Nutrient-sensing mechanisms have emerged as the fringe articulating nutritional needs with dietary choices. Carbohydrate, amino acid, fatty acid, mineral, and water-sensing receptors are highly conserved across mammals and birds, consisting of a repertoire of 22 genes known to date. In contrast, bitter receptors are highly divergent and have a high incidence of polymorphisms within and between mammals and birds and are involved in the adaptation of species to specific environments. In addition, the expression of nutrient-sensing genes outside the oral cavity seems to mediate the required decision-making dialogue between the gut and the brain by translating exogenous chemical stimuli into neuronal inputs, and vice versa, to translate the endogenous signals relevant to the nutritional status into specific appetites and the control of feed intake. The relevance of these sensors in nondigestive systems has uncovered fascinating potential as pharmacological targets relevant to respiratory and cardiovascular diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Buck L, Axel R. 1.  1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–87 [Google Scholar]
  2. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L. 2.  et al. 2000. T2Rs function as bitter taste receptors. Cell 100:703–11 [Google Scholar]
  3. Nelson G, Chandrashekar J, Hoon MA, Feng LX, Zhao G. 3.  et al. 2002. An amino-acid taste receptor. Nature 416:199–202 [Google Scholar]
  4. Nelson G, Hoon MA, Chandrashekar J, Zhang YF, Ryba NJP, Zuker CS. 4.  2001. Mammalian sweet taste receptors. Cell 106:381–90 [Google Scholar]
  5. Foster SR, Roura E, Thomas WG. 5.  2014. Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol. Ther. 142:41–61 [Google Scholar]
  6. Li D, Zhang J. 6.  2014. Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol. Biol. Evol. 31:303–9 [Google Scholar]
  7. Foster SR, Blank K, See Hoe LE, Behrens M, Meyerhof W. 7.  et al. 2014. Bitter taste receptor agonists elicit G-protein-dependent negative inotropy in the murine heart. FASEB J 28:4497–508 [Google Scholar]
  8. Roura E, Koopmans S-J, Lallès J-P, Le Huerou-Luron I, de Jager N. 8.  et al. 2016. Critical review evaluating the pig as a model for human nutritional physiology. Nutr. Res. Rev. 29:60–90 [Google Scholar]
  9. Matsunami H, Montmayeur J, Buck L. 9.  2000. A family of candidate taste receptors in human and mouse. Nature 404:601–4 [Google Scholar]
  10. Dulac C, Axel R. 10.  1995. A novel family of genes encoding putative pheromone receptors in mammals. . Cell 83195–206
  11. Liberles SD. 11.  2009. Trace amine-associated receptors are olfactory receptors in vertebrates. Ann. N.Y. Acad. Sci. 1170:168–72 [Google Scholar]
  12. Liberles SD, Buck LB. 12.  2006. A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–50 [Google Scholar]
  13. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. 13.  2009. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2:1–27 [Google Scholar]
  14. Mainland JD, Keller A, Li YR, Zhou T, Trimmer C. 14.  et al. 2014. The missense of smell: functional variability in the human odorant receptor repertoire. Nat. Neurosci. 17:1114–20 [Google Scholar]
  15. Griffin CA, Kafadar KA, Pavlath GK. 15.  2009. MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev. Cell 17:649–61 [Google Scholar]
  16. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A. 16.  et al. 2013. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. PNAS 110:4410–15 [Google Scholar]
  17. Pluznick JL, Zou DJ, Zhang XH, Yan QS, Rodriguez-Gil DJ. 17.  et al. 2009. Functional expression of the olfactory signaling system in the kidney. PNAS 106:2059–64 [Google Scholar]
  18. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH. 18.  et al. 2003. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–58 [Google Scholar]
  19. Bachmanov AA, Beauchamp GK. 19.  2007. Taste receptor genes. Annu. Rev. Nutr. 27:389–414 [Google Scholar]
  20. Li X, Li W, Wang H, Cao J, Maehashi K. 20.  et al. 2005. Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLOS Genet. 1:e3 [Google Scholar]
  21. Jiang P, Jesusa J, Xia L, Dieter G, Weihua L. 21.  et al. 2012. Major taste loss in carnivorous mammals. PNAS 109:4956–61 [Google Scholar]
  22. Zhao H, Yang J-R, Xu H, Zhang J. 22.  2010. Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol. Biol. Evol. 27:2669–73 [Google Scholar]
  23. Li X, Glaser D, Li W, Johnson WE, O'Brien SJ. 23.  et al. 2009. Analyses of sweet receptor gene (TAS1R2) and preference for sweet stimuli in species of Carnivora. . J. Hered. 10090–100
  24. Baldwin MW, Toda Y, Nakagita T, O'Connell MJ, Klasing KC. 24.  et al. 2014. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science 345:929–33 [Google Scholar]
  25. Martinez-Cordero E, Malacara-Hernandez JM, Martinez-Cordero C. 25.  2015. Taste perception in normal and overweight Mexican adults. Appetite 89:192–95 [Google Scholar]
