The teleost fish embryo is particularly sensitive to petroleum hydrocarbons (polycyclic aromatic hydrocarbons, PAHs) at two distinct stages of development. The first is early during cleavage stages when PAHs alter normal signaling associated with establishment of the dorsal-ventral axis. This disruption involves the Wnt/β-catenin pathway and results in hyperdorsalized embryos that do not survive to hatching. The second, more sensitive period is during heart development, when oil and PAHs cause abnormal development of the heart as well as cardiac edema and arrhythmia. Even at extremely low levels (ng/L), PAHs cause subtle edema and altered contractility and heart rate, which impair swimming performance. Some PAHs are extremely phototoxic, such that exposures to trace concentrations result in severe membrane damage and mortality in sunlight. The developing fish embryo is a sensitive indicator of petroleum constituents in the environment, and healthy populations of fish likely require limited PAH exposure during development.

Associated Article

There are media items related to this article:
Impacts of Petroleum-Derived Pollutants on Fish Development: Figure 3a

Associated Article

There are media items related to this article:
Impacts of Petroleum-Derived Pollutants on Fish Development: Figure 3b

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dai YJ, Jia YF, Chen N, Bian WP, Li QK. 1.  et al. 2014. Zebrafish as a model system to study toxicology. Environ. Toxicol. Chem. 33:11–17 [Google Scholar]
  2. Schartl M. 2.  2014. Beyond the zebrafish: diverse fish species for modeling human disease. Dis. Model. Mech. 7:181–92 [Google Scholar]
  3. Shahidul Islam M, Tanaka M. 3.  2004. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar. Pollut. Bull. 48:624–49 [Google Scholar]
  4. Berois N, Arezo MJ, Papa NG. 4.  2011. Gamete interactions in teleost fish: the egg envelope. Basic studies and perspectives as environmental biomonitor. Biol. Res. 44:119–24 [Google Scholar]
  5. Rawson DM, Zhang T, Kalicharan D, Jongebloed WL. 5.  2000. Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: a consideration of the structural and functional relationships with respect to cryoprotectant penetration. Aquac. Res. 31:325–36 [Google Scholar]
  6. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN. 6.  2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–43 [Google Scholar]
  7. Kawaguchi M, Fujita H, Yoshizaki N, Hiroi J, Okouchi H. 7.  et al. 2009. Different hatching strategies in embryos of two species, Pacific herring Clupeapallasii and Japanese anchovy Engraulis japonicus, that belong to the same order Clupeiformes, and their environmental adaptation. J. Exp. Zool. B Mol. Dev. Evol. 312:95–107 [Google Scholar]
  8. Blaxter JHS. 8.  1985. The herring—a successful species. Can. J. Fish. Aquat. Sci. 42:21–30 [Google Scholar]
  9. Langley AR, Smith JC, Stemple DL, Harvey SA. 9.  2014. New insights into the maternal to zygotic transition. Development 141:3834–41 [Google Scholar]
  10. Kawaguchi M, Yasumasu S, Shimizu A, Kudo N, Sano K. 10.  et al. 2013. Adaptive evolution of fish hatching enzyme: One amino acid substitution results in differential salt dependency of the enzyme. J. Exp. Biol. 216:1609–15 [Google Scholar]
  11. Incardona JP, Collier TK, Scholz NL. 11.  2004. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol. Appl. Pharmacol. 196:191–205 [Google Scholar]
  12. Incardona JP, Carls MG, Holland L, Linbo TL, Baldwin DH. 12.  et al. 2015. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci. Rep. 5:13499 [Google Scholar]
  13. Van Metre PC, Mahler BJ. 13.  2005. Trends in hydrophobic organic contaminants in urban and reference lake sediments across the United States, 1970–2001. Environ. Sci. Technol. 39:5567–74 [Google Scholar]
  14. Van Metre PC, Mahler BJ, Furlong ET. 14.  2000. Urban sprawl leaves its PAH signature. Environ. Sci. Technol. 34:4064–70 [Google Scholar]
