Infection with is asymptomatic in African buffalo but results in severe disease in cattle. Currently, vaccination relies on infection and treatment, using a mixture of three parasite isolates to overcome the strain specificity of immunity. Genotypic analyses of field populations of indicate a panmictic population structure, reflecting frequent sexual recombination. Profound immunodominance of protective CD8 T cell responses, together with polymorphism of the target antigens and frequent genetic recombination, contribute to the strain-restricted immunity. The dominant CD8 target antigens are highly polymorphic, but the live vaccine appears to contain limited diversity. A model to explain the ability of the vaccine to confer immunity against highly diverse field parasite challenge is discussed. Parasites in cattle exhibit much more limited antigenic diversity than parasites in buffalo, consistent with other evidence that the cattle-maintained population represents a subset of recently adapted to cattle.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Irvin AD, Morrison WI. 1987. Immunopathology, immunology and immunoprophylaxis of Theileria infections. Immune Responses in Parasitic Infections: Immunology, Immunopathology, and Immunoprophylaxis, Volume III: Protozoa Soulsby EJL. 223–74 Florida: CRC Press Inc [Google Scholar]
  2. Brocklesby DW, Barnett SF, Scott GR. 1961. Morbidity and mortality rates in East Coast fever (Theileria parva infection) and their application to drug screening procedures. Br. Vet. J. 117:529–32 [Google Scholar]
  3. Barnett SF. 1957. Theileriasis control. Bull. Epizoot. Dis. Afr. 5:343–57 [Google Scholar]
  4. Ndungu SG, Brown CG, Dolan TT. 2005. In vivo comparison of susceptibility between Bos indicus and Bos taurus cattle types to Theileria parva infection. Onderstepoort J. Vet. Res. 72:13–22 [Google Scholar]
  5. Cunningham MP, Brown CGD, Burridge MJ, Morzaria SP. 1989. Theileria parva: the immune status of calves born of dams immunised against East Coast fever. Res. Vet. Sci. 46:90–94 [Google Scholar]
  6. Muraguri GR, Kiara HK, McHardy N. 1999. Treatment of East Coast fever: a comparison of parvaquone and buparvaquone. Vet. Parasitol. 87:25–37 [Google Scholar]
  7. Radley DE, Brown CGD, Burridge MJ, Cunningham MP, Kirimi IM et al. 1975. East coast fever: 1. Chemoprophylactic immunization of cattle against Theileria parva (Muguga) and five Theileria strains. Vet. Parasitol. 1:35–41 [Google Scholar]
  8. Radley DE, Brown CGD, Cunningham MP, Kimber CD, Musisi FL et al. 1975. East coast fever: 3. Chemoprophylactic immunization of cattle using oxytetracycline and a combination of Theileria strains. Vet. Parasitol. 1:51–60 [Google Scholar]
  9. Dobbelaere DAE, Rottenberg S. 2003. Theileria-induced leukocyte transformation. Curr. Opin. Microbiol. 6:377–82 [Google Scholar]
  10. Morrison WI, McKeever DJ. 2006. Current status of vaccine development against Theileria parasites. Parasitology 133:Suppl.S169–87 [Google Scholar]
  11. Morrison WI. 2009. Progress towards understanding the immunobiology of Theileria parasites. Parasitology 136:1–12 [Google Scholar]
  12. Bishop RP, Odongo DO, Mann DJ, Pearson TW, Sugimoto C et al. 2009. Theileria. Genome Mapping and Genomics in Animal-Associated Microbes Nene V, Cole C. 191–231 Berlin: Springer Verlag [Google Scholar]