  26. Glaser D, Wanner M, Tinti JM, Nofre C. 26.  2000. Gustatory responses of pigs to various natural and artificial compounds known to be sweet in man. Food Chem. 68:375–85 [Google Scholar]
  27. Swithers SE, Davidson TL. 27.  2008. A role for sweet taste: calorie predictive relations in energy regulation by rats. Behav. Neurosci. 122:161–73 [Google Scholar]
  28. Low YQ, Lacy K, Keast R. 28.  2014. The role of sweet taste in satiation and satiety. Nutrients 6:3431–50 [Google Scholar]
  29. Rogers PJ, Blundell JE. 29.  1989. Separating the actions of sweetness and calories: effects of saccharin and carbohydrates on hunger and food intake in human subjects. Physiol. Behav. 45:1093–99 [Google Scholar]
  30. Benton D. 30.  2005. Can artificial sweeteners help control body weight and prevent obesity?. Nutr. Res. Rev. 18:63–76 [Google Scholar]
  31. Swithers SE, Baker CR, Davidson TL. 31.  2009. General and persistent effects of high-intensity sweeteners on body weight gain and caloric compensation in rats. . Behav. Neurosci. 123772–80
  32. Sclafani A, Zukerman S, Ackroff K. 32.  2015. Postoral glucose sensing, not caloric content, determines sugar reward in C57BL/6J mice. Chem. Senses 40:245–58 [Google Scholar]
  33. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA. 33.  et al. 2014. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–86 [Google Scholar]
  34. Pepino MY. 34.  2015. Metabolic effects of non-nutritive sweeteners. Physiol. Behav. 152:450–55 [Google Scholar]
  35. Hellekant G, Danilova V. 35.  1996. Species differences toward sweeteners. Food Chem. 56:323–28 [Google Scholar]
  36. Li XD. 36.  2009. T1R receptors mediate mammalian sweet and umami taste. Am. J. Clin. Nutr. 90:733–37 [Google Scholar]
  37. Danilova V, Roberts T, Hellekant G. 37.  1999. Responses of single taste fibers and whole chorda tympani and glossopharyngeal nerve in the domestic pig. Sus scrofa. Chem. Senses 24:301–16 [Google Scholar]
  38. Moran AW, Al-Rammahi MA, Arora DK, Batchelor DJ, Coulter EA. 38.  et al. 2010. Expression of Na+/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners. Br. J. Nutr. 104:637–46 [Google Scholar]
  39. Damak S, Rong MQ, Yasumatsu K, Kokrashvili Z, Varadarajan V. 39.  et al. 2003. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850–53 [Google Scholar]
  40. Yee KK, Sukumaran SK, Kotha R, Gilbertson TA, Margolskee RF. 40.  2011. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. PNAS 108:5431–36 [Google Scholar]
  41. Sukumaran SK, Yee KK, Iwata S, Kotha R, Quezada-Calvillo R. 41.  et al. 2016. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. PNAS 113:6035–40 [Google Scholar]
  42. Schermerhorn T. 42.  2013. Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores. Front. Endocrinol. 4:188 [Google Scholar]
  43. Higashida M, Kawabata Y, Kawabata F, Nishimura S, Shoji T. 43.  2016. Preferences for sugars and T1R2-independent sweet taste molecules in chickens Presented at 7th Int. Symp Olfaction Taste, Yokohama Japan:
  44. Mattes RD. 44.  2011. Accumulating evidence supports a taste component for free fatty acids in humans. Physiol. Behav. 104:624–31 [Google Scholar]
  45. Running CA, Craig BA, Mattes RD. 45.  2015. Oleogustus: the unique taste of fat. Chem. Senses 40:507–16 [Google Scholar]
  46. Running CA, Mattes RD. 46.  2014. Different oral sensitivities to and sensations of short-, medium-, and long-chain fatty acids in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 307:381–89 [Google Scholar]
  47. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R. 47.  et al. 2010. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30:8376–82 [Google Scholar]
  48. Galindo MM, Voigt N, Stein J, van Lengerich J, Raguse JD. 48.  et al. 2012. G protein–coupled receptors in human fat taste perception. Chem. Senses 37:123–39 [Google Scholar]
  49. Besnard P, Passilly-Degrace P, Khan NA. 49.  2016. Taste of fat: A sixth taste modality?. Physiol. Rev. 96:151–76 [Google Scholar]
  50. Colombo M, Trevisi P, Gandolfi G, Bosi P. 50.  2012. Assessment of the presence of chemosensing receptors based on bitter and fat taste in the gastrointestinal tract of young pig. J. Anim. Sci. 90:128–30 [Google Scholar]
  51. Meslin C, Desert C, Callebaut I, Djari A, Klopp C. 51.  et al. 2015. Expanding duplication of free fatty acid receptor-2 (GPR43) genes in the chicken genome. Genome Biol. Evol. 7:1332–48 [Google Scholar]
  52. Sawamura R, Kawabata Y, Kawabata F, Nishimura S, Tabata S. 52.  2015. The role of G-protein-coupled receptor 120 in fatty acids sensing in chicken oral tissues. Biochem. Biophys. Res. Commun. 458:387–91 [Google Scholar]
  53. Roura E, Humphrey B, Klasing K, Swart M. 53.  2011. Is the pig a good umami sensing model for humans? A comparative taste receptor study. Flavour Fragr. J. 26:282–85 [Google Scholar]
  54. Sato JJ, Wolsan M. 54.  2012. Loss or major reduction of umami taste sensation in pinnipeds. PNAS 99:655–59 [Google Scholar]