  15. Stogiannidis E, Laane R. 15.  2015. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Rev. Environ. Contam. Toxicol. 234:49–133 [Google Scholar]
  16. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL. 16.  et al. 2003. Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–86 [Google Scholar]
  17. Brannon EL, Collins KM, Brown JS, Neff JM, Parker KR, Stubblefield WA. 17.  2006. Toxicity of weathered Exxon Valdez crude oil to pink salmon embryos. Environ. Toxicol. Chem. 25:962–72 [Google Scholar]
  18. Brannon EL, Collins KM, Cronin MA, Moulton LL, Parker KR, Wilson W. 18.  2007. Risk of weathered residual Exxon Valdez oil to pink salmon embryos in Prince William Sound. Environ. Toxicol. Chem. 26:780–86 [Google Scholar]
  19. Carls MG, Holland L, Larsen M, Collier TK, Scholz NL, Incardona JP. 19.  2008. Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat. Toxicol. 88:121–27 [Google Scholar]
  20. Scholz NL, Incardona JP. 20.  2015. In response: scaling polycyclic aromatic hydrocarbon toxicity to fish early life stages: a governmental perspective. Environ. Toxicol. Chem. 34:459–61 [Google Scholar]
  21. Short JW, Rice SD, Heintz RA, Carls MG, Moles A. 21.  2003. Long-term effects of crude oil on developing fish: lessons from the Exxon Valdez oil spill. Energy Sources 25:509–17 [Google Scholar]
  22. Incardona JP, Carls MG, Day HL, Sloan CA, Bolton JL. 22.  et al. 2009. Cardiac arrhythmia is the primary response of embryonic Pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ. Sci. Technol. 43:201–7 [Google Scholar]
  23. Carls MG, Rice SD, Hose JE. 23.  1999. Sensitivity of fish embryos to weathered crude oil: part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environ. Toxicol. Chem. 18:481–93 [Google Scholar]
  24. Vines CA, Robbins T, Griffin FJ, Cherr GN. 24.  2000. The effects of diffusible creosote-derived compounds on development in Pacific herring (Clupea pallasi). Aquat. Toxicol. 51:225–39 [Google Scholar]
  25. Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL. 25.  2005. Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ. Health Perspect. 113:1755–62 [Google Scholar]
  26. Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ. 26.  et al. 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. PNAS 111:E1510–18 [Google Scholar]
  27. Edmunds RC, Gill JA, Baldwin DH, Linbo TL, French BL. 27.  et al. 2015. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Sci. Rep. 5:17326 [Google Scholar]
  28. Fairbairn EA, Bonthius J, Cherr GN. 28.  2012. Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal-ventral axis determination via the Wnt/β-catenin signaling pathway in zebrafish embryos. Aquat. Toxicol. 124–125:188–96 [Google Scholar]
  29. Cadigan KM, Nusse R. 29.  1997. Wnt signaling: a common theme in animal development. Genes Dev 11:3286–305 [Google Scholar]
  30. Holland LZ. 30.  2002. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes. Dev. Biol. 241:209–28 [Google Scholar]
  31. Petersen CP, Reddien PW. 31.  2009. Wnt signaling and the polarity of the primary body axis. Cell 139:1056–68 [Google Scholar]
  32. Schier AF. 32.  2001. Axis formation and patterning in zebrafish. Curr. Opin. Genet. Dev. 11:393–404 [Google Scholar]
  33. Langdon YG, Mullins MC. 33.  2011. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu. Rev. Genet. 45:357–77 [Google Scholar]
  34. Hikasa H, Sokol SY. 34.  2013. Wnt signaling in vertebrate axis specification. Cold Spring Harb. Perspect. Biol. 5:a007955 [Google Scholar]
  35. Schneider S, Steinbeisser H, Warga RM, Hausen P. 35.  1996. β-Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57:191–98 [Google Scholar]
  36. Ryves WJ, Harwood AJ. 36.  2001. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 280:720–25 [Google Scholar]
  37. Pillai MC, Vines CA, Wikramanayake AH, Cherr GN. 37.  2003. Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a β-catenin dependent pathway. Toxicology 186:93–108 [Google Scholar]
