1932

Abstract

Biobanking animal germplasm and tissues is a major component of conserving genetic resources. Effectively constructing such gene banks requires an understanding and evaluation of genetic resources, the ability to conserve various tissues through cryopreservation, and a robust information technology infrastructure to allow managers and potential users to fully understand and make use of the collection. Progress has been made internationally in developing national genetic resource collections. As these collections have been developed, it has become apparent that gene banks can serve a multitude of roles, thereby serving short- and long-term needs of research communities and industry. This article documents the development of gene banks and provides examples of how they have been used to date and the extent to which they have captured genetic diversity for future use.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-030117-014603
2018-02-15
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/animal/6/1/annurev-animal-030117-014603.html?itemId=/content/journals/10.1146/annurev-animal-030117-014603&mimeType=html&fmt=ahah

Literature Cited

  1. Wood R, Orel V. 1.  2001. Genetic Prehistory in Selective Breeding: A Prelude to Mendel New York: Oxford Univ. Press323 [Google Scholar]
  2. Cleveland M, Blackburn H, Enns R, Garrick D. 2.  2005. Changes in inbreeding of U.S. Herefords during the twentieth century. J. Anim. Sci. 83:992–1001 [Google Scholar]
  3. Wiggans GR, Cole J, Hubbard S, Sonstegard T. 3.  2017. Genomic selection in dairy cattle: the USDA experience. Annu. Rev. Anim. Biosci. 5:309–27 [Google Scholar]
  4. Pisenti J, Delany M, Taylor R, Wilson B. 4.  2001. Avian genetic resources at risk: an assessment and proposal for conservation of genetic stocks in the USA and Canada. Avian Poultry Biol. Rev. 12:1–21–102 [Google Scholar]
  5. Mariante ADS, Albuquerque D, Egito M, McManus AA, Lopes CM, Paiva SR. 5.  2009. Present status of the conservation of livestock genetic resources in Brazil. Livest. Sci. 120:3204–12 [Google Scholar]
  6. 6. Natl. Res. Counc. 1993. Managing Global Genetic Resources: Livestock Washington, DC: Natl. Acad. Press276 [Google Scholar]
  7. Danchin-Burge C, Hiemstra S. 7.  2003. Cryopreservation of domestic animal species in France and Netherlands: experience, similarities, and differences. Workshop on Cryopreservation of Animal Genetic Resources in Europe, ed. D Planchenault, pp. 15–28. Paris: Bur. Resour. Genet. http://www.brg.prd.fr/brg/textePdfs/SiaColloqueDocument.pdf [Google Scholar]
  8. Blackburn HD. 8.  2004. Development of the national animal genetic resources programs. Reprod. Fertil. Dev. 16:27–32 [Google Scholar]
  9. 9. Food Agric. Organ. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture B Rischkowsky, D Pilling Rome: Food Agric. Organ. [Google Scholar]
  10. 10. Food Agric. Organ. 2015. The Second Report on the State of the World's Animal Genetic Resources for Food and Agriculture B Scherf, D Pilling Rome: FAO Comm. Genet. Resour. Food Agric. Assess. [Google Scholar]
  11. 11. Food Agric. Organ. 2012. Cryoconservation of animal genetic resources Anim. Prod. Health Guidel. No. 12 FAO Rome: [Google Scholar]
  12. Smith C. 12.  1984. Genetic aspects of conservation in farm livestock. Livest. Prod. Sci 1137–48 [Google Scholar]
  13. Silversides FG, Purdy PH, Blackburn HD. 13.  2012. Comparative costs of programmes to conserve chicken genetic variation based on maintaining living populations or storing cryopreserved material. Br. Poultry Sci. 53:5599–607 [Google Scholar]
  14. Paiva SR, McManus CM, Blackburn H. 14.  2016. Conservation of animal genetic resources—a new tact. Livest. Sci. 193:32–38 [Google Scholar]
  15. Heimstra SJ, Martyniuk E, Duchev Z, Begemann F. 15.  2014. European gene bank network for animal genetic resources (EUGENA). Proc. 10th World Congr. Genet. Appl. Livest. Prod., Vancouver, Can. https://www.asas.org/docs/default-source/wcgalp-posters/437_paper_8691_manuscript_289_0.pdf?sfvrsn=2 [Google Scholar]
