During the last decade, ancient DNA research has been revolutionized by the availability of increasingly powerful DNA sequencing and ancillary genomics technologies, giving rise to the new field of paleogenomics. In this review, we show how our understanding of the genetic basis of animal domestication and the origins and dispersal of livestock and companion animals during the Upper Paleolithic and Neolithic periods is being rapidly transformed through new scientific knowledge generated with paleogenomic methods. These techniques have been particularly informative in revealing high-resolution patterns of artificial and natural selection and evidence for significant admixture between early domestic animal populations and their wild congeners.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L. 1.  et al. 2014. Current perspectives and the future of domestication studies. PNAS 111:6139–46 [Google Scholar]
  2. Fuller DQ, Willcox G, Allaby RG. 2.  2011. Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeol 43:628–52 [Google Scholar]
  3. Zeder MA, Bradley DG, Emshwiller E, Smith BD. 3.  2006. Documenting Domestication: New Genetic and Archaeological Paradigms Berkeley: Univ. Calif. Press [Google Scholar]
  4. Bocquet-Appel JP. 4.  2011. When the world's population took off: the springboard of the Neolithic Demographic Transition. Science 333:560–61 [Google Scholar]
  5. Barker G. 5.  2006. The Agricultural Revolution in Prehistory: Why Did Foragers Become Farmers? Oxford: Oxford Univ. Press [Google Scholar]
  6. Zeder MA. 6.  2015. Core questions in domestication research. PNAS 112:3191–98 [Google Scholar]
  7. Asouti E, Fuller DQ. 7.  2013. A contextual approach to the emergence of agriculture in Southwest Asia reconstructing early Neolithic plant-food production. Curr. Anthropol. 54:299–345 [Google Scholar]
  8. Conolly J, Colledge S, Dobney K, Vigne J-D, Peters J. 8.  et al. 2011. Meta-analysis of zooarchaeological data from SW Asia and SE Europe provides insight into the origins and spread of animal husbandry. J. Archaeol. Sci. 38:538–45 [Google Scholar]
  9. Fuller DQ. 9.  2006. Agricultural origins and frontiers in South Asia: a working synthesis. J. World Prehist. 20:1–86 [Google Scholar]
  10. Larson G, Burger J. 10.  2013. A population genetics view of animal domestication. Trends Genet 29:197–205 [Google Scholar]
  11. Peters J, Lebrasseur O, Deng H, Larson G. 11.  2016. Holocene cultural history of Red jungle fowl (Gallus gallus) and its domestic descendant in East Asia. Quat. Sci. Rev. 142:102–19 [Google Scholar]
  12. Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A. 12.  et al. 2009. The earliest horse harnessing and milking. Science 323:1332–35 [Google Scholar]
  13. Rossel S, Marshall F, Peters J, Pilgram T, Adams MD, O'Connor D. 13.  2008. Domestication of the donkey: timing, processes, and indicators. PNAS 105:3715–20 [Google Scholar]
  14. Darwin C. 14.  1859. On the Origin of Species by Means of Natural Selection London: John Murray502 [Google Scholar]
  15. Darwin C. 15.  1868. The Variation of Animals and Plants under Domestication London: John Murray [Google Scholar]
  16. Dobney K, Larson G. 16.  2006. Genetics and animal domestication: new windows on an elusive process. J. Zool. 269:261–71 [Google Scholar]
  17. Driscoll CA, MacDonald DW, O'Brien SJ. 17.  2009. From wild animals to domestic pets, an evolutionary view of domestication. In the Light of Evolution III: Two Centuries of Darwin JC Avise, FJ Ayala 89–109 Washington, DC: Natl. Acad. Press [Google Scholar]
  18. Jensen P. 18.  2014. Behavior genetics and the domestication of animals. Annu. Rev. Anim. Biosci. 2:85–104 [Google Scholar]
  19. Wilkins AS, Wrangham RW, Fitch WT. 19.  2014. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics 197:795–808 [Google Scholar]
  20. Albert FW, Carlborg O, Plyusnina I, Besnier F, Hedwig D. 20.  et al. 2009. Genetic architecture of tameness in a rat model of animal domestication. Genetics 182:541–54 [Google Scholar]
