Because living cells can be saved for indefinite periods, unprecedented opportunities for characterizing, cataloging, and conserving biological diversity have emerged as advanced cellular and genetic technologies portend new options for preventing species extinction. Crucial to realizing the potential impacts of stem cells and assisted reproductive technologies on biodiversity conservation is the cryobanking of viable cell cultures from diverse species, especially those identified as vulnerable to extinction in the near future. The advent of in vitro cell culture and cryobanking is reviewed here in the context of biodiversity collections of viable cell cultures that represent the progress and limitations of current efforts. The prospects for incorporating collections of frozen viable cell cultures into efforts to characterize the genetic changes that have produced the diversity of species on Earth and contribute to new initiatives in conservation argue strongly for a global network of facilities for establishing and cryobanking collections of viable cells.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Benirschke K. 1.  1984. The frozen zoo concept. Zoo Biol 3:325–28 [Google Scholar]
  2. Carrel A, Burrows M. 2.  1911. Cultivation of tissues in vitro and its technique. J. Exp. Med. 13:387–96 [Google Scholar]
  3. Polge C, Smith A, Parkes A. 3.  1949. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666 [Google Scholar]
  4. Hayflick L, Moorhead PS. 4.  1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:3585–621 [Google Scholar]
  5. Romanov MN, Tuttle EM, Houck ML, Modi WS, Chemnick LG. 5.  et al. 2009. The value of avian genomics to the conservation of wildlife. BMC Genom 10:Suppl. 2S10 [Google Scholar]
  6. Modi WS, Romanov M, Green ED, Ryder O. 6.  2009. Molecular cytogenetics of the California condor: evolutionary and conservation implications. Cytogenet. Genome Res. 127:126–32 [Google Scholar]
  7. Tubbs C, McDonough C. 7.  2017. Reproductive impacts of endocrine-disrupting chemicals on wildlife species: implications for conservation of endangered species. Annu. Rev. Anim. Biosci. 6:287–304 [Google Scholar]
  8. Rompler H, Rohland N, Lalueza-Fox C, Willerslev E, Kuznetsova T. 8.  et al. 2006. Nuclear gene indicates coat-color polymorphism in mammoths. Science 313:578362 [Google Scholar]
  9. Sridhar S, To K, Chan J, Lau S. 9.  2015. A systematic approach to novel virus discovery in emerging infectious disease outbreaks. J. Mol. Diagn. 17:3230–41 [Google Scholar]
  10. Harrison RG, Greenman MJ, Mall FP, Jackson CM. 10.  1907. Observations of the living developing nerve fiber. Anat. Rec. 1:5116–28 [Google Scholar]
  11. Sanford KK, Earle WR, Likely GD. 11.  1948. The growth in vitro of single isolated tissue cells. J. Natl. Cancer Inst. 9:3229–46 [Google Scholar]
  12. Gey GO, Coffman WD, Kubicek M. 12.  1952. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 12:4264–65 [Google Scholar]
  13. Puck TT, Cieciura SJ, Robinson A. 13.  1958. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J. Exp. Med. 108:6945–56 [Google Scholar]
  14. Macpherson I, Stoker M. 14.  1962. Polyoma transformation of hamster cell clones—an investigation of genetic factors affecting cell competence. Virology 16:2147–51 [Google Scholar]
  15. Hopps HE, Bernheim BC, Nisalak A, Tjio JH, Smadel JE. 15.  1963. Biologic characteristics of a continuous kidney cell line derived from the African green monkey. J. Immunol. 91:3416–24 [Google Scholar]
  16. Eagle H. 16.  1955. The specific amino acid requirements of a mammalian cell (strain L) in tissue culture. J. Biol. Chem. 214:839–52 [Google Scholar]
  17. Eagle H. 17.  1959. Amino acid metabolism in mammalian cell cultures. Science 13:432–37 [Google Scholar]
  18. Dulbecco R, Freeman G. 18.  1959. Plaque production by the polyoma virus. Virology 8:3396–97 [Google Scholar]
  19. Stanners CP, Eliceri GL, Green H. 19.  1971. Two types of ribosome in mouse-hamster hybrid cells. Nat. New Biol. 230:52–54 [Google Scholar]
  20. Houck ML, Ryder OA, Váhala J, Kock RA, Oosterhuis JE. 20.  1994. Diploid chromosome number and chromosomal variation in the white rhinoceros (Ceratotherium simum). J. Hered. 85:130–34 [Google Scholar]
  21. Houck M, Lear T, Charter S. 21.  2017. Animal cytogenetics. AGT Cytogenetics Manual MS Arsham, MJ Barch, HJ Lawce 1055–102 New York: Wiley, 4th ed.. [Google Scholar]
  22. Okumoto H. 22.  2001. Establishment of three cell lines derived from frog melanophores. Zool. Sci. 18:483–96 [Google Scholar]
  23. 23. Int. Union Conserv. Nat. Nat. Resour. 2017. IUCN Red List of Threatened Species Cambridge, UK: Int. Union Conserv. Nat. Nat. Resour.