  16. 16. Food Agric. Organ. 1998. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Management of Small Populations at Risk Rome: Food Agric. Organ. [Google Scholar]
  17. Reist-Marti S, Simianer H, Gibson J, Hanotte O, Rege J. 17.  2003. Weitzman's approach and conservation of breed diversity: an application to African cattle breeds. Conserv. Biol. 17:1299–301 [Google Scholar]
  18. Ollivier L, Foulley J. 18.  2005. Aggregate diversity: new approach combining within- and between breed genetic diversity. Livest. Prod. Sci. 95:247–54 [Google Scholar]
  19. Boettcher P, Tixier-Boichard M, Toro M, Simianer H, Eding H. 19.  et al. 2010. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Anim. Genet. 41:Suppl. 164–77 [Google Scholar]
  20. Blackburn HD. 20.  2009. Genebank development for the conservation of livestock genetic resources in the United States of America. Livest. Sci. 120:196–203 [Google Scholar]
  21. 21. Food Agric. Organ. 2012. Cryopreservation of animal genetic resources Anim. Prod. Health Guidel. No. 12 Food Agric. Organ Rome: [Google Scholar]
  22. Paiva SR, Da Silva Mariante A, Blackburn HD. 22.  2011. Combining US and Brazilian microsatellite data for a meta-analysis of sheep (Ovisaries) breed diversity: facilitating the FAO Global Plan of Action for Conserving Animal Genetic Resources. J. Hered. 102:6697–704 [Google Scholar]
  23. Yue XP, Dechow C, Liu WS. 23.  2014. A limited number of Y chromosome lineages is present in North American Holsteins. J. Dairy Sci. 98:2738–45 [Google Scholar]
  24. Hammond AC, Olson T, Chase C, Bowers E, Randel R. 24.  et al. 1996. Heat tolerance in two tropically adapted Bostaurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. J. Anim. Sci. 74:295–303 [Google Scholar]
  25. Kroger M, Burns W, Pahnish O, Butts W. 25.  1979. Genotype by environment interactions in Hereford cattle: I. Reproductive traits. J. Anim. Sci. 49:396–402 [Google Scholar]
  26. Bohmanova J, Misztal I, Tsuruta S, Norman H, Lawlor T. 26.  2008. Genotype by environment interaction due to heat stress. J. Dairy Sci. 91:840–46 [Google Scholar]
  27. O'Neill CJ, Swain D, Kadarmideen HN. 27.  2010. Evolutionary process of Bostaurus cattle in favorable versus unfavorable environments and its implications for genetic selection. Evol. Appl. 3:422–33 [Google Scholar]
  28. Blackburn HD, Krehbiel B, Ericsson SA, Wilson C, Caetano A, Paiva S. 28.  2017. A fine structure genetic analysis evaluating ecoregional adaptability of a Bostaurus breed (Hereford). PLOS ONE 12:5e0176474 [Google Scholar]
  29. William MC, Tiersch TR. 29.  2016. Field Testing of a high-Throughput Mobile Cryopreservation Laboratory for Aquatic Species Baton Rouge, LA: World Aquac. Soc. [Google Scholar]
  30. Irwin N, Wessel L, Blackburn H. 30.  2012. The Animal Genetic Resources Information Network (Animal GRIN) database: a database design and implementation case. J. Inform. Syst. Educ. 23:19–27 [Google Scholar]
  31. Duchev Z, Van Chi Cong T, Groenveld E. 31.  2010. CryoWEB: web software for the documentation of the cryo-preserved material in animal gene banks. Bioinformation 5:5219–20 [Google Scholar]
  32. Danchin-Burge C, Hiemstra SJ, Blackburn H. 32.  2011. Ex situ conservation of Holstein-Friesian cattle: comparing the Dutch, French, and US germplasm collections. J. Dairy Sci. 94:4100–8 [Google Scholar]
  33. Groenveld LF, Gregusson S, Guldbrandtsen B, Hiemstra S, Hveem K. 33.  et al. 2016. Domesticated animal biobanking: land of opportunity. PLOS Biol 14:7e1002523 [Google Scholar]
  34. Blackburn HD. 34.  2012. Genetic selection and conservation of genetic diversity. Reprod. Domest. Anim. 47:Suppl. 4249–54 [Google Scholar]
  35. Polge CE, Smith AU, Parkes AS. 35.  1949. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666 [Google Scholar]
  36. Agca Y, Critser J. 36.  2002. Cryopreservation of spermatozoa in assisted reproduction. Semin. Reprod. Med. 1:15–23 [Google Scholar]
  37. Mazur P. 37.  1985. Basic concepts in freezing cells. Proceedings of the First International Conference on Deep Freezing of Boar Semen, ed. LA Johnson, K Larsson 91–111 Uppsala, Swed.: Swed. Univ. Agric. Sci.