  21. Trut L, Oskina I, Kharlamova A. 21.  2009. Animal evolution during domestication: the domesticated fox as a model. Bioessays 31:349–60 [Google Scholar]
  22. Albert FW, Hodges E, Jensen JD, Besnier F, Xuan Z. 22.  et al. 2011. Targeted resequencing of a genomic region influencing tameness and aggression reveals multiple signals of positive selection. Heredity 107:205–14 [Google Scholar]
  23. Saetre P, Lindberg J, Leonard JA, Olsson K, Pettersson U. 23.  et al. 2004. From wild wolf to domestic dog: gene expression changes in the brain. Brain Res. Mol. Brain Res. 126:198–206 [Google Scholar]
  24. Heyne HO, Lautenschlager S, Nelson R, Besnier F, Rotival M. 24.  et al. 2014. Genetic influences on brain gene expression in rats selected for tameness and aggression. Genetics 198:1277–90 [Google Scholar]
  25. Albert FW, Somel M, Carneiro M, Aximu-Petri A, Halbwax M. 25.  et al. 2012. A comparison of brain gene expression levels in domesticated and wild animals. PLOS Genet. 8:e1002962 [Google Scholar]
  26. Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alfoldi J. 26.  et al. 2014. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345:1074–79 [Google Scholar]
  27. Clutton-Brock J. 27.  1999. A Natural History of Domesticated Mammals Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  28. Ermini L. Sarkissian C, Willerslev E, Orlando L. 28. , Der 2015. Major transitions in human evolution revisited: a tribute to ancient DNA. J. Hum. Evol. 79:4–20 [Google Scholar]
  29. Pickrell JK, Reich D. 29.  2014. Toward a new history and geography of human genes informed by ancient DNA. Trends Genet. 30:377–89 [Google Scholar]
  30. Park SD, Magee DA, McGettigan PA, Teasdale MD, Edwards CJ. 30.  et al. 2015. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 16:234 [Google Scholar]
  31. Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M. 31.  et al. 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352:1228–31 [Google Scholar]
  32. Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P. 32.  et al. 2015. Evolutionary genomics and conservation of the endangered Przewalski's horse. Curr. Biol. 25:2577–83 [Google Scholar]
  33. Librado P. Sarkissian C, Ermini L, Schubert M, Jonsson H. 33. , Der et al. 2015. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. PNAS 112:E6889–97 [Google Scholar]
  34. Skoglund P, Ersmark E, Palkopoulou E, Dalen L. 34.  2015. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 25:1515–19 [Google Scholar]
  35. Schubert M, Jonsson H, Chang D, Der Sarkissian C, Ermini L. 35.  et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:E5661–69 [Google Scholar]
  36. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A. 36.  et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78 [Google Scholar]
  37. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. 37.  1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–84 [Google Scholar]
  38. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT. 38.  et al. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–54 [Google Scholar]
  39. Goodwin S, McPherson JD, McCombie WR. 39.  2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17:333–51 [Google Scholar]
  40. Fulton TL, Stiller M. 40.  2012. PCR amplification, cloning, and sequencing of ancient DNA. Methods Mol. Biol. 840:111–19 [Google Scholar]
  41. Paabo S, Irwin DM, Wilson AC. 41.  1990. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265:4718–21 [Google Scholar]
  42. Hoss M, Jaruga P, Zastawny TH, Dizdaroglu M, Paabo S. 42.  1996. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. 24:1304–7 [Google Scholar]
  43. Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB. 43.  et al. 2006. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173:1175–79 [Google Scholar]
  44. Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Paabo S. 44.  2001. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 29:4793–99 [Google Scholar]
  45. Orlando L, Cooper A. 45.  2014. Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Evol. Syst. 45:573–98 [Google Scholar]