  55. Zhao H, Xu D, Zhang S, Zhang J. 55.  2012. Genomic and genetic evidence for the loss of umami taste in bats. Genome Biol. Evol. 4:73–79 [Google Scholar]
  56. Chaudhari N, Landin AM, Roper SD. 56.  2000. A metabotropic glutamate receptor variant functions as a taste receptor. Nat. Neurosci. 3:113–19 [Google Scholar]
  57. Kusuhara Y, Yoshida R, Ohkuri T, Yasumatsu K, Voigt A. 57.  et al. 2013. Taste responses in mice lacking taste receptor subunit T1R1. J. Physiol. 591:1967–85 [Google Scholar]
  58. Bystrova MF, Romanov RA, Rogachevskaja OA, Churbanov GD, Kolesnikov SS. 58.  2010. Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells. J. Cell Sci. 123:972–82 [Google Scholar]
  59. Wellendorph P, Johansen LD, Bräuner-Osborne H. 59.  2009. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol. Pharmacol. 76:453–65 [Google Scholar]
  60. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E. 60.  et al. 2010. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 35:157–70 [Google Scholar]
  61. Lei W, Ravoninjohary A, Li X, Margolskee RF, Reed DR. 61.  et al. 2015. Functional analyses of bitter taste receptors in domestic cats (Felis catus). PLOS ONE 10:e0139670 [Google Scholar]
  62. Roura E, Baldwin MW, Klasing KC. 62.  2013. The avian taste system: potential implications in poultry nutrition. Anim. Feed Sci. Technol. 180:1–9 [Google Scholar]
  63. Hong W, Zhao H. 63.  2014. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats. Proc. Biol. Sci. 281:20141079 [Google Scholar]
  64. Behrens M, Korsching SI, Meyerhof W. 64.  2014. Tuning properties of avian and frog bitter taste receptors dynamically fit gene repertoire sizes. Mol. Biol. Evol. 31:3216–27 [Google Scholar]
  65. da Silva EC, de Jager N, Burgos-Paz W, Reverter A, Perez-Enciso M, Roura E. 65.  2014. Characterization of the porcine nutrient and taste receptor gene repertoire in domestic and wild populations across the globe. BMC Genom 15:1057 [Google Scholar]
  66. Roura E, Humphrey B, Tedó G, Ipharraguerre I. 66.  2008. Unfolding the codes of short-term feed appetence in farm and companion animals: a comparative oronasal nutrient sensing biology review. Can. J. Anim. Sci. 88:535–58 [Google Scholar]
  67. Zhu K, Zhou X, Xu S, Sun D, Ren W. 67.  et al. 2014. The loss of taste genes in cetaceans. BMC Evol. Biol. 14:218 [Google Scholar]
  68. Wang K, Zhao H. 68.  2015. Birds generally carry a small repertoire of bitter taste receptor genes. Genome Biol. Evol. 7:2705–15 [Google Scholar]
  69. Davis JK, Lowman JJ, Thomas PJ, ten Hallers BFH, Koriabine M. 69.  et al. 2010. Evolution of a bitter taste receptor gene cluster in a New World sparrow. Genome Biol. Evol. 2:358–70 [Google Scholar]
  70. Zhao H, Zhou Y, Pinto CM, Charles-Dominique P, Galindo-González J. 70.  et al. 2010. Evolution of the sweet taste receptor gene TAS1R2 in bats. Mol. Biol. Evol. 27:2642–50 [Google Scholar]
  71. Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E. 71.  2002. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. PNAS 99:2392–97 [Google Scholar]
  72. Chen MC, Wu SV, Reeve JR, Rozengurt E. 72.  2006. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am. J. Physiol. Cell Physiol. 291:726–39 [Google Scholar]
  73. Jeon TI, Zhu B, Larson JL, Osborne TF. 73.  2008. SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J. Clin. Investig. 118:3693–700 [Google Scholar]
  74. Kaji I, Karaki S, Fukami Y, Terasaki M, Kuwahara A. 74.  2009. Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 296:971–81 [Google Scholar]
  75. Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E. 75.  2006. Colocalization of the α-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 291:792–802 [Google Scholar]
  76. Wu SV, Chen MC, Rozengurt E. 76.  2005. Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat. Physiol. Genom. 22:139–49 [Google Scholar]
  77. Akiba Y, Watanabe C, Mizumori M, Kaunitz JD. 77.  2009. Luminal l-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 297:781–91 [Google Scholar]
  78. Bezençon C, le Coutre J, Damak S. 78.  2007. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses 32:41–49 [Google Scholar]
  79. Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP. 79.  2005. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem. Soc. Trans. 33:302–5 [Google Scholar]
  80. Hass N, Schwarzenbacher K, Breer H. 80.  2010. T1R3 is expressed in brush cells and ghrelin-producing cells of murine stomach. Cell Tissue Res 339:493–504 [Google Scholar]
  81. Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J. 81.  et al. 2009. An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J. Physiol. 587:195–210 [Google Scholar]
  82. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E. 82.  et al. 2007. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. PNAS 104:15075–80 [Google Scholar]