  38. Adeyemo OK, Kroll KJ, Denslow ND. 38.  2015. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. Aquat. Toxicol. 168:60–71 [Google Scholar]
  39. Griffin FJ, Smith EH, Vines CA, Cherr GN. 39.  2009. Impacts of suspended sediments on fertilization, embryonic development, and early larval life stages of the Pacific herring. Clupea pallasi. Biol. Bull. 216:175–87 [Google Scholar]
  40. Incardona JP, Vines CA, Anulacion BF, Baldwin DH, Day HL. 40.  et al. 2012. Unexpectedly high mortality in Pacific herring embryos exposed to the 2007 Cosco Busan oil spill in San Francisco Bay. PNAS 109:E51–58 [Google Scholar]
  41. Dubansky B, Whitehead A, Miller JT, Rice CD, Galvez F. 41.  2013. Multitissue molecular, genomic, and developmental effects of the Deepwater Horizon oil spill on resident Gulf killifish (Fundulus grandis). Environ. Sci. Technol. 47:5074–82 [Google Scholar]
  42. Jung JH, Kim M, Yim UH, Ha SY, Shim WJ. 42.  et al. 2015. Differential toxicokinetics determines the sensitivity of two marine embryonic fish exposed to Iranian heavy crude oil. Environ. Sci. Technol. 49:13639–48 [Google Scholar]
  43. Mager EM, Esbaugh AJ, Stieglitz JD, Hoenig R, Bodinier C. 43.  et al. 2014. Acute embryonic or juvenile exposure to Deepwater Horizon crude oil impairs the swimming performance of mahi-mahi (Coryphaena hippurus). Environ. Sci. Technol. 48:7053–61 [Google Scholar]
  44. Kocan RM, Marty GD, Okihiro MS, Brown ED, Baker TT. 44.  1996. Reproductive success and histopathology of individual Prince William Sound Pacific herring 3 years after the Exxon Valdez oil spill. Can. J. Fish. Aquat. Sci. 53:2388–93 [Google Scholar]
  45. Kocan RM, Hose JE, Brown ED, Baker TT. 45.  1996. Pacific herring (Clupea pallasi) embryo sensitivity to Prudhoe Bay petroleum hydrocarbons: laboratory evaluation and in situ exposure at oiled and unoiled sites in Prince William Sound. Can. J. Fish. Aquat. Sci. 53:2366–75 [Google Scholar]
  46. Middaugh DP, Shelton ME, McKenney CL, Cherr G, Chapman PJ, Courtney LA. 46.  1998. Preliminary observations on responses of embryonic and larval Pacific herring, Clupea pallasi, to neutral fraction biodegradation products of weathered Alaska North Slope oil. Arch. Environ. Contam. Toxicol. 34:188–96 [Google Scholar]
  47. Incardona JP, Linbo TL, Scholz NL. 47.  2011. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol. Appl. Pharmacol. 257:242–49 [Google Scholar]
  48. Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA. 48.  2003. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–58 [Google Scholar]
  49. Brette F, Machado B, Cros C, Incardona JP, Scholz NL, Block BA. 49.  2014. Crude oil impairs cardiac excitation-contraction coupling in fish. Science 343:772–76 [Google Scholar]
  50. Hicken CE, Linbo TL, Baldwin DH, Willis ML, Myers MS. 50.  et al. 2011. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. PNAS 108:7086–90 [Google Scholar]
  51. Plaut I. 51.  2001. Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131:41–50 [Google Scholar]
  52. Heintz RA, Rice SD, Wertheimer AC, Bradshaw RF, Thrower FP. 52.  et al. 2000. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar. Ecol. Prog. Ser. 208:205–16 [Google Scholar]
  53. Meier S, Morton HC, Nyhammer G, Grosvik BE, Makhotin V. 53.  et al. 2010. Development of Atlantic cod (Gadus morhua) exposed to produced water during early life stages: effects on embryos, larvae, and juvenile fish. Mar. Environ. Res. 70:383–94 [Google Scholar]
  54. Reynaud S, Deschaux P. 54.  2006. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquat. Toxicol. 77:229–38 [Google Scholar]
  55. Martin-Skilton R, Thibaut R, Porte C. 55.  2006. Endocrine alteration in juvenile cod and turbot exposed to dispersed crude oil and alkylphenols. Aquat. Toxicol. 78:Suppl. 1S57–64 [Google Scholar]