  46. Rompler H, Dear PH, Krause J, Meyer M, Rohland N. 46.  et al. 2006. Multiplex amplification of ancient DNA. Nat. Protoc. 1:720–28 [Google Scholar]
  47. Lalueza-Fox C, Rompler H, Caramelli D, Staubert C, Catalano G. 47.  et al. 2007. A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318:1453–55 [Google Scholar]
  48. Orlando L, Gilbert MT, Willerslev E. 48.  2015. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16:395–408 [Google Scholar]
  49. Miller W, Drautz DI, Ratan A, Pusey B, Qi J. 49.  et al. 2008. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387–90 [Google Scholar]
  50. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U. 50.  et al. 2010. A draft sequence of the Neandertal genome. Science 328:710–22 [Google Scholar]
  51. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A. 51.  et al. 2010. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–62 [Google Scholar]
  52. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N. 52.  et al. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–10 [Google Scholar]
  53. Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M. 53.  et al. 2015. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163:571–82 [Google Scholar]
  54. Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N. 54.  et al. 2015. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25:1395–400 [Google Scholar]
  55. Lynch VJ, Bedoya-Reina OC, Ratan A, Sulak M, Drautz-Moses DI. 55.  et al. 2015. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep 12:217–28 [Google Scholar]
  56. Ramírez O, Burgos-Paz W, Casas E, Ballester M, Bianco E. 56.  et al. 2015. Genome data from a sixteenth century pig illuminate modern breed relationships. Heredity 114:175–84 [Google Scholar]
  57. Der Sarkissian C, Allentoft ME, Avila-Arcos MC, Barnett R, Campos PF. 57.  et al. 2015. Ancient genomics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:1660 [Google Scholar]
  58. Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A. 58.  et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. PNAS 110:15758–63 [Google Scholar]
  59. Damgaard PB, Margaryan A, Schroeder H, Orlando L, Willerslev E, Allentoft ME. 59.  2015. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5:11184 [Google Scholar]
  60. Gansauge MT, Meyer M. 60.  2013. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8:737–48 [Google Scholar]
  61. Gansauge MT, Meyer M. 61.  2014. Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res. 24:1543–49 [Google Scholar]
  62. Korlevic P, Gerber T, Gansauge MT, Hajdinjak M, Nagel S. 62.  et al. 2015. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59:87–93 [Google Scholar]
  63. Peltzer A, Jager G, Herbig A, Seitz A, Kniep C. 63.  et al. 2016. EAGER: efficient ancient genome reconstruction. Genome Biol. 17:60 [Google Scholar]
  64. Schubert M, Ginolhac A, Lindgreen S, Thompson JF, Al-Rasheid KA. 64.  et al. 2012. Improving ancient DNA read mapping against modern reference genomes. BMC Genom. 13:178 [Google Scholar]
  65. Schubert M, Ermini L, Der Sarkissian C, Jonsson H, Ginolhac A. 65.  et al. 2014. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9:1056–82 [Google Scholar]
  66. Jonsson H, Ginolhac A, Schubert M, Johnson PL, Orlando L. 66.  2013. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29:1682–84 [Google Scholar]
  67. Skoglund P, Northoff BH, Shunkov MV, Derevianko AP, Paabo S. 67.  et al. 2014. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. PNAS 111:2229–34 [Google Scholar]
  68. Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S. 68.  et al. 2016. The genetic history of Ice Age Europe. Nature 534:200–5 [Google Scholar]
  69. Castellano S, Parra G, Sánchez-Quinto FA, Racimo F, Kuhlwilm M. 69.  et al. 2014. Patterns of coding variation in the complete exomes of three Neandertals. PNAS 111:6666–71 [Google Scholar]
  70. Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM. 70.  et al. 2014. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514:445–49 [Google Scholar]
