The environmental drivers of influenza outbreaks are largely unknown. Despite more than 50 years of research, there are conflicting lines of evidence on the role of the environment in influenza A virus (IAV) survival, stability, and transmissibility. With the increasing and looming threat of pandemic influenza, it is important to understand these factors for early intervention and long-term control strategies. The factors that dictate the severity and spread of influenza would include the virus, natural and acquired hosts, virus-host interactions, environmental persistence, virus stability and transmissibility, and anthropogenic interventions. Virus persistence in different environments is subject to minor variations in temperature, humidity, pH, salinity, air pollution, and solar radiations. Seasonality of influenza is largely dictated by temperature and humidity, with cool-dry conditions enhancing IAV survival and transmissibility in temperate climates in high latitudes, whereas humid-rainy conditions favor outbreaks in low latitudes, as seen in tropical and subtropical zones. In mid-latitudes, semiannual outbreaks result from alternating cool-dry and humid-rainy conditions. The mechanism of virus survival in the cool-dry or humid-rainy conditions is largely determined by the presence of salts and proteins in the respiratory droplets. Social determinants of heath, including health equity, vaccine acceptance, and age-related illness, may play a role in influenza occurrence and spread.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. World Health Organ 2008. Topics: Immunizations, Vaccines and Biologicals. Geneva: World Health Organ. http://www.who.int/immunization/topics/influenza/en/
  2. Medina RA, García-Sastre A. 2011. Influenza A viruses: new research developments. Nat. Rev. Microbiol. 9:590–603 [Google Scholar]
  3. Muramoto Y, Noda T, Kawakami E, Akkina R, Kawaoka Y. 2013. Identification of novel influenza A virus proteins translated from PA mRNA. J. Virol. 87:2455–62 [Google Scholar]
  4. Webster RG, Govorkova EA. 2014. Continuing challenges in influenza. Ann. N.Y. Acad. Sci. 1323:115–39 [Google Scholar]
  5. Crisci E, Mussa T, Fraile L, Montoya M. 2013. Review: influenza virus in pigs. Mol. Immunol. 55:200–11 [Google Scholar]
  6. Gerber M, Isel C, Moules V, Marquet R. 2014. Selective packaging of the influenza A genome and consequences for genetic reassortment. Trends Microbiol. 22:446–55 [Google Scholar]
  7. Alexander DJ. 2007. An overview of the epidemiology of avian influenza. Vaccine 25:5637–44 [Google Scholar]
  8. Easterday BC, Trainer DO, Tumova B, Pereira HG. 1968. Evidence of infection with influenza viruses in migratory waterfowl. Nature 219:523–24 [Google Scholar]
  9. Alexander DJ, Brown IH. 2009. History of highly pathogenic avian influenza. Rev. Sci. Tech. 28:19–38 [Google Scholar]
  10. Halvorson DA. 2009. Prevention and management of avian influenza outbreaks: experiences from the United States of America. Rev. Sci. Tech. 28:359–69 [Google Scholar]
  11. Morens DM, Taubenberger JK, Fauci AS. 2013. Pandemic influenza viruses—hoping for the road not taken. N. Engl. J. Med. 368:2345–48 [Google Scholar]
  12. Swayne DE. 2007. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds. Avian Dis. 51:242–49 [Google Scholar]
  13. Simms L, Jeggo M. 2014. Avian influenza from an ecohealth perspective. EcoHealth 11:4–14 [Google Scholar]
  14. Vandegrift KJ, Sokolow SH, Daszak P, Kilpatrick AM. 2010. Ecology of avian influenza viruses in a changing world. Ann. N. Y. Acad. Sci. 1195:113–28 [Google Scholar]
  15. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56:152–79 [Google Scholar]
  16. Stallknecht DE, Kearney MT, Shane SM, Zwank PJ. 1990. Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Dis. 34:412–18 [Google Scholar]
  17. Taubenberger JK, Kash JC. 2010. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7:440–51 [Google Scholar]
  18. Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J et al. 2008. The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLOS Pathog. 4:e1000076 [Google Scholar]
  19. Vijaykrishna D, Deng YM, Su YC, Fourment M, Iannello P et al. 2013. The recent establishment of North American H10 lineage influenza viruses in Australian wild waterfowl and the evolution of Australian avian influenza viruses. J. Virol. 87:10182–89 [Google Scholar]
  20. Hansbro PM, Warner S, Tracey JP, Arzey KE, Selleck P et al. 2010. Surveillance and analysis of avian influenza viruses, Australia. Emerg. Infect. Dis. 16:1896–904 [Google Scholar]
  21. Bulach D, Halpin R, Spiro D, Pomeroy L, Janies D, Boyle DB. 2010. Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007. J. Virol. 84:9957–66 [Google Scholar]
  22. Hurt AC, Vijaykrishna D, Butler J, Baas C, Maurer-Stroh S et al. 2014. Detection of evolutionarily distinct avian influenza A viruses in Antarctica. mBio 5:e01098–14 [Google Scholar]
  23. Halvorson D, Karunakaran D, Senne D, Kelleher C, Bailey C et al. 1983. Epizootiology of avian influenza—simultaneous monitoring of sentinel ducks and turkeys in Minnesota. Avian Dis. 27:77–85 [Google Scholar]
  24. Halvorson DA, Kelleher CJ, Pomeroy BS, Sivanandan V, Abraham AS et al. 1987. Surveillance procedures for avian influenza. Proc. 2nd Int. Symp. Avian Influenza, Athens, GA, Sept. 3–5155–63 St. Joseph, MO: US Anim. Health Assoc. [Google Scholar]
  25. Hinshaw VS, Webster RG, Turner B. 1980. The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Can. J. Microbiol. 26:622–29 [Google Scholar]
  26. Pomeroy BS. 1982. Avian influenza in the United States (1964–1981). Proc. 1st Int. Symp. Avian Influenza, Beltsville, MD, April 22–2413–17 Jacksonville, FL: Am. Assoc. Avian Pathol. [Google Scholar]
