBP4, and DERL1 discriminates malignant from benign canine mammary tumors. Vet. Pathol. 47:3446–54 [Google Scholar]
  109. Ferretti G, Felici A, Papaldo P, Fabi A, Cognetti F. 109.  2007. HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr. Opin. Obstet. Gynecol. 19:156–62 [Google Scholar]
  110. Gama A, Alves A, Schmitt F. 110.  2008. Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification. Virchows Arch. 453:2123–32 [Google Scholar]
  111. Hsu W-L, Huang H-M, Liao J-W, Wong M-L, Chang S-C. 111.  2009. Increased survival in dogs with malignant mammary tumours overexpressing HER-2 protein and detection of a silent single nucleotide polymorphism in the canine HER-2 gene. Vet. J. 180:1116–23 [Google Scholar]
  112. Martin de las Mulas J, Ordás J, Millán Y, Fernández-Soria V, Ramón y Cajal S. 112.  2003. Oncogene HER-2 in canine mammary gland carcinomas: an immunohistochemical and chromogenic in situ hybridization study. Breast Cancer Res. Treat. 80:3363–67 [Google Scholar]
  113. Smith SH, Goldschmidt MH, McManus PM. 113.  2002. A comparative review of melanocytic neoplasms. Vet. Pathol. 39:6651–78 [Google Scholar]
  114. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A. 114.  et al. 2008. KIT gene mutations and copy number in melanoma subtypes. Clin. Cancer Res. 14:216821–28 [Google Scholar]
  115. Chu P-Y, Pan S-L, Liu C-H, Lee J, Yeh L-S, Liao AT. 115.  2013. KIT gene exon 11 mutations in canine malignant melanoma. Vet. J. 196:2226–30 [Google Scholar]
  116. Colombino M, Capone M, Lissia A, Cossu A, Rubino C. 116.  et al. 2012. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J. Clin. Oncol. 30:202522–29 [Google Scholar]
  117. Fowles JS, Denton CL, Gustafson DL. 117.  2013. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma. Vet. Comp. Oncol. 13:288–304 [Google Scholar]
  118. Shelly S, Chien MB, Yip B, Kent MS, Theon AP. 118.  et al. 2005. Exon 15 BRAF mutations are uncommon in canine oral malignant melanomas. Mamm. Genome 16:3211–17 [Google Scholar]
  119. Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K. 119.  et al. 2003. Determinants of BRAF mutations in primary melanomas. J. Natl. Cancer Inst. 95:241878–90 [Google Scholar]
  120. Goel VK, Lazar AJF, Warneke CL, Redston MS, Haluska FG. 120.  2006. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J. Investig. Dermatol. 126:154–60 [Google Scholar]
  121. Mayr B, Schaffner G, Reifinger M, Zwetkoff S, Prodinger B. 121.  2003. N-ras mutations in canine malignant melanomas. Vet. J. 165:2169–71 [Google Scholar]
  122. MacEwen EG, Kurzman ID, Rosenthal RC, Smith BW, Manley PA. 122.  et al. 1989. Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J. Natl. Cancer Inst. 81:12935–38 [Google Scholar]
  123. Kurzman ID, MacEwen EG, Rosenthal RC, Fox LE, Keller ET. 123.  et al. 1995. Adjuvant therapy for osteosarcoma in dogs: results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clin. Cancer Res. 1:121595–601 [Google Scholar]
  124. Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D. 124.  et al. 2005. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J. Clin. Oncol. 23:92004–11 [Google Scholar]
  125. Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML. 125.  et al. 2008. Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children's Oncology Group. J. Clin. Oncol. 26:4633–38 [Google Scholar]
  126. London CA, Malpas PB, Wood-Follis SL, Boucher JF, Rusk AW. 126.  et al. 2009. Multi-center, placebo-controlled, double-blind, randomized study of oral toceranib phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of dogs with recurrent (either local or distant) mast cell tumor following surgical excision. Clin. Cancer Res. 15:113856–65 [Google Scholar]
  127. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG. 127.  et al. 2003. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9:1327–37 [Google Scholar]
  128. Pryer NK, Lee LB, Zadovaskaya R, Yu X, Sukbuntherng J. 128.  et al. 2003. Proof of target for SU11654: inhibition of KIT phosphorylation in canine mast cell tumors. Clin. Cancer Res. 9:155729–34 [Google Scholar]