  24. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P. 24.  et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:62151126–38 [Google Scholar]
  25. Zhang G, Li C, Li Q, Li B, Larkin DM. 25.  et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:62151311–21 [Google Scholar]
  26. Koepfli K-P, Paten B. Genome 10K Community Sci. O'Brien SJ. 26.  2015. The Genome 10K project: a way forward. Annu. Rev. Anim. Biosci. 3:57–111 [Google Scholar]
  27. Ryder OA, McLaren A, Brenner S, Zhang Y-P, Benirschke K. 27.  2000. DNA banks for endangered animal species. Science 288:5464275–77 [Google Scholar]
  28. Conde DA, Colchero F, Güneralp B, Gusset M, Skolnik B. 28.  et al. 2015. Opportunities and costs for preventing vertebrate extinctions. Curr. Biol. 25:6R219–21 [Google Scholar]
  29. 29. Genome 10K Community Sci. 2009. Genome 10K: A proposal to obtain whole-genome sequence for 10000 vertebrate species. J. Hered. 100:659–74 [Google Scholar]
  30. Hsu TC, Benirschke K. 30.  1967. An Atlas of Mammalian Chromosomes New York: Springer Verlag
  31. O'Brien SJ, Menninger JC, Nash WG. 31. , eds. 2006. Atlas of Mammalian Chromosomes Hoboken, NJ: John Wiley & Sons
  32. Ryder O, Kumamoto A, Durrant B, Benirschke K. 32.  1989. Chromosomal divergence and reproductive isolation in dik-diks. In Speciation and Its Consequences. D Ott, J Endler 208–25 Sunderland, MA: Sinauer Assoc.
  33. Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K. 33.  et al. 2011. Predicting the probability of outbreeding depression. Conserv. Biol. 25:3465–75 [Google Scholar]
  34. Steiner CC, Putnam AS, Hoeck PEA, Ryder OA. 34.  2013. Conservation genomics of threatened animal species. Annu. Rev. Anim. Biosci. 1:261–81 [Google Scholar]
  35. Li G, Davis BW, Eizirik E, Murphy WJ. 35.  2016. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26:11–11 [Google Scholar]
  36. Slatkin M, Racimo F. 36.  2016. Ancient DNA and human history. PNAS 113:236380–87 [Google Scholar]
  37. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M. 37.  et al. 2013. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2:11–31 [Google Scholar]
  38. Jarvis ED. 38.  2016. Perspectives from the Avian Phylogenomics Project: questions that can be answered with sequencing all genomes of a vertebrate class. Annu. Rev. Anim. Biosci. 4:45–59 [Google Scholar]
  39. Kim J, Farré M, Auvil L, Capitanu B, Larkin DM. 39.  et al. 2017. Reconstruction and evolutionary history of eutherian chromosomes. PNAS 114:27E5379–E88 [Google Scholar]
  40. Alper SJ, Bronikowski AM, Harper JM. 40.  2015. Comparative cellular biogerontology: Where do we stand?. Exp. Gerontol. 71:109–17 [Google Scholar]
  41. Shi Y, Inoue H, Wu JC, Yamanaka S. 41.  2017. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16:2115–30 [Google Scholar]
  42. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. 42.  2011. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:4519–32 [Google Scholar]
  43. Hayashi K, Hikabe O, Obata Y, Hirao Y. 43.  2017. Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nat. Protoc. 12:1733–44 [Google Scholar]
  44. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. 44.  2015. Genetic rescue to the rescue. Trends Ecol. Evol. 30:142–49 [Google Scholar]
  45. Howard JG, Lynch C, Santymire RM, Marinari PE, Wildt DE. 45.  2016. Recovery of gene diversity using long-term cryopreserved spermatozoa and artificial insemination in the endangered black-footed ferret. Anim. Conserv. 19:2102–11 [Google Scholar]
  46. Wisely SM, Ryder OA, Santymire RM, Engelhardt JF, Novak BJ. 46.  2015. A road map for 21st century genetic restoration: gene pool enrichment of the black-footed ferret. J. Hered. 106:5581–92 [Google Scholar]
  47. Lermen D, Blömeke B, Browne R, Clarke A, Dyce PW. 47.  et al. 2009. Cryobanking of viable biomaterials: implementation of new strategies for conservation purposes. Mol. Ecol. 18:61030–33 [Google Scholar]
  48. Friedrich Ben-Nun I, Montague SC, Houck ML, Tran HT, Garitaonandia I. 48.  et al. 2011. Induced pluripotent stem cells from highly endangered species. Nat. Methods 8:829–31 [Google Scholar]
  49. Saragusty J, Diecke S, Drukker M, Durrant B, Friedrich Ben-Nun I. 49.  et al. 2016. Rewinding the process of mammalian extinction. Zoo Biol 35:280–92 [Google Scholar]
  50. Honda A, Choijookhuu N, Izu H, Kawano Y, Inokuchi M. 50.  et al. 2017. Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis. . Sci. Adv. 3:5e1602179 [Google Scholar]
  51. Droege G, Barker K, Astrin JJ, Bartels P, Butler C. 51.  et al. 2014. The Global Genome Biodiversity Network (GGBN) Data Portal. Nucleic Acids Res 42:D1D607–12 [Google Scholar]
  52. Ryder OA, Benirschke K. 52.  1997. The potential use of “cloning” in the conservation effort. Zoo Biol 16:295–300 [Google Scholar]
  53. Ryder OA. 53.  2002. Cloning advances and challenges for conservation. Trends Biotechnol 20:6231–32 [Google Scholar]
  54. Takahashi K, Yamanaka S, Randle DH, Kamijo T, Cleveland JL. 54.  et al. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:4663–76 [Google Scholar]
  55. Skalova S, Svadlakova T, Qureshi W, Dev K. 55.  2015. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int. J. Mol. Sci. 16:24043–67 [Google Scholar]
  56. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y. 56.  et al. 2016. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539:7628299–303 [Google Scholar]
  57. Frankham R, Ballou JD, Briscoe DA. 57.  2010. Introduction to Conservation Genetics Cambridge, UK: Cambridge Univ. Press618
  58. Nicholls H. 58.  2012. Lonesome no more. New Sci 215:287324–25 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error