  71. Carpenter ML, Buenrostro JD, Valdiosera C, Schroeder H, Allentoft ME. 71.  et al. 2013. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93:852–64 [Google Scholar]
  72. Enk JM, Devault AM, Kuch M, Murgha YE, Rouillard JM, Poinar HN. 72.  2014. Ancient whole genome enrichment using baits built from modern DNA. Mol. Biol. Evol. 31:1292–94 [Google Scholar]
  73. Hofreiter M, Paijmans JL, Goodchild H, Speller CF, Barlow A. 73.  et al. 2015. The future of ancient DNA: technical advances and conceptual shifts. Bioessays 37:284–93 [Google Scholar]
  74. Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B. 74.  et al. 2014. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403–6 [Google Scholar]
  75. Meiri M, Huchon D, Bar-Oz G, Boaretto E, Horwitz LK. 75.  et al. 2013. Ancient DNA and population turnover in southern levantine pigs—Signature of the Sea Peoples migration?. Sci. Rep. 3:3035 [Google Scholar]
  76. Almathen F, Charruau P, Mohandesan E, Mwacharo JM, Orozco-terWengel P. 76.  et al. 2016. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. PNAS 113:6707–12 [Google Scholar]
  77. Orlando L, Mashkour M, Burke A, Douady CJ, Eisenmann V, Hanni C. 77.  2006. Geographic distribution of an extinct equid (Equus hydruntinus: Mammalia, Equidae) revealed by morphological and genetical analyses of fossils. Mol. Ecol. 15:2083–93 [Google Scholar]
  78. Brace S, Turvey ST, Weksler M, Hoogland ML, Barnes I. 78.  2015. Unexpected evolutionary diversity in a recently extinct Caribbean mammal radiation. Proc. Biol. Sci. 282:20142371 [Google Scholar]
  79. Schroeder H, Avila-Arcos MC, Malaspinas AS, Poznik GD, Sandoval-Velasco M. 79.  et al. 2015. Genome-wide ancestry of 17th-century enslaved Africans from the Caribbean. PNAS 112:3669–73 [Google Scholar]
  80. Broushaki F, Thomas MG, Link V, López S, van Dorp L. 80.  et al. 2016. Early Neolithic genomes from the eastern Fertile Crescent. Science 353:499–503 [Google Scholar]
  81. Kılınç GM, Omrak A, Özer F, Günther T, Büyükkarakaya AM. 81.  et al. 2016. The demographic development of the first farmers in Anatolia. Curr. Biol. 26:2659–66 [Google Scholar]
  82. Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N. 82.  et al. 2016. Genomic insights into the origin of farming in the ancient Near East. Nature 536:419–24 [Google Scholar]
  83. Omrak A, Günther T, Valdiosera C, Svensson EM, Malmström H. 83.  et al. 2016. Genomic evidence establishes Anatolia as the source of the European Neolithic gene pool. Curr. Biol. 26:270–75 [Google Scholar]
  84. Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S. 84.  et al. 2015. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLOS ONE 10:e0129102 [Google Scholar]
  85. Vavilov N. 85.  1926. Studies on the origin of cultivated plants. Bull. Appl. Bot. Genet. Plant Breed. 16:139–248 [Google Scholar]
  86. Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E. 86.  et al. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307:1618–21 [Google Scholar]
  87. MacHugh DE, Shriver MD, Loftus RT, Cunningham P, Bradley DG. 87.  1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146:1071–86 [Google Scholar]
  88. Troy CS, MacHugh DE, Bailey JF, Magee DA, Loftus RT. 88.  et al. 2001. Genetic evidence for Near-Eastern origins of European cattle. Nature 410:1088–91 [Google Scholar]
  89. Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J. 89.  et al. 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. PNAS 104:15276–81 [Google Scholar]
  90. Larson G, Liu R, Zhao X, Yuan J, Fuller D. 90.  et al. 2010. Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. PNAS 107:7686–91 [Google Scholar]
  91. Bollongino R, Burger J, Powell A, Mashkour M, Vigne JD, Thomas MG. 91.  2012. Modern Taurine cattle descended from small number of Near-Eastern founders. Mol. Biol. Evol. 29:2101–4 [Google Scholar]
  92. Scheu A, Powell A, Bollongino R, Vigne JD, Tresset A. 92.  et al. 2015. The genetic prehistory of domesticated cattle from their origin to the spread across Europe. BMC Genet. 16:54 [Google Scholar]