  129. London CA, Hannah AL, Zadovoskaya R, Chien MB, Kollias-Baker C. 129.  et al. 2003. Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin. Cancer Res. 9:72755–68 [Google Scholar]
  130. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM. 130.  et al. 2007. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356:2115–24 [Google Scholar]
  131. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH. 131.  et al. 2006. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:95441329–38 [Google Scholar]
  132. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D. 132.  et al. 2010. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. PNAS 107:2913075–80 [Google Scholar]
  133. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM. 133.  et al. 2010. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463:727788–92 [Google Scholar]
  134. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE. 134.  et al. 2013. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 31:188–94 [Google Scholar]
  135. Wang ML, Rule S, Martin P, Goy A, Auer R. 135.  et al. 2013. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369:6507–16 [Google Scholar]
  136. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA. 136.  et al. 2013. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369:132–42 [Google Scholar]
  137. Weber LW, Bowne WB, Wolchok JD, Srinivasan R, Qin J. 137.  et al. 1998. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J. Clin. Investig. 102:61258–64 [Google Scholar]
  138. Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J. 138.  et al. 2003. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin. Cancer Res. 9:41284–90 [Google Scholar]
  139. Liao JCF, Gregor P, Wolchok JD, Orlandi F, Craft D. 139.  et al. 2006. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun. 6:8 [Google Scholar]
  140. Nguyen KT, Holloway MP, Altura RA. 140.  2012. The CRM1 nuclear export protein in normal development and disease. Int. J. Biochem. Mol. Biol. 3:2137–51 [Google Scholar]
  141. Turner JG, Dawson J, Sullivan DM. 141.  2012. Nuclear export of proteins and drug resistance in cancer. Biochem. Pharmacol. 83:81021–32 [Google Scholar]
  142. London CA, Bernabe LF, Barnard S, Kisseberth WC, Borgatti A. 142.  et al. 2014. Preclinical evaluation of the novel, orally bioavailable Selective Inhibitor of Nuclear Export (SINE) KPT-335 in spontaneous canine cancer: results of a phase I study. PLOS ONE 9:2e87585 [Google Scholar]
  143. Choi HK, Lee K. 143.  2012. Recent updates on the development of ganetespib as a Hsp90 inhibitor. Arch. Pharm. Res. 35:111855–59 [Google Scholar]
  144. McCleese JK, Bear MD, Fossey SL, Mihalek RM, Foley KP. 144.  et al. 2009. The novel HSP90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines. Int. J. Cancer 125:122792–801 [Google Scholar]
  145. London CA, Bear MD, McCleese J, Foley KP, Paalangara R. 145.  et al. 2011. Phase I evaluation of STA-1474, a prodrug of the novel HSP90 inhibitor ganetespib, in dogs with spontaneous cancer. PLOS ONE 6:11e27018 [Google Scholar]
  146. Socinski MA, Goldman J, El-Hariry I, Koczywas M, Vukovic V. 146.  et al. 2013. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin. Cancer Res. 19:113068–77 [Google Scholar]
  147. DiMasi JA, Grabowski HG. 147.  2007. Economics of new oncology drug development. J. Clin. Oncol. 25:2209–16 [Google Scholar]
  148. Bates SE, Amiri-Kordestani L, Giaccone G. 148.  2012. Drug development: portals of discovery. Clin. Cancer Res. 18:123–32 [Google Scholar]
  149. Khanna C, London C, Vail D, Mazcko C, Hirschfeld S. 149.  2009. Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin. Cancer Res. 15:5671–77 [Google Scholar]
  150. London CA, Gardner HL, Mathie T, Stingle N, Portela R. 150.  et al. 2015. Impact of toceranib/piroxicam/cyclophosphamide maintenance therapy on outcome of dogs with appendicular osteosarcoma following amputation and carboplatin chemotherapy: a multi-institutional study. PLOS ONE 10:4e0124889 [Google Scholar]
/content/journals/10.1146/annurev-animal-022114-110911
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error