  27. Lang G. 1982. A review of influenza in Canadian domestic and wild birds. Proc. 1st Int. Symp. Avian Influenza, Beltsville, MD, April 22–2421–27 Jacksonville, FL: Am. Assoc. Avian Pathol. [Google Scholar]
  28. Pomeroy BS. 1987. Avian influenza—avian influenza in turkeys in the USA. Proc. 2nd Int. Symp. Avian Influenza, Athens, GA, Sept. 3–514–21 St. Joseph, MO: US Anim. Health Assoc. [Google Scholar]
  29. Mohan R, Saif YM, Erickson GA, Gustafson GA, Easterday BC. 1981. Serologic and epidemiologic evidence of infection in turkeys with an agent related to the swine influenza virus. Avian Dis. 25:11–16 [Google Scholar]
  30. Wood GW, Banks J, Brown IH, Strong I, Alexander DJ. 1997. The nucleotide sequence of the HA1 of the haemagglutinin of an HI avian influenza virus isolate from turkeys in Germany provides additional evidence suggesting recent transmission from pigs. Avian Pathol. 26:347–55 [Google Scholar]
  31. Wells RJH. 1963. An outbreak of fowl plague in turkeys. Vet. Rec. 75:783–86 [Google Scholar]
  32. Homme PJ, Easterday BC, Anderson DP. 1970. Avian influenza virus infections. II. Experimental epizootiology of influenza A-turkey-Wisconsin-1966 virus in turkeys. Avian Dis. 14:240–47 [Google Scholar]
  33. Utterback W. 1984. Update on avian influenza through February 21, 1984 in Pennsylvania and Virginia. Proc. 33rd West. Poult. Dis. Conf., Davis, CA, Feb. 27–284–7 Davis: Univ. Calif. [Google Scholar]
  34. Glass SE, Naqi SA, Grumbles LC. 1981. Isolation of avian influenza virus in Texas. Avian Dis. 25:545–49 [Google Scholar]
  35. Pepin KM, Lloyd-Smith JO, Webb CT, Holcomb K, Zhu H et al. 2013. Minimizing the threat of pandemic emergence from avian influenza in poultry systems. BMC Infect. Dis. 13:592 [Google Scholar]
  36. Campbell G. 1998. Report of the Irish national reference laboratory for 1996 and 1997. Proc. Joint 4th Annu. Meet. Natl. Newctle. Dis. Avian Influenza Lab. Ctries. Eur. Union, Brussels, Dec. 9–1013 Brussels: Eur. Union [Google Scholar]
  37. Werner O. 1998. Avian influenza—situation in Germany 1995–1997. Proc. Joint 4th Annu. Meet. Natl. Newctle. Dis. Avian Influenza Lab. Ctries. Eur. Union, Brussels, Dec. 9–109–10 Brussels: Eur. Union [Google Scholar]
  38. Banks J, Speidel EC, Harris PA, Alexander DJ. 2000. Phylogenetic analysis of influenza A viruses of H9 haemagglutinin subtype. Avian Pathol. 29:353–59 [Google Scholar]
  39. Halvorson DA, Frame DD, Friendshuh AJ, Shaw DP. 1998. Outbreaks of low pathogenicity avian influenza in USA. Proc. 4th Int. Symp. Avian Influenza, Athens, GA36–46 Jacksonville, FL: Am. Assoc. Avian Pathol. [Google Scholar]
  40. Bashashati M, Vasfi Marandi M, Sabouri F. 2013. Genetic diversity of early (1998) and recent (2010) avian influenza H9N2 virus strains isolated from poultry in Iran. Arch. Virol. 158:2089–100 [Google Scholar]
  41. Alexander DJ. 2003. Report on avian influenza in the Eastern Hemisphere during 1997–2002. Avian Dis. 47:792–97 [Google Scholar]
  42. Shanmuganatham K, Feeroz MM, Jones-Engel L, Smith GJ, Fourment M et al. 2013. Antigenic and molecular characterization of avian influenza A(H9N2) viruses, Bangladesh. Emerg. Infect. Dis. 19:1393 [Google Scholar]
  43. Lee DH, Song CS. 2013. H9N2 avian influenza virus in Korea: evolution and vaccination. Clin. Exp. Vaccine Res. 2:26–33 [Google Scholar]
  44. Senne DA, Suarez DL, Stallnecht DE, Pedersen JC, Panigrahy B. 2006. Ecology and epidemiology of avian influenza in North and South America. Dev. Biol. 124:37–44 [Google Scholar]
  45. Yu H, Zhou YJ, Li GX, Ma JH, Yan LP et al. 2011. Genetic diversity of H9N2 influenza viruses from pigs in China: A potential threat to human health?. Vet. Microbiol. 149:254–61 [Google Scholar]
  46. Humberd J, Boyd K, Webster RG. 2007. Emergence of influenza A virus variants after prolonged shedding from pheasants. J. Virol. 81:4044–51 [Google Scholar]
  47. Xu X, Subbarao K, Cox NJ, Guo Y. 1999. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261:15–19 [Google Scholar]
  48. Tiensin T, Chaitaweesub P, Songserm T, Chaisingh A, Hoonsuwan W et al. 2005. Highly pathogenic avian influenza H5N1, Thailand, 2004. Emerg. Infect. Dis. 11:1664–72 [Google Scholar]
  49. Needham H. Influenza Proj. Team 2007. H5N1 in wild and domestic birds in Europe—remaining vigilant in response to an ongoing public health threat. Eurosurveillance 12:E071206.1 [Google Scholar]
  50. Proença-Módena JL, Macedo IS, Arruda E. 2007. H5N1 avian influenza virus: an overview. Braz. J. Infect. Dis. 11:125–33 [Google Scholar]
  51. Neumann G, Macken CA, Karasin AI, Fouchier RA, Kawaoka Y. 2012. Egyptian H5N1 influenza viruses—cause for concern?. PLOS Pathog. 8:e1002932 [Google Scholar]
  52. Steensels M, Van Borm S, Boschmans M, van den Berg T. 2007. Lethality and molecular characterization of an HPAI H5N1 virus isolated from eagles smuggled from Thailand into Europe. Avian Dis. 51:401–7 [Google Scholar]
  53. Van Borm S, Thomas I, Hanquet G, Lambrecht B, Boschmans M et al. 2005. Highly pathogenic H5N1 influenza virus in smuggled Thai eagles, Belgium. Emerg. Infect. Dis. 11:702–5 [Google Scholar]
  54. Dunham EJ, Dugan VG, Kaser EK, Perkins SE, Brown IH et al. 2009. Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses. J. Virol. 83:5485–94 [Google Scholar]
  55. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S et al. 2009. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201 [Google Scholar]
  56. Vittecoq M, Thomas F, Renaud F, Gauthier-Clerc M. 2011. Avian influenza viruses: environmental influence reference module in earth systems and environmental sciences. Encyclopedia of Environmental Health Nriagu JO. 253–61 Amsterdam: Elsevier [Google Scholar]