  93. Achilli A, Olivieri A, Soares P, Lancioni H, Hooshiar Kashani B. 93.  et al. 2012. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. PNAS 109:2449–54 [Google Scholar]
  94. Vila C, Leonard JA, Gotherstrom A, Marklund S, Sandberg K. 94.  et al. 2001. Widespread origins of domestic horse lineages. Science 291:474–77 [Google Scholar]
  95. Ottoni C, Flink LG, Evin A, Georg C, De Cupere B. 95.  et al. 2013. Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Mol. Biol. Evol. 30:824–32 [Google Scholar]
  96. Evin A, Flink LG, Balasescu A, Popovici D, Andreescu R. 96.  et al. 2015. Unravelling the complexity of domestication: a case study using morphometrics and ancient DNA analyses of archaeological pigs from Romania. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20130616 [Google Scholar]
  97. Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK. 97.  et al. 2013. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342:871–74 [Google Scholar]
  98. Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ. 98.  et al. 2015. Genetic structure in village dogs reveals a Central Asian domestication origin. PNAS 112:13639–44 [Google Scholar]
  99. Wang GD, Zhai W, Yang HC, Wang L, Zhong L. 99.  et al. 2016. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26:21–33 [Google Scholar]
  100. Malmstrom H, Vila C, Gilbert MT, Stora J, Willerslev E. 100.  et al. 2008. Barking up the wrong tree: modern northern European dogs fail to explain their origin. BMC Evol. Biol. 8:71 [Google Scholar]
  101. Germonpre M, Sablin MV, Stevens RE, Hedges REM, Hofreiter M. 101.  et al. 2009. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci. 36:473–90 [Google Scholar]
  102. Sablin MV, Khlopachev GA. 102.  2002. The earliest Ice Age dogs: evidence from Eliseevichi I. Curr. Anthropol. 43:795–99 [Google Scholar]
  103. Drake AG, Coquerelle M, Colombeau G. 103.  2015. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Sci. Rep. 5:8299 [Google Scholar]
  104. Perri A. 104.  2016. A wolf in dog's clothing: initial dog domestication and Pleistocene wolf variation. J. Archaeol. Sci. 68:1–4 [Google Scholar]
  105. Frantz LA, Schraiber JG, Madsen O, Megens HJ, Cagan A. 105.  et al. 2015. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet. 47:1141–48 [Google Scholar]
  106. Sankararaman S, Mallick S, Dannemann M, Prufer K, Kelso J. 106.  et al. 2014. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507:354–57 [Google Scholar]
  107. Sankararaman S, Mallick S, Patterson N, Reich D. 107.  2016. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26:1241–47 [Google Scholar]
  108. Bailey JF, Richards MB, Macaulay VA, Colson IB, James IT. 108.  et al. 1996. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proc. Biol. Sci. 263:1467–73 [Google Scholar]
  109. Edwards CJ, Bollongino R, Scheu A, Chamberlain A, Tresset A. 109.  et al. 2007. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc. R. Soc. Lond. B Biol. Sci. 274:1377–85 [Google Scholar]
  110. Stock F, Edwards CJ, Bollongino R, Finlay EK, Burger J, Bradley DG. 110.  2009. Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations. Anim. Genet. 40:694–700 [Google Scholar]
  111. Edwards CJ, Magee DA, Park SD, McGettigan PA, Lohan AJ. 111.  et al. 2010. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius). PLOS ONE 5:e9255 [Google Scholar]
  112. Beja-Pereira A, Caramelli D, Lalueza-Fox C, Vernesi C, Ferrand N. 112.  et al. 2006. The origin of European cattle: evidence from modern and ancient DNA. PNAS 103:8113–18 [Google Scholar]
  113. Lari M, Rizzi E, Mona S, Corti G, Catalano G. 113.  et al. 2011. The complete mitochondrial genome of an 11,450-year-old aurochsen (Bos primigenius) from Central Italy. BMC Evol. Biol. 11:32 [Google Scholar]
  114. Mona S, Catalano G, Lari M, Larson G, Boscato P. 114.  et al. 2010. Population dynamic of the extinct European aurochs: genetic evidence of a north-south differentiation pattern and no evidence of post-glacial expansion. BMC Evol. Biol. 10:83 [Google Scholar]