  38. Rall WF. 38.  1992. Cryopreservation of oocytes and embryos: methods and applications. Anim. Reprod. Sci. 28:237–45 [Google Scholar]
  39. Woelders H, Malva A. 39.  1998. How important is the cooling rate in cryopreservation of (bull) semen, and what is its relation to thawing rate and glycerol concentration. Reprod. Domest. Anim. 33:299–305 [Google Scholar]
  40. Zhang L, Barry D, Denniston R, Bunch T, Godke R. 40.  1993. Birth of viable calves after transfer of frozen-thawed bovine embryos fertilized in vitro. Vet. Rec. 132:247–49 [Google Scholar]
  41. Seidel GE, Walker DJ. 41.  2006. Pregnancy rates with embryos vitrified in 0.25-ml straws. J. Reprod. Dev. 52:S71–S76 [Google Scholar]
  42. Hammerstedt RH, Graham JK. 42.  1992. Cryopreservation of poultry sperm: the enigma of glycerol. Cryobiology 29:26–38 [Google Scholar]
  43. Bacon L, Salter D, Motta J, Crittenden L. 43.  1986. Cryopreservation of chicken semen of inbred or specialized strains. Poult. Sci. 65:1964–71 [Google Scholar]
  44. Long JA, Kulkarni G. 44.  2004. An effective method for improving the fertility of glycerol exposed poultry semen. Poult. Sci. 83:1594–601 [Google Scholar]
  45. Purdy PH, Song Y, Silversides F, Blackburn HD. 45.  2009. Evaluation of glycerol removal techniques, cryoprotectants, and insemination methods for cryopreserving rooster sperm with implications of regeneration of breed or line or both. Poult. Sci. 88:2184–91 [Google Scholar]
  46. Tajima A, Barbato G, Kuwana T, Hammerstedt R. 46.  2003. Conservation of a genetically selected broiler line (42L) using cryopreserved circulating primordial germ cells (PGC) isolated by filtration method. J. Poult. Sci. 40:53–61 [Google Scholar]
  47. Tajima A, Minematsu T, Ohara M. 47.  2004. Production of germ-line chimeras by the transfer of cryopreserved gonadal germ cells collected from 7- and 9-day old chick embryos. J. Anim. Sci. 75:85–88 [Google Scholar]
  48. Moore DT, Purdy PH, Blackburn HD. 48.  2006. A method for cryopreserving chicken primordial germ cells. Poult. Sci. 85:1784–90 [Google Scholar]
  49. Song Y, Silversides FG. 49.  2007. Offspring derived from orthotopic ovarian transplants in chickens. Poult. Sci. 86:107–11 [Google Scholar]
  50. Song Y, Silversides FG. 50.  2007. Heterotopic transplantation of testes in newly hatched chickens and subsequent production of offspring via intramagnal insemination. Biol. Reprod. 76:598–603 [Google Scholar]
  51. Song Y, Silversides FG. 51.  2007. Production of offspring from cryopreserved chicken testicular tissue. Poult. Sci. 86:1390–96 [Google Scholar]
  52. Okutsu T, Shikina S, Kanno M, Takeuchi Y, Yoshizaki G. 52.  2007. Production of trout offspring from triploid parents. Science 317:1517 [Google Scholar]
  53. Okutsu T, Yano A, Nagasawa K, Shikina S, Kobayashi T. 53.  et al. 2006. Manipulation of fish germ cell: visualization, cryopreservation and transplantation. J. Reprod. Dev. 52:685–93 [Google Scholar]
  54. Gandini G, Pizzi F, Stella A, Boettcher P. 54.  2007. The costs of breed reconstruction from cryopreserved material in mammalian livestock species. Genet. Sel. Evol. 39:465–79 [Google Scholar]
  55. Carwell DB. 55.  2010. Pregnancy rates in beef cattle artificially inseminated with frozen-thawed aged beef semen Master's Thesis 775 La. State Univ Baton Rouge: http://digitalcommons.lsu.edu/gradschool_theses/775/ [Google Scholar]
  56. Blackburn HD, Plante Y, Rohrer G, Welch EW, Paiva SR. 56.  2014. Impact of genetic drift on access and benefit sharing under the Nagoya Protocol: the case of the Meishan pig. J. Anim. Sci. 92:1405–11 [Google Scholar]
  57. 57. Natl. Sci. Technol. Counc., Comm. Sci. lnterag. Work. Group Sci; Collect. 2009. Scientific Collections: Mission-Critical Infrastructure of Federal Science Agencies Washington, DC: Off. Sci. Technol. Policy [Google Scholar]
  58. Takahashi K, Yamanaka S. 58.  2006. Induction of pluripotent stems cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76 [Google Scholar]
  59. Cong L, Ran FA, Cox D, Lin S, Barretto R. 59.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
/content/journals/10.1146/annurev-animal-030117-014603
Loading
/content/journals/10.1146/annurev-animal-030117-014603
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error