  83. Höfer D, Püschel B, Drenckhahn D. 83.  1996. Taste receptor-like cells in the rat gut identified by expression of α-gustducin. PNAS 93:6631–34 [Google Scholar]
  84. Hass N, Schwarzenbacher K, Breer H. 84.  2007. A cluster of gustducin-expressing cells in the mouse stomach associated with two distinct populations of enteroendocrine cells. Histochem. Cell Biol. 128:457–71 [Google Scholar]
  85. Bezencon C, Furholz A, Raymond F, Mansourian R, Metairon S. 85.  et al. 2008. Murine intestinal cells expressing TRPM5 are mostly brush cells and express markers of neuronal and inflammatory cells. J. Comp. Neurol. 509:514–25 [Google Scholar]
  86. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ. 86.  et al. 2007. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. PNAS 104:15069–74 [Google Scholar]
  87. Young RL, Sutherland K, Pezos N, Brierley SM, Horowitz M. 87.  et al. 2009. Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut 58:337–46 [Google Scholar]
  88. Lin HV, Frassetto A, Kowalik EJ Jr., Nawrocki AR, Lu MM. 88.  et al. 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLOS ONE 7:e35240 [Google Scholar]
  89. Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H. 89.  et al. 2006. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res 324:353–60 [Google Scholar]
  90. Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K. 90.  et al. 2008. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39:135–42 [Google Scholar]
  91. Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y. 91.  et al. 2009. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30:149–56 [Google Scholar]
  92. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T. 92.  et al. 2005. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11:90–94 [Google Scholar]
  93. Geibel JP, Hebert SC. 93.  2009. The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu. Rev. Physiol. 71:205–17 [Google Scholar]
  94. Wellendorph P, Johansen LD, Brauner-Osborne H. 94.  2010. The emerging role of promiscuous 7TM receptors as chemosensors for food intake. Vitam. Horm. 84:151–84 [Google Scholar]
  95. Saffouri B, DuVal JV, Makhlouf GM. 95.  1984. Stimulation of gastrin secretion in vitro by intraluminal chemicals: regulation by intramyral cholinergic and noncholinergic neurons. Gastroenterology 87:557–61 [Google Scholar]
  96. Haid DC, Jordan-Biegger C, Widmayer P, Breer H. 96.  2012. Receptors responsive to protein breakdown products in G-cells and D-cells of mouse, swine and human. Front. Physiol. 3:65 [Google Scholar]
  97. Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H. 97.  et al. 2009. Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLOS ONE 4:e5106 [Google Scholar]
  98. Kazafeos K. 98.  2011. Incretin effect: GLP-1, GIP, DPP4. Diabetes Res. Clin. Pract. 93:32–36 [Google Scholar]
  99. McIntyre N, Holdsworth CD, Turner DS. 99.  1964. New interpretation of oral glucose tolerance. Lancet 2:20–21 [Google Scholar]
  100. Kokrashvili Z, Mosinger B, Margolskee RF. 100.  2009. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am. J. Clin. Nutr. 90:822–25 [Google Scholar]
  101. Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M. 101.  et al. 2006. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am. J. Physiol. Endocrinol. Metab. 290:550–59 [Google Scholar]
  102. Roura E, Humphrey B, Klasing K, Swart M. 102.  2011. Is the pig a good umami sensing model for humans? A comparative taste receptor study. Flavour Fragr. J. 26:282–85 [Google Scholar]
  103. Daly K, Al-Rammahi M, Moran A, Marcello M, Ninomiya Y, Shirazi-Beechey SP. 103.  2013. Sensing of amino acids by the gut-expressed taste receptor T1R1-T1R3 stimulates CCK secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 304:271–82 [Google Scholar]
  104. Vancleef L, Van Den Broeck T, Thijs T, Steensels S, Briand L. 104.  et al. 2015. Chemosensory signalling pathways involved in sensing of amino acids by the ghrelin cell. Sci. Rep. 5:15725 [Google Scholar]
  105. Busque SM, Kerstetter JE, Geibel JP, Insogna K. 105.  2005. l-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 289:664–69 [Google Scholar]
  106. Hira T, Nakajima S, Eto Y, Hara H. 106.  2008. Calcium-sensing receptor mediates phenylalanine-induced cholecystokinin secretion in enteroendocrine STC-1 cells. FEBS J 275:4620–26 [Google Scholar]
  107. Oya M, Kitaguchi T, Pais R, Reimann F, Gribble F, Tsuboi T. 107.  2013. The G protein-coupled receptor family C group 6 subtype A (GPRC6A) receptor is involved in amino acid-induced glucagon-like peptide-1 secretion from GLUTag cells. J. Biol. Chem. 288:4513–21 [Google Scholar]
  108. Dotson CD, Zhang L, Xu H, Shin YK, Vigues S. 108.  et al. 2008. Bitter taste receptors influence glucose homeostasis. PLOS ONE 3:e3974 [Google Scholar]
  109. Mace OJ, Affleck J, Patel N, Kellett GL. 109.  2007. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol. 582:379–92 [Google Scholar]