  57. Peiris JS, de Jong MD, Guan Y. 2007. Avian influenza virus (H5N1): a threat to human health. Clin. Microbiol. Rev. 20:243–67 [Google Scholar]
  58. Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA et al. 2004. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. PNAS 101:1356–61 [Google Scholar]
  59. Tweed SA, Skowronski DM, David ST, Larder A, Petric M et al. 2004. Human illness from avian influenza H7N3, British Columbia. Emerg. Infect. Dis. 10:2196–99 [Google Scholar]
  60. Lin YP, Shaw M, Gregory V, Cameron K, Lim W et al. 2000. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. PNAS 97:9654–58 [Google Scholar]
  61. Taubenberger JK, Morens DM. 2009. Pandemic influenza—including a risk assessment of H5N1. Rev. Sci. Tech. 28:187–202 [Google Scholar]
  62. Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EP et al. 2005. Transmission of equine influenza virus to dogs. Science 310:482–85 [Google Scholar]
  63. Tu J, Zhou H, Jiang T, Li C, Zhang A et al. 2009. Isolation and molecular characterization of equine H3N8 influenza viruses from pigs in China. Arch. Virol. 154:887–90 [Google Scholar]
  64. Krueger WS, Gray GC. 2013. Swine influenza virus infections in man. Curr. Top. Microbiol. Immunol. 370:201–25 [Google Scholar]
  65. Naffakh N, van der Werf S. 2009. April 2009: an outbreak of swine-origin influenza A(H1N1) virus with evidence for human-to-human transmission. Microbes Infect. 11:725–28 [Google Scholar]
  66. Epperson S, Jhung M, Richards S, Quinlisk P, Ball L et al. 2013. Human infections with influenza A(H3N2) variant virus in the United States, 2011–2012. Clin. Infect. Dis. 57:Suppl. 1S4–S11 [Google Scholar]
  67. Jhung MA, Epperson S, Biggerstaff M, Allen D, Balish A et al. 2013. Outbreak of variant influenza A(H3N2) virus in the United States. Clin. Infect. Dis. 57:1703–12 [Google Scholar]
  68. Bowman AS, Nelson SW, Page SL, Nolting JM, Killian ML et al. 2014. Swine-to-human transmission of influenza A (H3N2) virus at agricultural fairs, Ohio, USA, 2012. Emerg. Infect. Dis. 20:1472–80 [Google Scholar]
  69. Van Reeth K, Nicoll A. 2009. A human case of swine influenza virus infection in Europe—implications for human health and research. Eurosurveillance 14:19124 [Google Scholar]
  70. Songserm T, Amonsin A, Jam-on R, Sae-Heng N, Meemak N et al. 2006. Avian influenza H5N1 in naturally infected domestic cat. Emerg. Infect. Dis. 12:681–83 [Google Scholar]
  71. Sponseller BA, Strait E, Jergens A, Trujillo J, Harmon K et al. 2010. Influenza A pandemic (H1N1) 2009 virus infection in domestic cat. Emerg. Infect. Dis. 16:534–37 [Google Scholar]
  72. Desvaux S, Marx N, Ong S, Gaidet N, Hunt M et al. 2009. Highly pathogenic avian influenza virus (H5N1) outbreak in captive wild birds and cats, Cambodia. Emerg. Infect. Dis. 15:475–78 [Google Scholar]
  73. Keawcharoen J, Oraveerakul K, Kuiken T, Fouchier RA, Amonsin A et al. 2004. Avian influenza H5N1 in tigers and leopards. Emerg. Infect. Dis. 10:2189–91 [Google Scholar]
  74. Leschnik M, Weikel J, Möstl K, Revilla-Fernández S, Wodak E et al. 2007. Subclinical infection with avian influenza A (H5N1) virus in cats. Emerg. Infect. Dis. 13:243–47 [Google Scholar]
  75. Rimmelzwaan GF, van Riel D, Baars M, Bestebroer TM, van Amerongen G et al. 2006. Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. Am. J. Pathol. 168:176–83 [Google Scholar]
  76. van den Brand JM, Stittelaar KJ, van Amerongen G, van de Bildt MW, Leijten LM et al. 2010. Experimental pandemic (H1N1) 2009 virus infection of cats. Emerg. Infect. Dis. 16:1745–47 [Google Scholar]
  77. Driskell EA, Jones CA, Berghaus RD, Stallknecht DE, Howerth EW, Tompkins SM. 2013. Domestic cats are susceptible to infection with low pathogenic avian influenza viruses from shorebirds. Vet. Pathol. 50:39–45 [Google Scholar]
  78. Lopez JW, Woods GT. 1984. Influenza virus in ruminants: a review. Res. Commun. Chem. Pathol. Pharmacol. 45:445–62 [Google Scholar]
  79. Crawshaw TR, Brown I. 1998. Bovine influenza. Vet. Rec. 143:372 [Google Scholar]
  80. Yuanji G, Desselberger U. 1984. Genome analysis of influenza C viruses isolated in 1981/82 from pigs in China. J. Gen. Virol. 65:Pt. 111857–72 [Google Scholar]
  81. Ohwada K, Kitame F, Homma M. 1986. Experimental infections of dogs with type C influenza virus. Microbiol. Immunol. 30:451–60 [Google Scholar]
  82. Kawano J, Onta T, Kida H, Yanagawa R. 1978. Distribution of antibodies in animals against influenza B and C viruses. Jpn. J. Vet. Res. 26:74–80 [Google Scholar]
  83. Hause BM, Ducatez M, Collin EA, Ran Z, Liu R et al. 2013. Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses. PLOS Pathog. 9:e1003176 [Google Scholar]
  84. Hause BM, Collin EA, Liu R, Huang B, Sheng Z et al. 2014. Characterization of a novel influenza virus in cattle and swine: proposal for a new genus in the Orthomyxoviridae family. mBio 5:e00031–14 [Google Scholar]
  85. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM. 2006. Global patterns of influenza A virus in wild birds. Science 312:384–88 [Google Scholar]
  86. Hurt AC, Hansbro PM, Selleck P, Olsen B, Minton C et al. 2006. Isolation of avian influenza viruses from two different transhemispheric migratory shorebird species in Australia. Arch. Virol. 151:2301–9 [Google Scholar]
  87. Roche B, Lebarbenchon C, Gauthier-Clerc M, Chang CM, Thomas F et al. 2009. Water-borne transmission drives avian influenza dynamics in wild birds: the case of the 2005–2006 epidemics in the Camargue area. Infect. Genet. Evol. 9:800–5 [Google Scholar]
  88. Hinshaw VS, Webster RG, Turner B. 1979. Water-bone transmission of influenza A viruses?. Intervirology 11:66–68 [Google Scholar]
