Respiratory infections remain the second most common cause of clinical disease and mortality in newborn calves, which has led to increased interest in using vaccines early in life to mitigate this risk. Intranasal vaccination of neonatal calves can be an effective strategy to circumvent vaccine interference by maternal antibody, but this raises questions regarding onset of immune competence in the upper respiratory tract (URT) following birth. Little is known, however, about the development and function of mucosa-associated lymphoid tissue (MALT) in the URT of newborn calves and what factors, including the commensal microbiome, contribute to this early development. We review the structure, development, and function of MALT in the bovine URT during the first six weeks of life and identify knowledge gaps regarding this early developmental time. This information is critical when designing vaccination programs for young calves, especially when targeting respiratory pathogens that may reside within the commensal microbiome.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Sato S, Kiyono H. 1.  2012. The mucosal immune system of the respiratory tract. Curr. Opin. Virol. 2:225–32 [Google Scholar]
  2. Ackermann MR, Derscheid R, Roth JA. 2.  2010. Innate immunology of bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 26:215–28 [Google Scholar]
  3. Thornton DJ, Rousseau K, McGuckin MA. 3.  2008. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70:459–86 [Google Scholar]
  4. Evans CM, Koo JS. 4.  2009. Airway mucus: the good, the bad, the sticky. Pharmacol. Ther. 121:332–48 [Google Scholar]
  5. Berghuis L, Abdelaziz KT, Bierworth J, Wyer L, Jacob G. 5.  et al. 2014. Comparison of innate immune agonists for induction of tracheal antimicrobial peptide gene expression in tracheal epithelial cells of cattle. Vet. Res. 45:105 [Google Scholar]
  6. Heidari M, Hamir A, Cutlip RC, Brogden KA. 6.  2002. Antimicrobial anionic peptide binds in vivo to Mannheimia (Pasteurella) haemolytica attached to ovine alveolar epithelium. Int. J. Antimicrob. Agents 20:69–72 [Google Scholar]
  7. Schonwetter BS, Stolzenberg ED, Zasloff MA. 7.  1995. Epithelial antibiotics induced at sites of inflammation. Science 267:1645–48 [Google Scholar]
  8. Mirabzadeh-Ardakani A, Solie J, Gonzalez-Cano P, Schmutz SM, Griebel PJ. 8.  2016. Tissue- and age-dependent expression of the bovine DEFB103 gene and protein. Cell Tissue Res 363:479–90 [Google Scholar]
  9. Toka FN, Golde WT. 9.  2013. Cell mediated innate responses of cattle and swine are diverse during foot-and-mouth disease virus (FMDV) infection: a unique landscape of innate immunity. Immunol. Lett. 152:135–43 [Google Scholar]
  10. Kampen AH, Olsen I, Tollersrud T, Storset AK, Lund A. 10.  2006. Lymphocyte subpopulations and neutrophil function in calves during the first 6 months of life. Vet. Immunol. Immunopathol. 113:53–63 [Google Scholar]
  11. Fries P, Popowych YI, Guan LL, Beskorwayne T, Potter A. 11.  et al. 2011. Mucosal dendritic cell subpopulations in the small intestine of newborn calves. Dev. Comp. Immunol. 35:1040–51 [Google Scholar]
  12. Kraal G. 12.  2004. Nasal associated lymphoid tissues. Mucosal Immunology J Mestecky, W Strober, J Bienenstock, L Mayer 415–22 Amsterdam: Elsevier, Academic [Google Scholar]
  13. Stanley AC, Huntley JF, Jeffrey M, Buxton D. 13.  2001. Characterization of ovine nasal-associated lymphoid tissue and identification of M cells in the overlying follicle-associated epithelium. J. Comp. Pathol. 125:262–70 [Google Scholar]
  14. Mair TS, Batten EH, Stokes CR, Bourne FJ. 14.  1987. The histological features of the immune system of the equine respiratory tract. J. Comp. Pathol. 97:575–86 [Google Scholar]
  15. Mair TS, Batten EH, Stokes CR, Bourne FJ. 15.  1988. The distribution of mucosal lymphoid nodules in the equine respiratory tract. J. Comp. Pathol. 99:159–68 [Google Scholar]
  16. Liebler-Tenorio EM, Pabst R. 16.  2006. MALT structure and function in farm animals. Vet. Res. 37:257–80 [Google Scholar]
  17. Schuh JCL, Oliphant LW. 17.  1992. Development and immunophenotyping of the pharyngeal tonsil (adenoid) in cattle. J. Comp. Pathol. 106:229–41 [Google Scholar]
  18. Palmer MV, Stasko J, Waters WR, Thacker TC. 18.  2011. Examination of the reticular epithelium of the bovine pharyngeal tonsil. Anat. Rec. 294:1939–50 [Google Scholar]
  19. Manesse M, Delverdier M, Abella-Bourges N, Sautet J, Cabanie P. 19.  et al. 1998. An immunohistochemical study of bovine palatine and pharyngeal tonsils at 21, 60 and 300 days of age. Anat. Histol. Embryol. 27:179–85 [Google Scholar]
  20. Velinova M, Thielen C, Melot F, Donga J, Eicher S. 20.  et al. 2001. New histochemical and ultrastructural observations on normal bovine tonsils. Vet. Rec. 149:613–17 [Google Scholar]
  21. Fukuyama S, Nagatake T, Kim DY, Takamura K, Park EJ. 21.  et al. 2006. Cutting edge: uniqueness of lymphoid chemokine requirement for the initiation and maturation of nasopharynx-associated lymphoid tissue organogenesis. J. Immunol. 177:4276–80 [Google Scholar]