  110. Moran AW, Al-Rammahi MA, Arora DK, Batchelor DJ, Coulter EA. 110.  et al. 2010. Expression of Na+/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners. Br. J. Nutr. 104:637–46 [Google Scholar]
  111. Torii K, Uneyama H, Nakamura E. 111.  2013. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. J. Gastroenterol. 48:442–51 [Google Scholar]
  112. Stricker EM, Verbalis JG. 112.  1991. Caloric and noncaloric controls of food intake. Brain Res. Bull. 27:299–303 [Google Scholar]
  113. Murthy KS. 113.  2006. Signaling for contraction and relaxation in smooth muscle of the gut. Annu. Rev. Physiol. 68:345–74 [Google Scholar]
  114. Brennan IM, Seimon RV, Luscombe-Marsh ND, Otto B, Horowitz M, Feinle-Bisset C. 114.  2011. Effects of acute dietary restriction on gut motor, hormone and energy intake responses to duodenal fat in obese men. Int. J. Obes. 35:448–56 [Google Scholar]
  115. Seimon RV, Lange K, Little TJ, Brennan IM, Pilichiewicz AN. 115.  et al. 2010. Pooled-data analysis identifies pyloric pressures and plasma cholecystokinin concentrations as major determinants of acute energy intake in healthy, lean men. Am. J. Clin. Nutr. 92:61–68 [Google Scholar]
  116. Little TJ, Russo A, Meyer JH, Horowitz M, Smyth DR. 116.  et al. 2007. Free fatty acids have more potent effects on gastric emptying, gut hormones, and appetite than triacylglycerides. Gastroenterology 133:1124–31 [Google Scholar]
  117. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F. 117.  et al. 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. PNAS 105:16767–72 [Google Scholar]
  118. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA. 118.  et al. 2002. Gut hormone PYY3–36 physiologically inhibits food intake. Nature 418:650–54 [Google Scholar]
  119. Beglinger C, Degen L, Matzinger D, D'Amato M, Drewe J. 119.  2001. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:1149–54 [Google Scholar]
  120. Schirra J, Nicolaus M, Roggel R, Katschinski M, Storr M. 120.  et al. 2006. Endogenous glucagon‐like peptide 1 controls endocrine pancreatic secretion and antro‐pyloro‐duodenal motility in humans. Gut 55:243–51 [Google Scholar]
  121. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS. 121.  et al. 2001. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86:5992–95 [Google Scholar]
  122. Potier M, Darcel N, Tomé D. 122.  2009. Protein, amino acids and the control of food intake. Curr. Opin. Clin. Nutr. 12:54–58 [Google Scholar]
  123. Jordi J, Herzog B, Camargo SMR, Boyle CN, Lutz TA, Verrey F. 123.  2013. Specific amino acids inhibit food intake via the area postrema or vagal afferents. J. Physiol. 591:5611–21 [Google Scholar]
  124. Zai H, Kusano M, Hosaka H, Shimoyama Y, Nagoshi A. 124.  et al. 2009. Monosodium l-glutamate added to a high-energy, high-protein liquid diet promotes gastric emptying. Am. J. Clin. Nutr. 89:431–35 [Google Scholar]
  125. Kendig DM, Hurst NR, Bradley ZL, Mahavadi S, Kuemmerle JF. 125.  et al. 2014. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon. Am. J. Physiol. Gastrointest. Liver Physiol. 307:1100–7 [Google Scholar]
  126. Feng J, Petersen CD, Coy DH, Jiang J-K, Thomas CJ. 126.  et al. 2010. Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. PNAS 107:17791–96 [Google Scholar]
  127. Haid D, Widmayer P, Breer H. 127.  2011. Nutrient sensing receptors in gastric endocrine cells. J. Mol. Histol. 42:355–64 [Google Scholar]
  128. Glendinning JI, Yiin YM, Ackroff K, Sclafani A. 128.  2008. Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiol. Behav. 93:757–65 [Google Scholar]
  129. Avau B, Rotondo A, Thijs T, Andrews CN, Janssen P. 129.  et al. 2015. Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Sci. Rep. 5:15985 [Google Scholar]
  130. Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I. 130.  2011. Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. PNAS 108:2094–99 [Google Scholar]
  131. Fu M, Manchadi ML, De Jager N, Val-Lallet D, Guerin S, Roura E. 131.  2016. Bitter compounds delayed gastric emptying and induced intestinal muscle relaxation in a pig model Presented at 17th Int. Symp. Olfaction Taste Yokohama, Japan:
  132. Hayes JE, Feeney EL, Allen AL. 132.  2013. Do polymorphisms in chemosensory genes matter for human ingestive behavior?. Food Qual. Preference 30:202–16 [Google Scholar]
  133. Kim U, Wooding S, Ricci D, Jorde LB, Drayna D. 133.  2005. Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum. Mutat. 26:199–204 [Google Scholar]
  134. Drayna D. 134.  2005. Human taste genetics. Annu. Rev. Genom. Hum. Genet. 6:217–35 [Google Scholar]
  135. Bufe B, Breslin PAS, Kuhn C, Reed DR, Tharp CD. 135.  et al. 2005. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 15:322–27 [Google Scholar]
  136. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D. 136.  2003. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–25 [Google Scholar]
  137. Risso DS, Mezzavilla M, Pagani L, Robino A, Morini G. 137.  et al. 2016. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary proposal. Sci. Rep. 6:25506 [Google Scholar]