  115. Mourier T, Ho SY, Gilbert MT, Willerslev E, Orlando L. 115.  2012. Statistical guidelines for detecting past population shifts using ancient DNA. Mol. Biol. Evol. 29:2241–51 [Google Scholar]
  116. Sánchez-Quinto F, Lalueza-Fox C. 116.  2015. Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20130374 [Google Scholar]
  117. Cieslak M, Pruvost M, Benecke N, Hofreiter M, Morales A. 117.  et al. 2010. Origin and history of mitochondrial DNA lineages in domestic horses. PLOS ONE 5:e15311 [Google Scholar]
  118. Lippold S, Knapp M, Kuznetsova T, Leonard JA, Benecke N. 118.  et al. 2011. Discovery of lost diversity of paternal horse lineages using ancient DNA. Nat. Commun. 2:450 [Google Scholar]
  119. Ramakrishnan U, Hadly EA. 119.  2009. Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. Mol. Ecol. 18:1310–30 [Google Scholar]
  120. Ho SY, Duchene S, Duchene D. 120.  2015. Simulating and detecting autocorrelation of molecular evolutionary rates among lineages. Mol. Ecol. Resour. 15:688–96 [Google Scholar]
  121. Depaulis F, Orlando L, Hanni C. 121.  2009. Using classical population genetics tools with heterochroneous data: Time matters!. PLOS ONE 4:e5541 [Google Scholar]
  122. Mona S, Grunz KE, Brauer S, Pakendorf B, Castri L. 122.  et al. 2009. Genetic admixture history of Eastern Indonesia as revealed by Y-chromosome and mitochondrial DNA analysis. Mol. Biol. Evol. 26:1865–77 [Google Scholar]
  123. Skoglund P, Götherström A, Jakobsson M. 123.  2011. Estimation of population divergence times from non-overlapping genomic sequences: examples from dogs and wolves. Mol. Biol. Evol. 28:1505–17 [Google Scholar]
  124. Anderson EC. 124.  2005. An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood. Genetics 170:955–67 [Google Scholar]
  125. Ray N, Currat M, Berthier P, Excoffier L. 125.  2005. Recovering the geographic origin of early modern humans by realistic and spatially explicit simulations. Genome Res 15:1161–67 [Google Scholar]
  126. Csillery K, Blum MG, Gaggiotti OE, Francois O. 126.  2010. Approximate Bayesian Computation (ABC) in practice. Trends Ecol. Evol. 25:410–18 [Google Scholar]
  127. Gerbault P, Allaby RG, Boivin N, Rudzinski A, Grimaldi IM. 127.  et al. 2014. Storytelling and story testing in domestication. PNAS 111:6159–64 [Google Scholar]
  128. Malaspinas AS, Malaspinas O, Evans SN, Slatkin M. 128.  2012. Estimating allele age and selection coefficient from time-serial data. Genetics 192:599–607 [Google Scholar]
  129. Schraiber JG, Evans SN, Slatkin M. 129.  2016. Bayesian inference of natural selection from allele frequency time series. Genetics 203:493–511 [Google Scholar]
  130. Linderholm A, Larson G. 130.  2013. The role of humans in facilitating and sustaining coat colour variation in domestic animals. Semin. Cell Dev. Biol. 24:587–93 [Google Scholar]
  131. Ludwig A, Pruvost M, Reissmann M, Benecke N, Brockmann GA. 131.  et al. 2009. Coat color variation at the beginning of horse domestication. Science 324:485 [Google Scholar]
  132. Bellone RR, Holl H, Setaluri V, Devi S, Maddodi N. 132.  et al. 2013. Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse. PLOS ONE 8:e78280 [Google Scholar]
  133. Pruvost M, Bellone R, Benecke N, Sandoval-Castellanos E, Cieslak M. 133.  et al. 2011. Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art. PNAS 108:18626–30 [Google Scholar]
  134. Ludwig A, Reissmann M, Benecke N, Bellone R, Sandoval-Castellanos E. 134.  et al. 2015. Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20130386 [Google Scholar]
  135. Girdland Flink L, Allen R, Barnett R, Malmstrom H, Peters J. 135.  et al. 2014. Establishing the validity of domestication genes using DNA from ancient chickens. PNAS 111:6184–89 [Google Scholar]
  136. Bower MA, McGivney BA, Campana MG, Gu J, Andersson LS. 136.  et al. 2012. The genetic origin and history of speed in the Thoroughbred racehorse. Nat. Commun. 3:643 [Google Scholar]