  13. Baldwin CL, Black SJ, Brown WC, Conrad PA, Goddeeris BM et al. 1988. Bovine T cells, B cells and null cells are transformed by the protozoan parasite Theileria parva. Infect. Immun. 56:462–67 [Google Scholar]
  14. Fawcett D, Musoke AJ, Voight W. 1984. Interaction of sporozoites of Theileria parva with bovine lymphocytes in vitro. 1. Early events after invasion. Tissue Cell 16:873–84 [Google Scholar]
  15. Fawcett DW, Doxsey S, Stagg DA, Young AS. 1982. The entry of sporozoites of Theileria parva into bovine lymphocytes in vitro. Electron microscopic observations. Eur. J. Cell Biol. 27:10–21 [Google Scholar]
  16. Hulliger L, Wilde JHK, Brown CGD, Turner L. 1964. Mode of multiplication of Theileria in cultures of bovine lymphocytic cells. Nature 203:728–30 [Google Scholar]
  17. von Schubert C, Xue G, Schmuckli-Maurer J, Woods KL, Nigg EA, Dobbelaere DA. 2010. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells. PLOS Biol. 8:9e1000499 [Google Scholar]
  18. Woods KL, Theiler R, Mühlemann M, Segiser A, Huber S et al. 2013. Recruitment of EB1, a master regulator of microtubule dynamics, to the surface of the Theileria annulata schizont. PLOS Pathog. 9:5e1003346 [Google Scholar]
  19. Jarrett WFH, Crighton GW, Pirie HM. 1969. Theileria parva: kinetics of replication. Exp. Parasitol. 24:9–25 [Google Scholar]
  20. Morrison WI, Buscher G, Murray M, Emery DL, Masake RA et al. 1981. Theileria parva: kinetics of infection in the lymphoid system of cattle. Exp. Parasitol. 52:248–60 [Google Scholar]
  21. Brown CG, Stagg DA, Purnell RE, Kanhai GK, Payne RC. 1973. Infection and transformation of bovine lymphoid cells in vitro by infective particles of Theileria parva. Nature 245:101–3 [Google Scholar]
  22. Cunningham MP, Brown CG, Burridge MJ, Purnell RE. 1973. Cryopreservation of infective particles of Theileria parva. Int. J. Parasitol. 3:583–87 [Google Scholar]
  23. Cunningham MP, Brown CGD, Burridge MJ, Musoke AJ, Purnell RE et al. 1974. East Coast fever: titration in cattle of suspensions of Theileria parva derived from ticks. Br. Vet. J. 130:179–87 [Google Scholar]
  24. Morzaria SP, Irvin AD, Voigt WP, Taracha EL. 1987. Effect of timing and intensity of challenge following immunization against East Coast fever. Vet. Parasitol. 26:29–41 [Google Scholar]
  25. Burridge MJ, Morzaria SP, Kimber CD, Cunningham MP, Brown CGD. 1972. Duration of immunity to East Coast fever (Theileria parva infection) of cattle. Parasitology 64:511–15 [Google Scholar]
  26. Uilenberg G, Schreuder BEC, Mpangala C, Silayo RS, Tondeur W et al. 1976. Immunisation against East Coast fever. Tick-Borne Diseases and Their Vectors Wilde JKH. 307–14 Edinburgh: Univ. Edinburgh [Google Scholar]
  27. Eugui EM, Emery DL. 1981. Genetically restricted cell-mediated cytotoxicity in cattle immune to Theileria parva. Nature 290:251–54 [Google Scholar]
  28. Pirie HM, Jarrett WFH, Crighton GW. 1970. Studies on vaccination against East Coast fever using macroschizonts. Exp. Parasitol. 27:55–66 [Google Scholar]
  29. Buscher G, Morrison WI, Nelson RT. 1984. Titration in cattle of infectivity and immunogenicity of autologous cell lines infected with Theileria parva. Vet. Parasitol. 15:29–38 [Google Scholar]
  30. Emery DL, Morrison WI, Buscher G, Nelson RT. 1982. Generation of cell-mediated cytotoxicity to Theileria parva (East Coast fever) after inoculation of cattle with parasitized lymphoblasts. J. Immunol. 128:195–200 [Google Scholar]