  138. Sandell MA, Breslin PAS. 138.  2006. Variability in a taste-receptor gene determines whether we taste toxins in food. Curr. Biol. 16:792–94 [Google Scholar]
  139. Duffy VB, Davidson AC, Kidd JR, Kidd KK, Speed WC. 139.  et al. 2004. Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake. Alcohol Clin. Exp. Res. 28:1629–37 [Google Scholar]
  140. Tepper BJ, Koelliker Y, Zhao L, Ullrich NV, Lanzara C. 140.  et al. 2008. Variation in the bitter-taste receptor gene TAS2R38, and adiposity in a genetically isolated population in Southern Italy. Obesity 16:2289–95 [Google Scholar]
  141. Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A. 141.  et al. 2012. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Investig. 122:4145–59 [Google Scholar]
  142. Akao H, Polisecki E, Kajinami K, Trompet S, Robertson M. 142.  et al. 2012. KIF6, LPA, TAS2R50, and VAMP8 genetic variation, low density lipoprotein cholesterol lowering response to pravastatin, and heart disease risk reduction in the elderly. Atherosclerosis 220:456–62 [Google Scholar]
  143. Campa D, Vodicka P, Pardini B, Naccarati A, Carrai M. 143.  et al. 2010. A gene-wide investigation on polymorphisms in the taste receptor 2R14 (TAS2R14) and susceptibility to colorectal cancer. BMC Med. Genet. 11:88 [Google Scholar]
  144. Kim UK, Wooding S, Riaz N, Jorde LB, Drayna D. 144.  2006. Variation in the human TAS1R taste receptor genes. Chem. Senses 31:599–611 [Google Scholar]
  145. Shigemura N, Shirosaki S, Sanematsu K, Yoshida R, Ninomiya Y. 145.  2009. Genetic and molecular basis of individual differences in human umami taste perception. PLOS ONE 4:e6717 [Google Scholar]
  146. Eny KM, Wolever TM, Corey PN, El-Sohemy A. 146.  2010. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am. J. Clin. Nutr. 92:1501–10 [Google Scholar]
  147. Ramos-Lopez O, Panduro A, Martinez-Lopez E, Roman S. 147.  2016. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico. Nutrients 8:101 [Google Scholar]
  148. Dias AG, Eny KM, Cockburn M, Chiu W, Nielsen DE. 148.  et al. 2015. Variation in the TAS1R2 gene, sweet taste perception and intake of sugars. J. Nutrigenetics Nutrigenomics 8:81–90 [Google Scholar]
  149. Nie Y, Vigues S, Hobbs JR, Conn GL, Munger SD. 149.  2005. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr. Biol. 15:1948–52 [Google Scholar]
  150. Reed DR, Li S, Li X, Huang L, Tordoff MG. 150.  et al. 2004. Polymorphisms in the taste receptor gene (TAS1R3) region are associated with saccharin preference in 30 mouse strains. J. Neurosci. 24:938–46 [Google Scholar]
  151. Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D. 151.  2009. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr. Biol. 19:1288–93 [Google Scholar]
  152. Fushan AA, Simons CT, Slack JP, Drayna D. 152.  2010. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. Chem. Senses 35:579–92 [Google Scholar]
  153. Roudnitzky N, Risso D, Drayna D, Behrens M, Meyerhof W, Wooding SP. 153.  2016. Copy number variation in TAS2R bitter taste receptor genes: structure, origin, and population genetics. Chem. Senses 41:649–59 [Google Scholar]
  154. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM. 154.  et al. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–73 [Google Scholar]
  155. Clop A, Sharaf A, Castelló A, Ramos-Onsins S, Cirera S. 155.  et al. 2016. Identification of protein-damaging mutations in 10 swine taste receptors and 191 appetite-reward genes. BMC Genom 17:685 [Google Scholar]
  156. Ribani A, Bertolini F, Schiavo G, Scotti E, Utzeri VJ. 156.  et al. 2017. Next generation semiconductor based sequencing of bitter taste receptor genes in different pig populations and association analysis using a selective DNA pool-seq approach. Anim. Genet. 48:97–102 [Google Scholar]
  157. Richard D. 157.  2015. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 11:489–501 [Google Scholar]
  158. Blundell JE, Levin F, King NA, Barkeling B, Gustafson T. 158.  et al. 2008. Overconsumption and obesity: peptides and susceptibility to weight gain. Regul. Pept. 149:32–38 [Google Scholar]
  159. Stark R, Reichenbach A, Andrews ZB. 159.  2015. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis. Mol. Cell. Endocrinol. 418:9–16 [Google Scholar]
  160. Overduin J, Frayo RS, Grill HJ, Kaplan JM, Cummings DE. 160.  2005. Role of the duodenum and macronutrient type in ghrelin regulation. Endocrinology 146:845–50 [Google Scholar]
  161. Cummings DE. 161.  2015. Taste and the regulation of food intake: It's not just about flavor. Am. J. Clin. Nutr. 102:717–18 [Google Scholar]
  162. Depoortere I. 162.  2014. Taste receptors of the gut: emerging roles in health and disease. Gut 63:179–90 [Google Scholar]
  163. Sclafani A, Ackroff K. 163.  2012. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302:1119–33 [Google Scholar]