  56. Lewis SS, Weber GJ, Freeman JL, Sepúlveda MS. 56.  2012. Molecular epigenetic changes caused by environmental pollutants. Toxicology and Epigenetics SC Sahu 73–109 Chichester, UK: John Wiley & Sons [Google Scholar]
  57. Arfsten DP, Schaeffer DJ, Mulveny DC. 57.  1996. The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: a review. Ecotoxicol. Environ. Saf. 33:1–24 [Google Scholar]
  58. Lyons BP, McFadzen I. 58.  2002. PAH phototoxicity in early larval stages of marine and freshwater fish. Mar. Environ. Res. 54:635–36 [Google Scholar]
  59. Diamond SA, Mount DR, Mattson VR, Heinis LJ, Highland TL. 59.  et al. 2006. Photoactivated polycyclic aromatic hydrocarbon toxicity in medaka (Oryzias latipes) embryos: relevance to environmental risk in contaminated sites. Environ. Toxicol. Chem. 25:3015–23 [Google Scholar]
  60. Barron MG, Carls MG, Short JW, Rice SD. 60.  2003. Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to Pacific herring eggs and larvae. Environ. Toxicol. Chem. 22:650–60 [Google Scholar]
  61. Yu HT. 61.  2002. Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 20:149–83 [Google Scholar]
  62. McDonald BG, Chapman PM. 62.  2002. PAH phototoxicity—an ecologically irrelevant phenomenon?. Mar. Pollut. Bull. 44:1321–26 [Google Scholar]
  63. Incardona JP, Vines CA, Linbo TL, Myers MS, Sloan CA. 63.  et al. 2012. Potent phototoxicity of marine bunker oil to translucent herring embryos after prolonged weathering. PLOS ONE 7:e30116 [Google Scholar]
  64. Maynard DJ, Weber DD. 64.  1981. Avoidance reactions of juvenile coho salmon (Oncorhynchus kisutch) to monocyclic aromatics. Can. J. Fish. Aquat. Sci. 38:772–78 [Google Scholar]
  65. Weber DD, Maynard DJ, Gronlund WD, Konchin V. 65.  1981. Avoidance reactions of migrating adult salmon to petroleum-hydrocarbons. Can. J. Fish. Aquat. Sci. 38:779–81 [Google Scholar]
  66. Moles A, Rice S, Norcross BL. 66.  1994. Non-avoidance of hydrocarbon laden sediments by juvenile flatfishes. Neth. J. Sea Res. 32:361–67 [Google Scholar]
  67. Lari E, Abtahi B, Hashtroudi MS, Mohaddes E, Doving KB. 67.  2015. The effect of sublethal concentrations of the water-soluble fraction of crude oil on the chemosensory function of Caspian roach, Rutilus caspicus (YAKOVLEV, 1870). Environ. Toxicol. Chem. 34:1826–32 [Google Scholar]
  68. Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT. 68.  2006. The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol. Sci. 92:526–36 [Google Scholar]
  69. Timme-Laragy AR, Noyes PD, Buhler DR, Di Giulio RT. 69.  2008. CYP1B1 knockdown does not alter synergistic developmental toxicity of polycyclic aromatic hydrocarbons in zebrafish (Danio rerio). Mar. Environ. Res. 66:85–87 [Google Scholar]
  70. Garner LV, Di Giulio RT. 70.  2012. Glutathione transferase pi class 2 (GSTp2) protects against the cardiac deformities caused by exposure to PAHs but not PCB-126 in zebrafish embryos. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 155:573–79 [Google Scholar]
  71. Radwan SS, Al-Hasan RH, Mahmoud HM, Eliyas M. 71.  2007. Oil-utilizing bacteria associated with fish from the Arabian Gulf. J. Appl. Microbiol. 103:2160–67 [Google Scholar]
  72. Kane DA, Kimmel CB. 72.  1993. The zebrafish midblastula transition. Development 119:447–56 [Google Scholar]
  73. Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR. 73.  et al. 2005. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLOS Genet 1:260–76 [Google Scholar]
  74. Binder RL, Stegeman JJ. 74.  1984. Microsomal electron transport and xenobiotic monooxygenase activities during the embryonic period of development in the killifish. Fundulus heteroclitus. Toxicol. Appl. Pharmacol. 73:432–43 [Google Scholar]
  75. Andreasen EA, Spitsbergen JM, Tanguay RL, Stegeman JJ, Heideman W, Peterson RE. 75.  2002. Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. Toxicol. Sci. 68:403–19 [Google Scholar]
  76. Hornung MW, Cook PM, Fitzsimmons PN, Kuehl DW, Nichols JW. 76.  2007. Tissue distribution and metabolism of benzo[a]pyrene in embryonic and larval medaka (Oryzias latipes). Toxicol. Sci. 100:393–405 [Google Scholar]