  31. Emery DL. 1981. Adoptive transfer of immunity to infection with Theileria parva (East Coast fever) between cattle twins. Res. Vet. Sci. 30:364–67 [Google Scholar]
  32. Pearson TW, Lundin LB, Dolan TT, Stagg DA. 1979. Cell-mediated immunity to Theileria-transformed cell lines. Nature 281:678–80 [Google Scholar]
  33. Emery DL, Eugui EM, Nelson RT, Tenywa T. 1981. Cell-mediated immune responses to Theileria parva (East Coast fever) during immunization and lethal infection in cattle. Immunology 43:323–36 [Google Scholar]
  34. Goddeeris BM, Morrison WI, Teale AJ, Bensaid A, Baldwin CL. 1986. Bovine cytotoxic T-cell clones specific for cells infected with the protozoan parasite Theileria parva: parasite strain specificity and class I major histocompatibility complex restriction. PNAS 83:5238–42 [Google Scholar]
  35. Morrison WI, Goddeeris BM, Teale AJ, Groocock CM, Kemp SJ, Stagg DA. 1987. Cytotoxic T cells elicited in cattle challenged with Theileria parva (Muguga): evidence for restriction by class I MHC determinants and parasite strain specificity. Parasite Immunol. 9:563–78 [Google Scholar]
  36. McKeever DJ, Taracha ELN, Innes EL, MacHugh ND, Awino E et al. 1994. Adoptive transfer of immunity to Theileria parva in the CD8+ cellular fraction of responding afferent lymph. PNAS 91:1959–63 [Google Scholar]
  37. Taracha ELN, Goddeeris BM, Morzaria SP, Morrison WI. 1995. Parasite strain specificity of memory cytotoxic T cells in individual animals correlates with cross-protection in cattle challenged with Theileria parva. Infect. Immun. 63:1258–62 [Google Scholar]
  38. Musoke AJ, Nantulya VM, Buscher G, Masake RA, Otim B. 1982. Bovine immune response to Theileria parva: neutralizing antibodies to sporozoites. Immunology 45:663–68 [Google Scholar]
  39. Dobbelaere DA, Spooner PR, Barry WC, Irvin AD. 1984. Monoclonal antibody neutralizes the sporozoite stage of different Theileria parva stocks. Parasite Immunol. 6:361–70 [Google Scholar]
  40. Dobbelaere DAE, Shapiro SZ, Webster P. 1985. Identification of a surface antigen on Theileria parva sporozoites by monoclonal antibody. PNAS 82:1771–75 [Google Scholar]
  41. Nene V, Iams KP, Gobright E, Musoke AJ. 1992. Characterisation of the gene encoding a candidate vaccine antigen of Theileria parva sporozoites. Mol. Biochem. Parasitol. 51:17–28 [Google Scholar]
  42. Musoke A, Morzaria S, Nkonge C, Jones E, Nene V. 1992. A recombinant sporozoite surface antigen of Theileria parva induces protection in cattle. PNAS 89:514–18 [Google Scholar]
  43. Bishop R, Nene V, Staeyert J, Rowlands J, Nyanjui J et al. 2003. Immunity to East Coast fever in cattle induced by a polypeptide fragment of the major surface coat protein of Theileria parva sporozoites. Vaccine 21:1205–12 [Google Scholar]
  44. Goddeeris BM, Morrison WI. 1988. Techniques for the generation, cloning and characterisation of bovine cytotoxic T cells specific for the protozoan Theileria parva. J. Tissue Cult. Methods 11:101–10 [Google Scholar]
  45. Baldwin CL, Goddeeris BM, Morrison WI. 1987. Bovine helper T-cell clones specific for lymphocytes infected with Theileria parva (Muguga). Parasite Immunol. 9:499–513 [Google Scholar]
  46. Brown WC, Sugimoto C, Grab DJ. 1989. Theileria parva: bovine helper T cell clones specific for both infected lymphocytes and schizont membrane antigens. Exp. Parasitol. 69:234–48 [Google Scholar]