  89. Markwell DD, Shortridge KF. 1982. Possible waterborne transmission and maintenance of influenza viruses in domestic ducks. Appl. Environ. Microbiol. 43:110–15 [Google Scholar]
  90. Brown JD, Swayne DE, Cooper RJ, Burns RE, Stallknecht DE. 2007. Persistence of H5 and H7 avian influenza viruses in water. Avian Dis. 51:285–89 [Google Scholar]
  91. Ito T, Okazaki K, Kawaoka Y, Takada A, Webster RG, Kida H. 1995. Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch. Virol. 140:1163–72 [Google Scholar]
  92. Keeler SP, Lebarbenchon C, Stallknecht DE. 2013. Strain-related variation in the persistence of influenza A virus in three types of water: distilled water, filtered surface water, and intact surface water. Virol. J. 10:13 [Google Scholar]
  93. Khalenkov A, Laver WG, Webster RG. 2008. Detection and isolation of H5N1 influenza virus from large volumes of natural water. J. Virol. Methods 149:180–83 [Google Scholar]
  94. Lang AS, Kelly A, Runstadler JA. 2008. Prevalence and diversity of avian influenza viruses in environmental reservoirs. J. Gen. Virol. 89:509–19 [Google Scholar]
  95. Nielsen AA, Jensen TH, Stockmarr A, Jorgensen PH. 2013. Persistence of low-pathogenic H5N7 and H7N1 avian influenza subtypes in filtered natural waters. Vet. Microbiol. 166:419–28 [Google Scholar]
  96. Shi J, Gao L, Zhu Y, Chen T, Liu Y et al. 2014. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China. PLOS ONE 9:e95685 [Google Scholar]
  97. Stallknecht DE, Goekjian VH, Wilcox BR, Poulson RL, Brown JD. 2010. Avian influenza virus in aquatic habitats: What do we need to learn?. Avian Dis. 54:461–65 [Google Scholar]
  98. Domanska-Blicharz K, Minta Z, Smietanka K, Marche S, van den Berg T. 2010. H5N1 high pathogenicity avian influenza virus survival in different types of water. Avian Dis. 54:734–37 [Google Scholar]
  99. Keeler SP, Berghaus RD, Stallknecht DE. 2012. Persistence of low pathogenic avian influenza viruses in filtered surface water from waterfowl habitats in Georgia, USA. J. Wildl. Dis. 48:999–1009 [Google Scholar]
  100. Keeler SP, Dalton MS, Cressler AM, Berghaus RD, Stallknecht DE. 2014. Abiotic factors affecting the persistence of avian influenza virus in surface waters of waterfowl habitats. Appl. Environ. Microbiol. 80:2910–17 [Google Scholar]
  101. Brown JD, Goekjian G, Poulson R, Valeika S, Stallknecht DE. 2009. Avian influenza virus in water: Infectivity is dependent on pH, salinity and temperature. Vet. Microbiol. 136:20–26 [Google Scholar]
  102. Dublineau A, Batejat C, Pinon A, Burguiere AM, Leclercq I, Manuguerra JC. 2011. Persistence of the 2009 pandemic influenza A (H1N1) virus in water and on non-porous surface. PLOS ONE 6:e28043 [Google Scholar]
  103. Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M. 2007. Transmission of influenza A in human beings. Lancet Infect. Dis. 7:257–65 [Google Scholar]
  104. Weber TP, Stilianakis NI. 2008. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J. Infect. 57:361–73 [Google Scholar]
  105. Lebarbenchon C, Sreevatsan S, Lefevre T, Yang M, Ramakrishnan MA et al. 2012. Reassortant influenza A viruses in wild duck populations: effects on viral shedding and persistence in water. Proc. Biol. Sci. 279:3967–75 [Google Scholar]
  106. Shoham D, Jahangir A, Ruenphet S, Takehara K. 2012. Persistence of avian influenza viruses in various artificially frozen environmental water types. Influenza Res. Treat. 2012:912326 [Google Scholar]
  107. Stumpf P, Failing K, Papp T, Nazir J, Böhm R, Marschang RE. 2010. Accumulation of a low pathogenic avian influenza virus in zebra mussels (Dreissena polymorpha). Avian Dis. 54:1183–90 [Google Scholar]
  108. Horm VS, Gutiérrez RA, Nicholls JM, Buchy P. 2012. Highly pathogenic influenza A(H5N1) virus survival in complex artificial aquatic biotopes. PLOS ONE 7:e34160 [Google Scholar]
  109. Farnsworth ML, Miller RS, Pedersen K, Lutman MW, Swafford SR et al. 2012. Environmental and demographic determinants of avian influenza viruses in waterfowl across the contiguous United States. PLOS ONE 7:e32729 [Google Scholar]
  110. Feare CJ. 2010. Role of wild birds in the spread of highly pathogenic avian influenza virus H5N1 and implications for global surveillance. Avian Dis. 54:201–12 [Google Scholar]
  111. Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer WE et al. 2008. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 14:600–7 [Google Scholar]
  112. Bahl J, Krauss S, Kuhnert D, Fourment M, Raven G et al. 2013. Influenza A virus migration and persistence in North American wild birds. PLOS Pathog. 9:e1003570 [Google Scholar]
  113. Breban R, Drake JM, Stallknecht DE, Rohani P. 2009. The role of environmental transmission in recurrent avian influenza epidemics. PLOS Comput. Biol. 5:e1000346 [Google Scholar]
  114. Sims LD, Domenech J, Benigno C, Kahn S, Kamata A et al. 2005. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet. Rec. 157:159–64 [Google Scholar]
  115. El-Zoghby EF, Arafa AS, Hassan MK, Aly MM, Selim A et al. 2012. Isolation of H9N2 avian influenza virus from bobwhite quail (Colinus virginianus) in Egypt. Arch. Virol. 157:1167–72 [Google Scholar]
  116. Handel A, Brown J, Stallknecht D, Rohani P. 2013. A multi-scale analysis of influenza A virus fitness trade-offs due to temperature-dependent virus persistence. PLOS Comput. Biol. 9:e1002989 [Google Scholar]
  117. Morawska L. 2006. Droplet fate in indoor environments, or can we prevent the spread of infection?. Indoor Air 16:335–47 [Google Scholar]
  118. Yang W, Marr LC. 2012. Mechanisms by which ambient humidity may affect viruses in aerosols. Appl. Environ. Microbiol. 78:6781–88 [Google Scholar]
  119. Posada JA, Redrow J, Celik I. 2010. A mathematical model for predicting the viability of airborne viruses. J. Virol. Methods 164:88–95 [Google Scholar]