  77. Incardona JP, Day HL, Collier TK, Scholz NL. 77.  2006. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicol. Appl. Pharmacol. 217:308–21 [Google Scholar]
  78. Shimada T, Fujii-Kuriyama Y. 78.  2004. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci 95:1–6 [Google Scholar]
  79. Bard SM. 79.  2000. Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms. Aquat. Toxicol. 48:357–89 [Google Scholar]
  80. Luckenbach T, Fischer S, Sturm A. 80.  2014. Current advances on ABC drug transporters in fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 165:28–52 [Google Scholar]
  81. Paetzold SC, Ross NW, Richards RC, Jones M, Hellou J, Bard SM. 81.  2009. Up-regulation of hepatic ABCC2, ABCG2, CYP1A1 and GST in multixenobiotic-resistant killifish (Fundulus heteroclitus) from the Sydney Tar Ponds, Nova Scotia, Canada. Mar. Environ. Res. 68:37–47 [Google Scholar]
  82. de Cerio OD, Bilbao E, Cajaraville MP, Cancio I. 82.  2012. Regulation of xenobiotic transporter genes in liver and brain of juvenile thicklip grey mullets (Chelon labrosus) after exposure to Prestige-like fuel oil and to perfluorooctane sulfonate. Gene 498:50–58 [Google Scholar]
  83. Yuan L, Lv B, Zha J, Wang W, Wang Z. 83.  2014. Basal and benzo[a]pyrene-induced expression profile of phase I and II enzymes and ABC transporter mRNA in the early life stage of Chinese rare minnows (Gobiocypris rarus). Ecotoxicol. Environ. Saf. 106:86–94 [Google Scholar]
  84. Fischer S, Kluver N, Burkhardt-Medicke K, Pietsch M, Schmidt AM. 84.  et al. 2013. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. BMC Biol 11:69 [Google Scholar]
  85. Alharbi HA, Saunders DM, Al-Mousa A, Alcorn J, Pereira AS. 85.  et al. 2016. Inhibition of ABC transport proteins by oil sands process affected water. Aquat. Toxicol. 170:81–88 [Google Scholar]
  86. Smital T, Luckenbach T, Sauerborn R, Hamdoun AM, Vega RL, Epel D. 86.  2004. Emerging contaminants—pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutat. Res. 552:101–17 [Google Scholar]
  87. Smital T, Kurelec B. 87.  1998. The chemosensitizers of multixenobiotic resistance mechanism in aquatic invertebrates: a new class of pollutants. Mutat. Res. Fundam. Mol. Mech. Mutagen. 399:43–53 [Google Scholar]
  88. Wu B, Torres-Duarte C, Cole BJ, Cherr GN. 88.  2015. Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers. Environ. Sci. Technol. 49:5760–70 [Google Scholar]
  89. Liu S, Jiang W, Wu B, Yu J, Yu HY. 89.  et al. 2016. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters. Nanotoxicology 10:597–606 [Google Scholar]
  90. Yu J, Liu S, Wu B, Shen Z, Cherr GN. 90.  et al. 2016. Comparison of cytotoxicity and inhibition of membrane ABC transporters induced by MWCNTs with different length and functional groups. Environ. Sci. Technol. 50:3985–94 [Google Scholar]
  91. Whitehead A. 91.  2013. Interactions between oil-spill pollutants and natural stressors can compound ecotoxicological effects. Integr. Comp. Biol. 53:635–47 [Google Scholar]
  92. Di Giulio RT, Clark BW. 92.  2015. The Elizabeth River story: a case study in evolutionary toxicology. J. Toxicol. Environ. Health B Crit. Rev. 18:259–98 [Google Scholar]
  93. Bieri RH, Hein C, Huggett RJ, Shou P, Slone H. 93.  et al. 1986. Polycyclic aromatic-hydrocarbons in surface sediments from the Elizabeth River subestuary. Int. J. Environ. Anal. Chem. 26:97–113 [Google Scholar]
  94. Fang M, Getzinger GJ, Cooper EM, Clark BW, Garner LV. 94.  et al. 2014. Effect-directed analysis of Elizabeth River porewater: developmental toxicity in zebrafish (Danio rerio). Environ. Toxicol. Chem. 33:2767–74 [Google Scholar]
  95. Clark BW, Matson CW, Jung D, Di Giulio RT. 95.  2010. AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquat. Toxicol. 99:232–40 [Google Scholar]