  47. Daubenberger CA, Taracha ELN, Gaidulis L, Davis WC, McKeever DJ. 1999. Bovine γδ T-cell responses to the intracellular protozoan parasite Theileria parva. Infect. Immun. 67:2241–49 [Google Scholar]
  48. Connelley TK, Longhi C, Burrells A, Degnan K, Hope J et al. 2014. NKp46+ CD3+ cells: a novel nonconventional T cell subset in cattle exhibiting both NK cell and T cell features. J. Immunol. 192:3868–80 [Google Scholar]
  49. MacHugh ND, Connelley T, Graham SP, Pelle R, Formisano P et al. 2009. CD8 T cell responses to Theileria parva are preferentially directed to a single dominant antigen: implications for parasite strain-specific immunity. Eur. J. Immunol. 39:1–11 [Google Scholar]
  50. DeMartini JC, Baldwin CL. 1991. Effects of gamma interferon, tumor necrosis factor alpha and interleukin-2 on infection and proliferation of Theileria parva-infected bovine lymphoblasts and production of interferon by parasitized cells. Infect. Immun. 59:4540–46 [Google Scholar]
  51. Brown WC, Sugimoto C, Conrad PA, Grab DJ. 1989. Differential response of bovine T-cell lines to membrane and soluble antigens of Theileria parva schizont-infected cells. Parasite. Immunol. 11:567–83 [Google Scholar]
  52. Baldwin CL, Iams KP, Brown WC, Grab DJ. 1992. Theileria parva: CD4+ helper and cytotoxic T-cell clones react with a schizont-derived antigen associated with the surface of Theileria parva-infected lymphocytes. Exp. Parasitol. 75:19–30 [Google Scholar]
  53. Brown WC, Lonsdale-Eccles JD, DeMartini JC, Grab DJ. 1990. Recognition of soluble Theileria parva antigen by bovine helper T cell clones: characterization and partial purification of the antigen. J. Immunol. 144:272–77 [Google Scholar]
  54. Grab DJ, Baldwin CL, Brown WC, Innes EA, Lonsdale-Eccles JD, Verjee Y. 1992. Immune CD4+ T cells specific for Theileria parva-infected lymphocytes recognize a 24-kilodalton protein. Infect. Immun. 60:3892–96 [Google Scholar]
  55. Taracha EL, Awino E, McKeever DJ. 1997. Distinct CD4+ T cell helper requirements in Theileria parva-immune and -naive bovine CTL precursors. J. Immunol. 159:4539–45 [Google Scholar]
  56. Sun JC, Bevan MJ. 2003. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300:339–42 [Google Scholar]
  57. Lara-Tejero M, Pamer EG. 2004. T cell response to Listeria monocytogenes. Curr. Opin. Microbiol. 7:45–50 [Google Scholar]
  58. Overstreet MG, Chen Y-C, Cockburn IA, Tse S-W, Zavala F. 2011. CD4+ T cells modulate expansion and survival but not functional properties of effector and memory CD8+ T cells induced by malaria sporozoites. PLOS ONE 6:1e15948 [Google Scholar]
  59. Haque T, Wilkie GW, Jones MM, Higgins CD, Urquhart G et al. 2007. Allogeneic cytotoxic T cell therapy for EBV-positive post-transplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110:1123–31 [Google Scholar]
  60. Vantourout P, Hayday A. 2013. Six of the best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13:88–100 [Google Scholar]
  61. McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Waters RW. 2014. Specific recognition of mycobacterial protein and peptide antigens by γδ T cell subsets following infection with virulent Mycobacterium bovis. J. Immunol. 192:2756–69 [Google Scholar]
  62. Chen C, Herzig CTA, Telfer JC, Baldwin CL. 2009. Antigenic basis of diversity in the γδ T cell co-receptor WC1 family. Mol. Immunol. 46:2565–75 [Google Scholar]
  63. Wang F, Herzig CTA, Chen C, Hsu H, Baldwin CL, Telfer JC. 2011. Scavenger receptor WC1 contributes to the γδ T cell response to Leptospira. Mol. Immunol. 48:801–9 [Google Scholar]