  120. Thomas RJ. 2013. Particle size and pathogenicity in the respiratory tract. Virulence 4:847–58 [Google Scholar]
  121. Dai YT, Juang YJ, Wu YY, Breysse PN, Hsu DJ. 2006. In vivo measurement of ultralarge aerosol particles in calm air by humans. J. Aerosol Sci. 37:967e73 [Google Scholar]
  122. Hinds WC. 1999. Respiratory deposition. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles233–59 New York: Wiley-Intersci, 2nd ed.. [Google Scholar]
  123. Lindsley WG, Blachere FM, Thewlis RE, Vishnu A, Davis KA et al. 2010. Measurements of airborne influenza virus in aerosol particles from human coughs. PLOS ONE 5:e15100 [Google Scholar]
  124. Yang W, Elankumaran S, Marr LC. 2011. Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J. R. Soc. Interface 8:1176–84 [Google Scholar]
  125. Lednicky JA, Loeb JC. 2013. Detection and isolation of airborne influenza A H3N2 virus using a Sioutas Personal Cascade Impactor Sampler. Influenza Res. Treat. 2013:656825 [Google Scholar]
  126. Mitchell CA, Guerin LF, Robillard J. 1968. Decay of influenza A viruses of human and avian origin. Can. J. Comp. Med. 32:4544–46 [Google Scholar]
  127. Mitchell CA, Guerin LF. 1972. Influenza A of human, swine, equine and avian origin: comparison of survival in aerosol form. Can. J. Comp. Med. 36:19–11 [Google Scholar]
  128. Yang W, Marr LC. 2011. Dynamics of airborne influenza A viruses indoors and dependence on humidity. PLOS ONE 6:e21481 [Google Scholar]
  129. Sagripanti JL, Lytle CD. 2007. Inactivation of influenza virus by solar radiation. Photochem. Photobiol. 83:1278–82 [Google Scholar]
  130. Sutton D, Aldous EW, Warren CJ, Fuller CM, Alexander DJ, Brown IH. 2013. Inactivation of the infectivity of two highly pathogenic avian influenza viruses and a virulent Newcastle disease virus by ultraviolet radiation. Avian Pathol. 42:566–68 [Google Scholar]
  131. Sloan C, Moore ML, Hartert T. 2011. Impact of pollution, climate, and sociodemographic factors on spatiotemporal dynamics of seasonal respiratory viruses. Clin. Transl. Sci. 4:48–54 [Google Scholar]
  132. Yang W, Elankumaran S, Marr LC. 2012. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality. PLOS ONE 7:e46789 [Google Scholar]
  133. Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH Jr. 1982. Survival of influenza viruses on environmental surfaces. J. Infect. Dis. 146:47–51 [Google Scholar]
  134. Shahid MA, Abubakar M, Hameed S, Hassan S. 2009. Avian influenza virus (H5N1): effects of physico-chemical factors on its survival. Virol. J. 6:38 [Google Scholar]
  135. Shigematsu S, Dublineau A, Sawoo O, Batejat C, Matsuyama T et al. 2014. Influenza A virus survival in water is influenced by the origin species of the host cell. Influenza Other Respir. Viruses 8:123–30 [Google Scholar]
  136. Sawoo O, Dublineau A, Batejat C, Zhou P, Manuguerra JC, Leclercq I. 2014. Cleavage of hemagglutinin-bearing lentiviral pseudotypes and their use in the study of influenza virus persistence. PLOS ONE 9:e106192 [Google Scholar]
  137. Rachakonda PS, Veit M, Korte T, Ludwig K, Bottcher C et al. 2007. The relevance of salt bridges for the stability of the influenza virus hemagglutinin. FASEB J. 21:995–1002 [Google Scholar]
  138. Stanwick TL, Hallum JV. 1975. Comparison of RNA polymerase associated with Newcastle disease virus and a temperature-sensitive mutant of Newcastle disease virus isolated from persistently infected L cells. J. Virol. 17:68–73 [Google Scholar]
  139. Dalton RM, Mullin AE, Amorim MJ, Medcalf E, Tiley LS, Digard P. 2006. Temperature sensitive influenza A virus genome replication results from low thermal stability of polymerase-cRNA complexes. Virol. J. 3:58 [Google Scholar]
  140. Scholtissek C. 1985. Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine 3:215–18 [Google Scholar]
  141. Puri A, Booy FP, Doms RW, White JM, Blumenthal R. 1990. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. J. Virol. 64:3824–32 [Google Scholar]
  142. White J, Kartenbeck J, Helenius A. 1982. Membrane fusion activity of influenza virus. EMBO J. 1:217–22 [Google Scholar]
  143. Mittal A, Shangguan T, Bentz J. 2002. Measuring pKa of activation and pKi of inactivation for influenza hemagglutinin from kinetics of membrane fusion of virions and of HA expressing cells. Biophys. J. 83:2652–66 [Google Scholar]
  144. Budowsky EI, Bresler SE, Friedman EA, Zheleznova NV. 1981. Principles of selective inactivation of viral genome. I. UV-induced inactivation of influenza virus. Arch. Virol. 68:239–47 [Google Scholar]
  145. Drinka PJ, Krause P, Schilling M, Miller BA, Shult P, Gravenstein S. 1996. Report of an outbreak: nursing home architecture and influenza-A attack rates. J. Am. Geriatr. Soc. 44:910–13 [Google Scholar]
  146. Drinka PJ, Krause P, Nest L, Tyndall D. 2004. Report of an outbreak: nursing home architecture and influenza-A attack rates: update. J. Am. Geriatr. Soc. 52:847–48 [Google Scholar]
  147. Robinson M, Stilianakis NI, Drossinos Y. 2012. Spatial dynamics of airborne infectious diseases. J. Theor. Biol. 297:116–26 [Google Scholar]
  148. Zhang L, Guo ZW, Bridge ES, Li YM, Xiao XM. 2013. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1. Epidemiol. Infect. 141:2444–53 [Google Scholar]
  149. Li YLG, Tang JW, Yang X, Chao CY, Lin JZ et al. 2007. Role of ventilation in airborne transmission of infectious agents in the built environment—a multidisciplinary systematic review. Indoor Air 17:2–18 [Google Scholar]
  150. Tellier R. 2009. Aerosol transmission of influenza A virus: a review of new studies. J. R. Soc. Interface 6:Suppl. 6S783–90 [Google Scholar]