  96. Meyer JN, Wassenberg DM, Karchner SI, Hahn ME, Di Giulio RT. 96.  2003. Expression and inducibility of aryl hydrocarbon receptor pathway genes in wild-caught killifish (Fundulus heteroclitus) with different contaminant-exposure histories. Environ. Toxicol. Chem. 22:2337–43 [Google Scholar]
  97. Clark BW, Bone AJ, Di Giulio RT. 97.  2014. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway. Environ. Sci. Pollut. Res. Int. 21:13898–908 [Google Scholar]
  98. Meyer JN, Nacci DE, Di Giulio RT. 98.  2002. Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments. Toxicol. Sci. 68:69–81 [Google Scholar]
  99. Ownby DR, Newman MC, Mulvey M, Vogelbein WK, Unger MA, Arzayus LF. 99.  2002. Fish (Fundulus heteroclitus) populations with different exposure histories differ in tolerance of creosote-contaminated sediments. Environ. Toxicol. Chem. 21:1897–902 [Google Scholar]
  100. Meyer JN, Di Giulio RT. 100.  2003. Heritable adaptation and fitness costs in killifish (Fundulus heteroclitus) inhabiting a polluted estuary. Ecol. Appl. 13:490–503 [Google Scholar]
  101. Frederick LA, Van Veld PA, Rice CD. 101.  2007. Bioindicators of immune function in creosote-adapted estuarine killifish, Fundulus heteroclitus. J. Toxicol. Environ. Health A 70:1433–42 [Google Scholar]
  102. Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK. 102  et al. 2016. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354:1305–8 [Google Scholar]
  103. Bue BG, Sharr S, Seeb JE. 103.  1998. Evidence of damage to pink salmon populations inhabiting Prince William Sound, Alaska, two generations after the Exxon Valdez oil spill. Trans. Am. Fish. Soc. 127:35–43 [Google Scholar]
  104. Short JW, Irvine GV, Mann DH, Maselko JM, Pella JJ. 104.  et al. 2007. Slightly weathered Exxon Valdez oil persists in Gulf of Alaska beach sediments after 16 years. Environ. Sci. Technol. 41:1245–50 [Google Scholar]
  105. Whitehead A, Dubansky B, Bodinier C, Garcia TI, Miles S. 105.  et al. 2012. Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. PNAS 109:20298–302 [Google Scholar]
  106. Fodrie FJ, Able KW, Galvez F, Heck KL, Jensen OP. 106.  et al. 2014. Integrating organismal and population responses of estuarine fishes in Macondo spill research. Bioscience 64:778–88 [Google Scholar]
  107. Reid NM, Jackson CE, Gilbert DG, Minx PP, Montague MJ. 107.  et al. 2016. The Atlantic killifish (Fundulus heteroclitus) genome and the landscape of genome variation within a population. Manuscript in review
  108. Brown DR, Clark BW, Garner LV, Di Giulio RT. 108.  2015. Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists. Environ. Sci. Pollut. Res. Int. 22:118329–38 [Google Scholar]
  109. Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT. 109.  2006. The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol. Sci. 92:2526–36 [Google Scholar]
  110. Jayasundara N, Ban Tiem Garner L, Meyer JN, Erwin KN, Di Giulio RT. 110.  2015. AHR2-mediated transcriptomic responses underlying the synergistic cardiac developmental toxicity of PAHs. Toxicol. Sci. 143:2469–81 [Google Scholar]
  111. Van Tiem LA, Di Giulio RT. 111.  2011. AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 254:3280–87 [Google Scholar]
  112. Garner LV, Brown DR, Di Giulio RT. 112.  2013. Knockdown of AHR1A but not AHR1B exacerbates PAH and PCB-126 toxicity in zebrafish (Danio rerio) embryos. Aquat. Toxicol. 142–143:336–46 [Google Scholar]

Data & Media loading...


    Video of Pacific herring () embryos exposed (from fertilization to 7 days postfertilization) to water passing over either () nonoiled gravel or () gravel coated with Alaska North Slope crude oil (1.5 g of oil per kg of gravel). The hearts are clearly different with respect to size and normal looping of the ventricle. Pericardial edema () is obvious in the oil-exposed embryo. Tissue polycyclic aromatic hydrocarbons for the oil-exposed embryos were 3,000 ng/g wet weight (22). Video provided by J. Incardona.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error