  64. Graham SP, Pelle R, Honda Y, Mwangi DM, Tonukari NJ et al. 2006. Theileria parva candidate vaccine antigens recognized by immune bovine cytotoxic T lymphocytes. PNAS 103:3286–91 [Google Scholar]
  65. Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM et al. 2005. Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309:134–37 [Google Scholar]
  66. Bishop R, Shah T, Pelle R, Hoyle D, Pearson T et al. 2005. Analysis of the transcriptome of the protozoan Theileria parva using MPSS reveals that the majority of genes are transcriptionally active in the schizont stage. Nucleic Acids Res. 33:5503–11 [Google Scholar]
  67. Graham SP, Pellé R, Yamage M, Mwangi DM, Honda Y et al. 2008. Characterization of the fine specificity of bovine CD8 T-cell responses to defined antigens from the protozoan parasite Theileria parva. Infect. Immun. 76:685–94 [Google Scholar]
  68. Taracha ELN, Goddeeris BM, Teale AJ, Kemp SJ, Morrison WI. 1995. Parasite strain specificity of cytotoxic T cell responses to Theileria parva is determined primarily by immunodominance. J. Immunol. 155:4854–60 [Google Scholar]
  69. Connelley T, MacHugh ND, Burrells A, Morrison WI. 2008. Dissection of the clonal composition of bovine αβ T-cell responses using T cell receptor β gene subfamily-specific PCR and heteroduplex analysis. J. Immunol. Methods 335:28–40 [Google Scholar]
  70. Connelley TK, MacHugh ND, Pelle R, Weir W, Morrison WI. 2011. Escape from CD8+ T-cell response by natural variants of an immunodominant epitope from Theileria parva is predominantly due to loss of TCR recognition. J. Immunol. 187:5910–20 [Google Scholar]
  71. Goddeeris BM, Morrison WI, Toye PG, Bishop RL. 1990. Strain specificity of bovine Theileria parva-specific cytotoxic T cells is determined by the phenotype of the restricting class I MHC. Immunology 69:38–44 [Google Scholar]
  72. Morrison WI, McKeever DJ. 1998. Immunology of infections with Theileria parva in cattle. Chemical Immunology Series, Immunology of Intracellular Parasitism. Vol. 70 Liew FY, Cox FEG. 163–85 Basel, Switz.: Karger [Google Scholar]
  73. Yewdell JW. 2010. Designing CD8+ T cell vaccines: It’s not rocket science (yet). Curr. Opin. Immunol. 22:3402–10 [Google Scholar]
  74. Im EJ, Hong JP, Roshorm Y, Bridgeman A, Letourneau S et al. 2011. Protective efficacy of serially up-ranked subdominant CD8+ T cell epitopes against virus challenges. PLOS Pathog. 7:5e1002041 [Google Scholar]
  75. Killian MS, Levy JA. 2011. HIV/AIDS: 30 years of progress and future challenges. Eur. J. Immunol. 41:3401–11 [Google Scholar]
  76. Pelle R, Graham SP, Njahira MN, Osaso J, Saya RA et al. 2011. Two Theileria parva CD8 T cell antigens both exhibit higher polymorphism in buffalo parasites than those maintained in cattle, but differ in pattern of sequence diversity. PLOS ONE 6:e19015 [Google Scholar]
  77. MacDonald IK, Harkiolaki M, Hunt L, Morrison WI, Connelley T et al. 2010. MHC class I bound to an immunodominant Theileria parva epitope demonstrates unconventional presentation to T cell receptor. PLOS Pathog. 6:e1101149 [Google Scholar]
  78. Steinaa L, Saya R, Awino E, Toye P. 2012. Cytotoxic T lymphocytes from cattle immunized against Theileria parva exhibit pronounced cross-reactivity among different strain-specific epitopes of the Tp1 antigen. Vet. Immunol. Immunopathol. 145:571–81 [Google Scholar]