  151. Fabian P, McDevitt JJ, DeHaan WH, Fung RO, Cowling BJ et al. 2008. Influenza virus in human exhaled breath: an observational study. PLOS ONE 3:e2691 [Google Scholar]
  152. Lindsley WG, Blachere FM, Davis KA, Pearce TA, Fisher MA et al. 2010. Distribution of airborne influenza virus and respiratory syncytial virus in an urgent care medical clinic. Clin. Infect. Dis. 50:693–98 [Google Scholar]
  153. Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. 2013. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLOS Pathog. 9:e1003205 [Google Scholar]
  154. Simonds AK, Hanak A, Chatwin M, Morrell M, Hall A et al. 2010. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol. Assess. 14:131–72 [Google Scholar]
  155. Cowling BJ. 2012. Airborne transmission of influenza: implications for control in healthcare and community settings. Clin. Infect. Dis. 54:1578–80 [Google Scholar]
  156. Alford RH, Kasel JA, Gerone PJ, Knight V. 1966. Human influenza resulting from aerosol inhalation. Proc. Soc. Exp. Biol. Med. 122:800–4 [Google Scholar]
  157. Little JW, Douglas RG Jr, Hall WJ, Roth FK. 1979. Attenuated influenza produced by experimental intranasal inoculation. J. Med. Virol. 3:177–88 [Google Scholar]
  158. Lowen AC, Mubareka S, Tumpey TM, García-Sastre A, Palese P. 2006. The guinea pig as a transmission model for human influenza viruses. PNAS 103:9988–92 [Google Scholar]
  159. Abbas T, Wilking H, Horeth-Bontgen D, Conraths FJ. 2012. Contact structure and potential risk factors for avian influenza transmission among open-sided chicken farms in Kamalia, an important poultry rearing area of Pakistan. Berl. Munch Tierarztl Wochenschr. 125:110–16 [Google Scholar]
  160. Tsukamoto K, Imada T, Tanimura N, Okamatsu M, Mase M et al. 2007. Impact of different husbandry conditions on contact and airborne transmission of H5N1 highly pathogenic avian influenza virus to chickens. Avian Dis. 51:129–32 [Google Scholar]
  161. Boender GJ, Hagenaars TJ, Bouma A, Nodelijk G, Elbers AR et al. 2007. Risk maps for the spread of highly pathogenic avian influenza in poultry. PLOS Comput. Biol. 3:e71 [Google Scholar]
  162. Thompson PN, Sinclair M, Ganzevoort B. 2008. Risk factors for seropositivity to H5 avian influenza virus in ostrich farms in the Western Cape Province, South Africa. Prev. Vet. Med. 86:139–52 [Google Scholar]
  163. te Beest DE, Stegeman JA, Mulder YM, van Boven M, Koopmans MP. 2011. Exposure of uninfected poultry farms to HPAI (H7N7) virus by professionals during outbreak control activities. Zoonoses Public Health 58:493–99 [Google Scholar]
  164. Firestone SM, Schemann KA, Toribio JA, Ward MP, Dhand NK. 2011. A case-control study of risk factors for equine influenza spread onto horse premises during the 2007 epidemic in Australia. Prev. Vet. Med. 100:53–63 [Google Scholar]
  165. Elbers AR, Tielen MJ, Cromwijk WA, Hunneman WA. 1992. Variation in seropositivity for some respiratory disease agents in finishing pigs: epidemiological studies on some health parameters and farm and management conditions in the herds. Vet. Q. 14:8–13 [Google Scholar]
  166. Bos ME, Nielen M, Koch G, Bouma A, De Jong MC, Stegeman A. 2009. Back-calculation method shows that within-flock transmission of highly pathogenic avian influenza (H7N7) virus in the Netherlands is not influenced by housing risk factors. Prev. Vet. Med. 88:278–85 [Google Scholar]
  167. Corzo CA, Culhane M, Dee S, Morrison RB, Torremorell M. 2013. Airborne detection and quantification of swine influenza A virus in air samples collected inside, outside and downwind from swine barns. PLOS ONE 8:e71444 [Google Scholar]
  168. Ribeiro Amorim A, Garcete Fornells LAM, da Costa Reis F, Rezende DJ, da Silva Mendes G et al. 2013. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission. Mem. Inst. Oswaldo Cruz 108:548–53 [Google Scholar]
  169. Ypma RJ, Jonges M, Bataille A, Stegeman A, Koch G et al. 2013. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza. J. Infect. Dis. 207:730–35 [Google Scholar]
  170. Beckett S, Garner MG. 2007. Simulating disease spread within a geographic information system environment. Vet. Ital. 43:595–604 [Google Scholar]
  171. Cambra-Lopez M, Aarnink AJ, Zhao Y, Calvet S, Torres AG. 2010. Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ. Pollut. 158:1–17 [Google Scholar]
  172. Sedlmaier N, Hoppenheidt K, Krist H, Lehmann S, Lang H, Buttner M. 2009. Generation of avian influenza virus (AIV) contaminated fecal fine particulate matter (PM(2.5)): genome and infectivity detection and calculation of immission. Vet. Microbiol. 139:156–64 [Google Scholar]
  173. Davis J, Garner MG, East IJ. 2009. Analysis of local spread of equine influenza in the Park Ridge region of Queensland. Transbound. Emerg. Dis. 56:31–38 [Google Scholar]
  174. Spekreijse D, Bouma A, Koch G, Stegeman JA. 2011. Airborne transmission of a highly pathogenic avian influenza virus strain H5N1 between groups of chickens quantified in an experimental setting. Vet. Microbiol. 152:88–95 [Google Scholar]
  175. Ssematimba A, Hagenaars TJ, de Jong MCM. 2012. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms. PLOS ONE 7:e31114 [Google Scholar]
  176. Sawabe K, Hoshino K, Isawa H, Sasaki T, Hayashi T et al. 2006. Detection and isolation of highly pathogenic H5N1 avian influenza A viruses from blow flies collected in the vicinity of an infected poultry farm in Kyoto, Japan, 2004. Am. J. Trop. Med. Hyg. 75:327–32 [Google Scholar]
  177. Able KP. 1974. Environmental influences on the orientation of free-flying nocturnal bird migrants. Anim. Behav. 22:224–38 [Google Scholar]
  178. Adegboye OA, Kotze D. 2014. Epidemiological analysis of spatially misaligned data: a case of highly pathogenic avian influenza virus outbreak in Nigeria. Epidemiol. Infect. 142:940–49 [Google Scholar]