  22. Budras K-D, Habel RE. 22. , eds. 2003. Bovine Anatomy Hanover, Ger.: Schluetersche [Google Scholar]
  23. Hill KL, Hunsaker BD, Townsend HG, van Drunen Littel-van den Hurk S, Griebel PJ. 23.  2012. Mucosal immune response in newborn Holstein calves that had maternally derived antibodies and were vaccinated with an intranasal multivalent modified-live virus vaccine. J. Am. Vet. Med. Assoc. 240:1231–40 [Google Scholar]
  24. Marshall-Clarke S, Reen D, Tasker L, Hassan J. 24.  2000. Neonatal immunity: How well has it grown up?. Immunol. Today 21:35–41 [Google Scholar]
  25. Morein B, Blomqvist G, Hu K. 25.  2007. Immune responsiveness in the neonatal period. J. Comp. Pathol. 137:Suppl. 1S27–31 [Google Scholar]
  26. Mora JR, Iwata M, Eksteen B, Song SY, Junt T. 26.  et al. 2006. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157–60 [Google Scholar]
  27. Mulholland K. 27.  1998. Serious infections in young infants in developing countries. Vaccine 16:1360–62 [Google Scholar]
  28. Gerdts V, Snider M, Brownlie R, Babiuk LA, Griebel PJ. 28.  2002. Oral DNA vaccination in utero induces mucosal immunity and immune memory in the neonate. J. Immunol. 168:1877–85 [Google Scholar]
  29. Endsley JJ, Roth JA, Ridpath J, Neill J. 29.  2003. Maternal antibody blocks humoral but not T cell responses to BVDV. Biologicals 31:123–25 [Google Scholar]
  30. Vangeel I, Antonis AF, Fluess M, Riegler L, Peters AR. 30.  et al. 2007. Efficacy of a modified live intranasal bovine respiratory syncytial virus vaccine in 3-week-old calves experimentally challenged with BRSV. Vet. J. 174:627–35 [Google Scholar]
  31. Vangeel I, Ioannou F, Riegler L, Salt JS, Harmeyer SS. 31.  2009. Efficacy of an intranasal modified live bovine respiratory syncytial virus and temperature-sensitive parainfluenza type 3 virus vaccine in 3-week-old calves experimentally challenged with PI3V. Vet. J. 179:101–8 [Google Scholar]
  32. Xue W, Ellis J, Mattick D, Smith L, Brady R. 32.  et al. 2010. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves. Vaccine 28:3784–92 [Google Scholar]
  33. Ellis JA, Gow SP, Mahan S, Leyh R. 33.  2013. Duration of immunity to experimental infection with bovine respiratory syncytial virus following intranasal vaccination of young passively immune calves. J. Am. Vet. Med. Assoc. 243:1602–8 [Google Scholar]
  34. Ellis JA, Gow SP, Goji N. 34.  2010. Response to experimentally induced infection with bovine respiratory syncytial virus following intranasal vaccination of seropositive and seronegative calves. J. Am. Vet. Med. Assoc. 236:991–99 [Google Scholar]
  35. Mahan SM, Sobecki B, Johnson J, Oien NL, Meinert TR. 35.  et al. 2016. Efficacy of intranasal vaccination with a multivalent vaccine containing temperature-sensitive modified-live bovine herpesvirus type 1 for protection of seronegative and seropositive calves against respiratory disease. J. Am. Vet. Med. Assoc. 248:1280–86 [Google Scholar]
  36. Lima SF, Teixeira AG, Higgins CH, Lima FS, Bicalho RC. 36.  2016. The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media. Sci. Rep. 6:29050 [Google Scholar]
  37. Angelos JA, Edman JM, Chigerwe MC. 37.  2014. Ocular immune responses in steers following intranasal vaccination with recombinant Moraxella bovis cytotoxin adjuvanted with polyacrylic acid. Clin. Vaccine Immunol. 21:181–87 [Google Scholar]
  38. Vissers M, de Groot R, Ferwerda G. 38.  2014. Severe viral respiratory infections: Are bugs bugging?. Mucosal Immunol 7:227–38 [Google Scholar]
  39. Malmuthuge N, Griebel PJ, Guan LL. 39.  2015. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Front. Vet. Sci. 2:36 [Google Scholar]
  40. Huang YJ, Lynch SV. 40.  2011. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications. Expert Rev. Respir. Med. 5:809–21 [Google Scholar]
  41. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I. 41.  et al. 2011. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 184:957–63 [Google Scholar]
  42. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM. 42.  et al. 2015. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6:e00037 [Google Scholar]
  43. Gaeta NC, Lima SF, Teixeira AG, Ganda EK, Oikonomou G. 43.  et al. 2017. Deciphering upper respiratory tract microbiota complexity in healthy calves and calves that develop respiratory disease using shotgun metagenomics. J. Dairy Sci. 100:1445–58 [Google Scholar]
  44. Holman DB, McAllister TA, Topp E, Wright AD, Alexander TW. 44.  2015. The nasopharyngeal microbiota of feedlot cattle that develop bovine respiratory disease. Vet. Microbiol. 180:90–95 [Google Scholar]
  45. Timsit E, Workentine M, Schryvers AB, Holman DB, van der Meer F. 45.  et al. 2016. Evolution of the nasopharyngeal microbiota of beef cattle from weaning to 40 days after arrival at a feedlot. Vet. Microbiol. 187:75–81 [Google Scholar]
  46. Aubry P, Warnick LD, Guard CL, Hill BW, Witt MF. 46.  2001. Health and performance of young dairy calves vaccinated with a modified-live Mannheimia haemolytica and Pasteurella multocida vaccine. J. Am. Vet. Med. Assoc. 219:1739–42 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error