  79. Neitz WO. 1955. Corridor disease: a fatal form of bovine theileriosis encountered in Zululand. J. S. Afr. Vet. Med. Assoc. 26:79–87 [Google Scholar]
  80. Neitz WO. 1957. Theileriosis, gonderiosis and cytauxzoonosis: a review. Onderstepoort. J. Vet. Res. 27:275–430 [Google Scholar]
  81. Uilenberg G. 1981. Theilerial species of domestic livestock. Advances in the Control of Theileriosis Irvin AD, Cunningham MP, Young AS. 4–37 The Hague: Martinus Nijhoff Publ [Google Scholar]
  82. Conrad PA, Ole-Moiyoi OK, Baldwin CL, Dolan TT, O’Callaghan CJ et al. 1989. Characterization of buffalo-derived theilerial parasites with monoclonal antibodies and DNA probes. Parasitology 98:179–88 [Google Scholar]
  83. Allsopp BA, Baylis HA, Allsopp MTEP, Cavalier-Smith T, Bishop R et al. 1993. Discrimination between six species of Theileria using oligonucleotide probes which detect small subunit ribosomal RNA sequences. Parasitology 107:157–65 [Google Scholar]
  84. Young AS, Brown CGD, Burridge MJ, Grootenhuis JG, Kanhai GK et al. 1978. The incidence of theilerial parasites in East African buffalo (Syncerus caffer). Tropenmed. Parasitol. 29:281–88 [Google Scholar]
  85. Radley DE, Young AS, Grootenhuis JG, Cunningham MP, Dolan T, Morzaria S. 1979. Further studies on the immunization of cattle against Theileria lawrencei by infection and chemoprophylaxis. Vet. Parasitol. 5:117–28 [Google Scholar]
  86. Radley DE. 1981. Infection and treatment method of immunosation against Theileria parva. Advances in the Control of Theileriosis Irvin AD, Cunningham MP, Young AS. 227–37 The Hague: Martinus Nijhoff Publ [Google Scholar]
  87. Nene V, Musoke A, Gobright E, Morzaria S. 1996. Conservation of the sporozoite p67 vaccine antigen in cattle-derived Theileria parva stocks with different cross-immunity profiles. Infect. Immun. 64:2056–61 [Google Scholar]
  88. Sibeko KP, Geyson D, Oosthuizem M, Matthe CA, Trotskie M et al. 2010. Four p67 alleles identified in South African Theileria parva field samples. Vet. Parasitol. 167:244–54 [Google Scholar]
  89. Maritim AC, Young AS, Lesan AC, Ndungu SG, Stagg DA, Ngumi PN. 1992. Transformation of Theileria parva derived from African buffalo (Syncerus caffer) by tick passage in cattle and its use in infection and treatment immunization. Vet. Parasitol. 43:1–14 [Google Scholar]
  90. Young AS, Purnell RE. 1973. Transmission of Theileria lawrencei (Serengeti) by the ixodid tick Rhipicephalus appendiculatus. Trop. Anim. Health Prod. 5:146–52 [Google Scholar]
  91. Oura CAL, Bishop R, Wampande EM, Lubega GW, Tait A. 2004. The persistence of component Theileria parva stocks in cattle immunised with the “Muguga cocktail” live vaccine against East Coast fever in Uganda. Parasitology 129:27–42 [Google Scholar]
  92. Grootenhuis JG, Young AS, Stagg DA, Leitch BL, Dolan TT, Conrad PA. 1987. Infection of African buffalo (Syncerus caffer) and cattle with Theileria parva lawrencei after serial passage. Res. Vet. Sci. 42:326–30 [Google Scholar]
  93. Gifford-Gonzalez D, Honotte O. 2011. Domesticated animals in Africa: implications of genetic and archaeological findings. J. World Prehist. 24:1–23 [Google Scholar]
  94. Mbole-Kariuki MN, Sonstegard T, Orth A, Thumbi SM, Bronsvoort BMdeC et al. 2014. Genome-wide analysis reveals the ancient and recent admixture history of East African Shorthorn Zebu from Western Kenya. Heredity 31:1–9 [Google Scholar]