  164. Clouard C, Chataignier M, Meunier-Salaün M-C, Val-Laillet D. 164.  2012. Flavour preference acquired via a beverage-induced conditioning and its transposition to solid food: Sucrose but not maltodextrin or saccharin induced significant flavour preferences in pigs. Appl. Anim. Behav. Sci. 136:26–36 [Google Scholar]
  165. Clouard C, Jouhanneau M, Meunier-Salaün M-C, Malbert C-H, Val-Laillet D. 165.  2012. Exposures to conditioned flavours with different hedonic values induce contrasted behavioural and brain responses in pigs. PLOS ONE 7:e37968 [Google Scholar]
  166. Sclafani A. 166.  2013. Gut-brain nutrient signaling: appetition versus satiation. Appetite 71:454–58 [Google Scholar]
  167. Berthoud HR. 167.  2008. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20:64–72 [Google Scholar]
  168. Zukerman S, Ackroff K, Sclafani A. 168.  2013. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305:840–53 [Google Scholar]
  169. Foster SR, Porrello ER, Purdue B, Chan H-W, Voigt A. 169.  et al. 2013. Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart. PLOS ONE 8:e64579 [Google Scholar]
  170. Bell KI, Tepper BJ. 170.  2006. Short-term vegetable intake by young children classified by 6-n-propylthoiuracil bitter-taste phenotype. Am. J. Clin. Nutr. 84:245–51 [Google Scholar]
  171. Shafaie Y, Koelliker Y, Hoffman DJ, Tepper BJ. 171.  2013. Energy intake and diet selection during buffet consumption in women classified by the 6-n-propylthiouracil bitter taste phenotype. Am. J. Clin. Nutr. 98:1583–91 [Google Scholar]
  172. Newman L, Haryono R, Keast R. 172.  2013. Functionality of fatty acid chemoreception: A potential factor in the development of obesity?. Nutrients 5:1287–300 [Google Scholar]
  173. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RSJ. 173.  2010. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br. J. Nutr. 104:145–52 [Google Scholar]
  174. Tucker RM, Edlinger C, Craig BA, Mattes RD. 174.  2014. Associations between BMI and fat taste sensitivity in humans. Chem. Senses 39:349–57 [Google Scholar]
  175. Dando R. 175.  2010. Endogenous peripheral neuromodulators of the mammalian taste bud. J. Neurophysiol. 104:1835–37 [Google Scholar]
  176. Bartoshuk LM, Duffy VB, Hayes JE, Moskowitz HR, Snyder DJ. 176.  2006. Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives. Philos. Trans. R. Soc. B Biol. Sci. 361:1137–48 [Google Scholar]
  177. Chevrot M, Bernard A, Ancel D, Buttet M, Martin C. 177.  et al. 2013. Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. J. Lipid Res. 54:2485–94 [Google Scholar]
  178. Stewart JE, Seimon RV, Otto B, Keast RS, Clifton PM, Feinle-Bisset C. 178.  2011. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am. J. Clin. Nutr. 93:703–11 [Google Scholar]
  179. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW. 179.  et al. 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334:292–95 [Google Scholar]
  180. Nakamura Y, Sanematsu K, Ohta R, Shirosaki S, Koyano K. 180.  et al. 2008. Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels. Diabetes 57:2661–65 [Google Scholar]
  181. Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y. 181.  2000. Leptin as a modulator of sweet taste sensitivities in mice. PNAS 97:11044–49 [Google Scholar]
  182. Shigemura N, Ohta R, Kusakabe Y, Miura H, Hino A. 182.  et al. 2004. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 145:839–47 [Google Scholar]
  183. Finger TE, Böttger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL. 183.  2003. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. PNAS 100:8981–86 [Google Scholar]
  184. Saunders CJ, Christensen M, Finger TE, Tizzano M. 184.  2014. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. PNAS 111:6075–80 [Google Scholar]
  185. Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP. 185.  et al. 2010. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. PNAS 107:3210–15 [Google Scholar]
  186. Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T. 186.  et al. 2011. Cholinergic chemosensory cells in the trachea regulate breathing. PNAS 108:9478–83 [Google Scholar]
  187. Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. 187.  2009. Motile cilia of human airway epithelia are chemosensory. Science 325:1131–34 [Google Scholar]
  188. Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B. 188.  et al. 2014. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Investig. 124:1393–405 [Google Scholar]
  189. Deshpande DA, Wang WCH, McIlmoyle EL, Robinett KS, Schillinger RM. 189.  et al. 2010. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16:1299–304 [Google Scholar]
  190. An SS, Robinett KS, Deshpande DA, Wang WC, Liggett SB. 190.  2012. Reply to: Activation of BK channels may not be required for bitter tastant-induced bronchodilation. Nat. Med. 18:650–51 [Google Scholar]
  191. Belvisi MG, Dale N, Birrell MA, Canning BJ. 191.  2011. Bronchodilator activity of bitter tastants in human tissue. Nat. Med. 17:776–78 [Google Scholar]