  137. Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH. 137.  et al. 2013. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. PNAS 110:E2655–62 [Google Scholar]
  138. Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H. 138.  et al. 2014. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol. Ecol. 23:2210–27 [Google Scholar]
  139. Marsden CD, Ortega-Del Vecchyo D, O'Brien DP, Taylor JF, Ramirez O. 139.  et al. 2016. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. PNAS 113:152–57 [Google Scholar]
  140. Shapiro B, Hofreiter M. 140.  2014. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343:1236573 [Google Scholar]
  141. Teasdale MD, van Doorn NL, Fiddyment S, Webb CC, O'Connor T. 141.  et al. 2015. Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20130379 [Google Scholar]
  142. Korlević P, Gerber T, Gansauge MT, Hajdinjak M, Nagel S. 142.  et al. 2015. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59:87–93 [Google Scholar]
  143. Gasc C, Peyretaillade E, Peyret P. 143.  2016. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res. 44:4504–18 [Google Scholar]
  144. Reitz EJ, Wing ES. 144.  2008. Zooarchaeology Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  145. Parks M, Subramanian S, Baroni C, Salvatore MC, Zhang G. 145.  et al. 2015. Ancient population genomics and the study of evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20130381 [Google Scholar]
  146. Allentoft ME, Sikora M, Sjogren KG, Rasmussen S, Rasmussen M. 146.  et al. 2015. Population genomics of Bronze Age Eurasia. Nature 522:167–72 [Google Scholar]
  147. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N. 147.  et al. 2015. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528:499–503 [Google Scholar]
  148. Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R. 148.  et al. 2014. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46:858–65 [Google Scholar]
  149. Eynard SE, Windig JJ, Hiemstra SJ, Calus MP. 149.  2016. Whole-genome sequence data uncover loss of genetic diversity due to selection. Genet. Sel. Evol. 48:33 [Google Scholar]
  150. Gokhman D, Lavi E, Prufer K, Fraga MF, Riancho JA. 150.  et al. 2014. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344:523–27 [Google Scholar]
  151. Pedersen JS, Valen E, Velazquez AM, Parker BJ, Rasmussen M. 151.  et al. 2014. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res 24:454–66 [Google Scholar]
  152. Warinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N. 152.  et al. 2014. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46:336–44 [Google Scholar]
  153. Demirci S, Koban Bastanlar E, Dagtas ND, Piskin E, Engin A. 153.  et al. 2013. Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: new insights on the evolutionary history of sheep. PLOS ONE 8:e81952 [Google Scholar]
  154. Fernandez H, Hughes S, Vigne JD, Helmer D, Hodgins G. 154.  et al. 2006. Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas. PNAS 103:15375–79 [Google Scholar]
  155. Kimura B, Marshall FB, Chen S, Rosenbom S, Moehlman PD. 155.  et al. 2011. Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proc. R. Soc. Lond. B Biol. Sci. 278:50–57 [Google Scholar]
  156. Kurushima JD, Ikram S, Knudsen J, Bleiberg E, Grahn RA, Lyons LA. 156.  2012. Cats of the pharaohs: genetic comparison of Egyptian cat mummies to their feline contemporaries. J. Archaeol. Sci. 39:3217–23 [Google Scholar]
  157. Storey AA, Athens JS, Bryant D, Carson M, Emery K. 157.  et al. 2012. Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLOS ONE 7:e39171 [Google Scholar]
  158. Xiang H, Gao J, Yu B, Zhou H, Cai D. 158.  et al. 2014. Early Holocene chicken domestication in northern China. PNAS 111:17564–69 [Google Scholar]
  159. Zhang H, Paijmans JL, Chang F, Wu X, Chen G. 159.  et al. 2013. Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nat. Commun. 4:2755 [Google Scholar]
  160. Larson G, Fuller DQ. 160.  2014. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45:115–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error