  95. Potgieter FT, Stoltsz WH, Blouin EF, Roos JA. 1988. Corridor disease in South Africa: a review of the current status. J. S. Afr. Vet. Assoc. 59:155–60 [Google Scholar]
  96. Norval RA, Lawrence JA, Young AS, Perry BD, Dolan TT, Scott J. 1991. Theileria parva: influence of vector, parasite and host relationship on the epidemiology of theileriosis in southern Africa. Parasitology 191:347–56 [Google Scholar]
  97. Shaw MK. 2002. Theileria development and host cell invasion. World Class Parasites: Volume 3: Theileria Dobbelaere DAE, McKeever DJ. 1–22 Boston: Kluwer Acad [Google Scholar]
  98. Katzer F, Ngugi D, Oura C, Bishop RP, Taracha ELN et al. 2006. Extensive genotypic diversity in a recombining population of the apicomplexan parasite Theileria parva. Infect. Immun. 74:5456–64 [Google Scholar]
  99. Henson S, Bishop RP, Morzaria S, Spooner PR, Pelle R et al. 2012. High-resolution genotyping and mapping of recombination and gene conversion in the protozoan Theileria parva using whole genome sequencing. BMC Genomics 13:503 [Google Scholar]
  100. Oura CAL, Asiimwe BB, Weir W, Lubega GW, Tait A. 2005. Population genetic analysis and sub-structuring of Theileria parva in Uganda. Mol. Biochem. Parasitol. 140:229–39 [Google Scholar]
  101. Odongo DO, Oura CAL, Spooner PR, Kiara H, Mburu D et al. 2006. Linkage disequilibrium between alleles at highly polymorphic mini- and micro-satellite loci of Theileria parva isolated from cattle in three regions of Kenya. Int. J. Parasitol. 36:937–46 [Google Scholar]
  102. Oura CAL, Tait A, Asiimwe B, Lubega GW, Weir W. 2011. Theileria parva genetic diversity and haemoparasite prevalence in cattle and wildlife in and around Lake Mburo National Park in Uganda. Parasitol. Res. 108:1365–74 [Google Scholar]
  103. Morrison WI. 2007. The biological and practical significance of antigenic variability in protective T cell responses against Theileria parva. Vet. Parasitol. 148:21–30 [Google Scholar]
  104. Joffre OP, Segura E, Savina A, Amigorena S. 2012. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12:557–69 [Google Scholar]
  105. Di Giulio G, Lynen G, Morzaria S, Oura C, Bishop R. 2009. Live immunization against East Coast fever—current status. Trends Parasitol. 25:85–92 [Google Scholar]
  106. Mwangi DM, Honda Y, Graham SP, Pelle R, Taracha ELN et al. 2011. Treatment of cattle with DNA-encoded Flt3L and GM-CSF prior to immunization with Theileria parva candidate vaccine antigens induces CD4 and CD8 T cell IFN-γ responses but not CTL responses. Vet. Immunol. Immunopathol. 140:244–51 [Google Scholar]
  107. Tewari MK, Sinnathamby G, Rajagopal D, Eisenlohr LC. 2005. A cytosolic pathway for MHC class II−restricted antigen processing that is proteasome and TAP dependent. Nat. Immunol. 6:287–94 [Google Scholar]
  108. Eisenlohr LC, Luckashenak N, Apcher S, Miller MA, Sinnathamby G. 2011. Beyond the classical: influenza virus and the elucidation of alternative MHC class II-restricted antigen processing pathways. Immunol. Res. 51:237–48 [Google Scholar]
  109. Tseng KE, Chung CY, H'ng WS, Wang SL. 2009. Early infection termination affects number of CD8+ memory T cells and protective capacities in Listeria monocytogenes-infected mice upon rechallenge. J. Immunol. 182:4590–600 [Google Scholar]
  110. Iwasaki A, Medzhitov R. 2010. Regulation of adaptive immunity by the innate immune system. Science 327:291–95 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error