  192. Morice AH, Bennett RT, Chaudhry MA, Cowen ME, Griffin SC, Loubani M. 192.  2011. Effect of bitter tastants on human bronchi. Nat. Med. 17:775 [Google Scholar]
  193. Zhang C-H, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, ZhuGe R. 193.  2013. The cellular and molecular basis of bitter tastant-induced bronchodilation. PLOS Biol 11:e1001501 [Google Scholar]
  194. Zhang CH, Chen C, Lifshitz LM, Fogarty KE, Zhu MS, ZhuGe R. 194.  2012. Activation of BK channels may not be required for bitter tastant-induced bronchodilation. Nat. Med. 18:648–50 [Google Scholar]
  195. Wauson EM, Zaganjor E, Cobb MH. 195.  2013. Amino acid regulation of autophagy through the GPCR TAS1R1-TAS1R3. Autophagy 9:418–19 [Google Scholar]
  196. Wauson EM, Zaganjor E, Lee AY, Guerra ML, Ghosh AB. 196.  et al. 2012. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol. Cell 47:851–62 [Google Scholar]
  197. Foster SR, Porrello ER, Stefani M, Smith NJ, Molenaar P. 197.  et al. 2015. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation. Naunyn-Schmiedeberg's Arch. Pharmacol. 388:1009–27 [Google Scholar]
  198. Csont T, Murlasits Z, Menesi D, Kelemen JZ, Bencsik P. 198.  et al. 2015. Tissue-specific gene expression in rat hearts and aortas in a model of vascular nitrate tolerance. J. Cardiovasc. Pharmacol. 65:485–93 [Google Scholar]
  199. Raipuria M, Hardy GO, Bahari H, Morris MJ. 199.  2015. Maternal obesity regulates gene expression in the hearts of offspring. Nutr. Metab. Cardiovasc. Dis. 25:881–88 [Google Scholar]
  200. Manson ML, Safholm J, Al-Ameri M, Bergman P, Orre AC. 200.  et al. 2014. Bitter taste receptor agonists mediate relaxation of human and rodent vascular smooth muscle. Eur. J. Pharmacol. 740:302–11 [Google Scholar]
  201. Upadhyaya JD, Singh N, Sikarwar AS, Chakraborty R, Pydi SP. 201.  et al. 2014. Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction. PLOS ONE 9:e110373 [Google Scholar]
  202. Clark AA, Dotson CD, Elson AE, Voigt A, Boehm U. 202.  et al. 2015. TAS2R bitter taste receptors regulate thyroid function. FASEB J 29:164–72 [Google Scholar]
  203. Liu X, Gu F, Jiang L, Chen F, Li F. 203.  2015. Expression of bitter taste receptor TAS2R105 in mouse kidney. Biochem. Biophys. Res. Commun. 458:733–38 [Google Scholar]
  204. Rajkumar P, Aisenberg WH, Acres OW, Protzko RJ, Pluznick JL. 204.  2014. Identification and characterization of novel renal sensory receptors. PLOS ONE 9:e111053 [Google Scholar]
  205. Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D. 205.  2015. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J. Leukoc. Biol. 97:533–45 [Google Scholar]
  206. Orsmark-Pietras C, James A, Konradsen JR, Nordlund B, Soderhall C. 206.  et al. 2013. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur. Respir. J. 42:65–78 [Google Scholar]
  207. Lee N, Jung YS, Lee HY, Kang N, Park YJ. 207.  et al. 2014. Mouse neutrophils express functional umami taste receptor T1R1/T1R3. BMB Rep 47:649–54 [Google Scholar]
  208. Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T. 208.  et al. 2012. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483:350–54 [Google Scholar]
  209. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H. 209.  et al. 2010. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–98 [Google Scholar]
  210. Max M, Shanker YG, Huang LQ, Rong M, Liu Z. 210.  et al. 2001. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat. Genet. 28:58–63 [Google Scholar]
  211. Ren X, Zhou L, Terwilliger R, Newton SS, de Araujo IE. 211.  2009. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Neurosci. 3:12 [Google Scholar]
  212. Shin Y-J, Park J-H, Choi J-S, Chun M-H, Moon Y, Lee M-Y. 212.  2010. Enhanced expression of the sweet taste receptors and alpha-gustducin in reactive astrocytes of the rat hippocampus following ischemic injury. Neurochem. Res. 35:1628–34 [Google Scholar]
  213. Dehkordi O, Rose JE, Fatemi M, Allard JS, Balan KV. 213.  et al. 2012. Neuronal expression of bitter taste receptors and downstream signaling molecules in the rat brainstem. Brain Res 1475:1–10 [Google Scholar]
  214. Singh N, Vrontakis M, Parkinson F, Chelikani P. 214.  2011. Functional bitter taste receptors are expressed in brain cells. Biochem. Biophys. Res. Commun. 406:146–51 [Google Scholar]
  215. Li F, Zhou M. 215.  2012. Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice. Mol. Hum. Reprod. 18:289–97 [Google Scholar]
  216. Meyer D, Voigt A, Widmayer P, Borth H, Huebner S. 216.  et al. 2012. Expression of Tas1 taste receptors in mammalian spermatozoa: functional role of Tas1r1 in regulating basal Ca2+ and cAMP concentrations in spermatozoa. PLOS ONE 7:e32354 [Google Scholar]
  217. Mosinger B, Redding KM, Parker MR, Yevshayeva V, Yee KK. 217.  et al. 2013. Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility. PNAS 110:12319–24 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error