  179. Viboud C, Alonso WJ, Simonsen L. 2006. Influenza in tropical regions. PLOS Med. 3:e89 [Google Scholar]
  180. Alonso WJ, Viboud C, Simonsen L, Hirano EW, Daufenbach LZ, Miller MA. 2007. Seasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics. Am. J. Epidemiol. 165:1434–42 [Google Scholar]
  181. Dosseh A, Ndiaye K, Spiegel A, Sagna M, Mathiot C. 2000. Epidemiological and virological influenza survey in Dakar, Senegal: 1996–1998. Am. J. Trop. Med. Hyg. 62:639–43 [Google Scholar]
  182. Moura FE, Perdigão AC, Siqueira MM. 2009. Seasonality of influenza in the tropics: a distinct pattern in northeastern Brazil. Am. J. Trop. Med. Hygiene 81:180–83 [Google Scholar]
  183. Tamerius JD, Shaman J, Alonso WJ, Bloom-Feshbach K, Uejio CK et al. 2013. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLOS Pathog. 9:e1003194 [Google Scholar]
  184. Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN. 2007. Influenza seasonality: underlying causes and modeling theories. J. Virol. 81:5429–36 [Google Scholar]
  185. Tamerius J, Nelson MI, Zhou SZ, Viboud C, Miller MA, Alonso WJ. 2011. Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ. Health Perspect. 119:439–45 [Google Scholar]
  186. Schulman JL, Kilbourne ED. 1963. Experimental transmission of influenza virus infection in mice. II. Some factors affecting the incidence of transmitted infection. J. Exp. Med. 118:267–75 [Google Scholar]
  187. Lowen AC, Steel J, Mubareka S, Palese P. 2008. High temperature (30°C) blocks aerosol but not contact transmission of influenza virus. J. Virol. 82:5650–52 [Google Scholar]
  188. Lowen AC, Mubareka S, Steel J, Palese P. 2007. Influenza virus transmission is dependent on relative humidity and temperature. PLOS Pathog. 3:1470–76 [Google Scholar]
  189. Steel J, Palese P, Lowen AC. 2011. Transmission of a 2009 pandemic influenza virus shows a sensitivity to temperature and humidity similar to that of an H3N2 seasonal strain. J. Virol. 85:1400–2 [Google Scholar]
  190. Tang JW. 2009. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 6:Suppl. 6S737–46 [Google Scholar]
  191. Dorigatti I, Cauchemez S, Ferguson NM. 2013. Increased transmissibility explains the third wave of infection by the 2009 H1N1 pandemic virus in England. PNAS 110:13422–27 [Google Scholar]
  192. Pica N, Bouvier NM. 2012. Environmental factors affecting the transmission of respiratory viruses. Curr. Opin. Virol. 2:90–95 [Google Scholar]
  193. Noti JD, Blachere FM, McMillen CM, Lindsley WG, Kashon ML et al. 2013. High humidity leads to loss of infectious influenza virus from simulated coughs. PLOS ONE 8:e57485 [Google Scholar]
  194. Shaman J, Kohn M. 2009. Absolute humidity modulates influenza survival, transmission, and seasonality. PNAS 106:3243–48 [Google Scholar]
  195. Barreca AI, Shimshack JP. 2012. Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States. Am. J. Epidemiol. 176:Suppl. 7S114–22 [Google Scholar]
  196. Loh TP, Lai FY, Tan ES, Thoon KC, Tee NW et al. 2011. Correlations between clinical illness, respiratory virus infections and climate factors in a tropical paediatric population. Epidemiol. Infect. 139:1884–94 [Google Scholar]
  197. Agrawal AS, Sarkar M, Chakrabarti S, Rajendran K, Kaur H et al. 2009. Comparative evaluation of real-time PCR and conventional RT-PCR during a 2 year surveillance for influenza and respiratory syncytial virus among children with acute respiratory infections in Kolkata, India, reveals a distinct seasonality of infection. J. Med. Microbiol. 58:1616–22 [Google Scholar]
  198. Abdullah Brooks W, Terebuh P, Bridges C, Klimov A, Goswami D et al. 2007. Influenza A and B infection in children in urban slum, Bangladesh. Emerg. Infect. Dis. 13:1507–8 [Google Scholar]
  199. Tang JW, Lai FY, Nymadawa P, Deng YM, Ratnamohan M et al. 2010. Comparison of the incidence of influenza in relation to climate factors during 2000–2007 in five countries. J. Med. Virol. 82:1958–65 [Google Scholar]
  200. Murray EJ, Morse SS. 2011. Seasonal oscillation of human infection with influenza A/H5N1 in Egypt and Indonesia. PLOS ONE 6:e24042 [Google Scholar]
  201. Murray EL, Klein M, Brondi L, McGowan JE Jr, van Mels C et al. 2012. Rainfall, household crowding, and acute respiratory infections in the tropics. Epidemiol. Infect. 140:78–86 [Google Scholar]
  202. McDevitt JJ, Rudnick SN, Radonovich LJ. 2012. Aerosol susceptibility of influenza virus to UV-C light. Appl. Environ. Microbiol. 78:1666–69 [Google Scholar]
  203. Xu Z, Hu W, Williams G, Clements AC, Kan H, Tong S. 2013. Air pollution, temperature and pediatric influenza in Brisbane, Australia. Environ. Int. 59:384–88 [Google Scholar]
  204. Zell R, Scholtissek C, Ludwig S. 2013. Genetics, evolution, and the zoonotic capacity of European Swine influenza viruses. Curr. Top. Microbiol. Immunol. 370:29–55 [Google Scholar]
  205. Sorrell EM, Schrauwen EJ, Linster M, De Graaf M, Herfst S, Fouchier RA. 2011. Predicting ‘airborne’ influenza viruses: (Trans-)mission impossible?. Curr. Opin. Virol. 1:635–42 [Google Scholar]
  206. Tscherne DM, García-Sastre A. 2011. Virulence determinants of pandemic influenza viruses. J. Clin. Investig. 121:6–13 [Google Scholar]
  207. Stevens J, Blixt O, Chen LM, Donis RO, Paulson JC, Wilson IA. 2008. Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J. Mol. Biol. 381:1382–94 [Google Scholar]
  208. Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. 2006. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–10 [Google Scholar]
  209. Maines TR, Chen LM, Van Hoeven N, Tumpey TM, Blixt O et al. 2011. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. Virology 413:139–47 [Google Scholar]
  210. Matrosovich MN, Krauss S, Webster RG. 2001. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281:156–62 [Google Scholar]
  211. Chutinimitkul S, van Riel D, Munster VJ, van den Brand JM, Rimmelzwaan GF et al. 2010. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity. J. Virol. 84:6825–33 [Google Scholar]
  212. Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G et al. 2008. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLOS ONE 3:e2923 [Google Scholar]
  213. Maines TR, Chen LM, Matsuoka Y, Chen H, Rowe T et al. 2006. Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. PNAS 103:12121–26 [Google Scholar]
  214. Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y et al. 2009. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLOS Pathog. 5:e1000709 [Google Scholar]
  215. Yamada S, Hatta M, Staker BL, Watanabe S, Imai M et al. 2010. Biological and structural characterization of a host-adapting amino acid in influenza virus. PLOS Pathog. 6:e1001034 [Google Scholar]
  216. Steel J, Lowen AC, Mubareka S, Palese P. 2009. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLOS Pathog. 5:e1000252 [Google Scholar]
  217. Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H et al. 2009. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. PNAS 106:3366–71 [Google Scholar]
  218. Capua I, Munoz O. 2013. Emergence of influenza viruses with zoonotic potential: open issues which need to be addressed. A review. Vet. Microbiol. 165:7–12 [Google Scholar]
  219. Brown IH, Banks J, Manvell RJ, Essen SC, Shell W et al. 2006. Recent epidemiology and ecology of influenza A viruses in avian species in Europe and the Middle East. Dev. Biol. 124:45–50 [Google Scholar]
  220. Van Poucke SG, Nicholls JM, Nauwynck HJ, Van Reeth K. 2010. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol. J. 7:38 [Google Scholar]
  221. Nicholls JM, Chan MC, Chan WY, Wong HK, Cheung CY et al. 2007. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat. Med. 13:147–49 [Google Scholar]
  222. Lu L, Lycett SJ, Leigh Brown AJ. 2014. Reassortment patterns of avian influenza virus internal segments among different subtypes. BMC Evol. Biol. 14:16 [Google Scholar]
  223. Loosli CG, Robertson OH, Puck TT. 1943. The production of experimental influenza in mice by inhalation of atmospheres containing influenza virus dispersed as fine droplets. J. Infect. Dis. 72:142–53 [Google Scholar]
  224. Frankova V. 1975. Inhalatory infection of mice with influenza A0/PR8 virus. I. The site of primary virus replication and its spread in the respiratory tract. Acta Virol. 19:29–34 [Google Scholar]
  225. Andrewes CH, Glover RE. 1941. Spread of infection from the respiratory tract of the ferret: I. Transmission of influenza A virus. Br. J. Exp. Pathol. 22:91–97 [Google Scholar]
  226. Sorrell EM, Wan H, Araya Y, Song H, Perez DR. 2009. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. PNAS 106:7565–70 [Google Scholar]
  227. Mubareka S, Lowen AC, Steel J, Coates AL, García-Sastre A, Palese P. 2009. Transmission of influenza virus via aerosols and fomites in the guinea pig model. J. Infect. Dis. 199:858–65 [Google Scholar]
  228. Bouvier NM, Lowen AC, Palese P. 2008. Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol. J. Virol. 82:10052–58 [Google Scholar]
  229. Chen SC, You SH, Liu CY, Chio CP, Liao CM. 2012. Using experimental human influenza infections to validate a viral dynamic model and the implications for prediction. Epidemiol. Infect. 140:1557–68 [Google Scholar]
  230. Bender JM, Ampofo K, Gesteland P, Sheng X, Korgenski K et al. 2010. Influenza virus infection in infants less than three months of age. Pediatr. Infect. Dis. J. 29:6–9 [Google Scholar]
  231. Chiu SS, Lau YL, Chan KH, Wong WH, Peiris JS. 2002. Influenza-related hospitalizations among children in Hong Kong. N. Engl. J. Med. 347:2097–103 [Google Scholar]
  232. Nelson EAS, Ip M, Tam JS, Mounts AW, Chau SL et al. 2014. Burden of influenza infection in hospitalised children below 6 months of age and above in Hong Kong from 2005 to 2011. Vaccine 32:6692–98 [Google Scholar]
  233. Simonsen L, Taylor RJ, Viboud C, Miller MA, Jackson LA. 2007. Mortality benefits of influenza vaccination in elderly people: an ongoing controversy. Lancet Infect. Dis. 7:658–66 [Google Scholar]
  234. Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorning S, Thomas RE. 2010. Vaccines for preventing influenza in the elderly. Cochrane Database Syst. Rev. 2010:CD004876 [Google Scholar]
  235. Damiani G, Federico B, Visca M, Agostini F, Ricciardi W. 2007. The impact of socioeconomic level on influenza vaccination among Italian adults and elderly: a cross-sectional study. Prev. Med. 45:373–79 [Google Scholar]
  236. Nagata JM, Hernández-Ramos I, Kurup AS, Albrecht D, Vivas-Torrealba C, Franco-Paredes C. 2013. Social determinants of health and seasonal influenza vaccination in adults ≥65 years: a systematic review of qualitative and quantitative data. BMC Public Health 13:388 [Google Scholar]
  237. Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A. 2007. Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLOS Med. 4:e13 [Google Scholar]
  238. Hosseini P, Sokolow SH, Vandegrift KJ, Kilpatrick AM, Daszak P. 2010. Predictive power of air travel and socio-economic data for early pandemic spread. PLOS ONE 5:e12763 [Google Scholar]
  239. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. 2009. Detecting influenza epidemics using search engine query data. Nature 457:1012–14 [Google Scholar]
  240. Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS. 2013. Monitoring influenza epidemics in China with search query from Baidu. PLOS ONE 8:e64323 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error