1932

Abstract

Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-051721-023724
2022-02-15
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-051721-023724.html?itemId=/content/journals/10.1146/annurev-animal-051721-023724&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Maclachlan NJ. 2011. Bluetongue: history, global epidemiology, and pathogenesis. Prev. Vet. Med. 102:2107–11
    [Google Scholar]
  2. 2. 
    Coetzee P, Stokstad M, Venter EH, Myrmel M, Van Vuuren M. 2012. Bluetongue: a historical and epidemiological perspective with the emphasis on South Africa. Virol. J. 9:198
    [Google Scholar]
  3. 3. 
    Maclachlan NJ, Drew CP, Darpel KE, Worwa G. 2009. The pathology and pathogenesis of bluetongue. J. Comp. Pathol. 141:11–16
    [Google Scholar]
  4. 4. 
    Hutcheon D. 1881. Fever of epizootic cattarrh. Rep. Coll. Vet. Surg. 1880:12–15
    [Google Scholar]
  5. 5. 
    Hutcheon D. 1902. Malarial catarrhal fever of sheep. Vet. Res. 14:629–33
    [Google Scholar]
  6. 6. 
    Spreull J. 1905. Malarial catarrhal fever (bluetongue) of sheep in South Africa. J. Comp. Pathol. Ther. 18:321–37
    [Google Scholar]
  7. 7. 
    Du Toit RM. 1944. The transmission of blue-tongue and horse sickness by Culicoides. Onderstepoort J. Vet. Anim. Ind. 19:1/27–16
    [Google Scholar]
  8. 8. 
    Theiler A. 1908. The inoculation of sheep against bluetongue and the results in practice. Vet. J. 64:12600–7
    [Google Scholar]
  9. 9. 
    Neitz WO. 1948. Immunological studies on bluetongue in sheep. Onderstepoort J. Vet. Anim. Ind. 23:93–136
    [Google Scholar]
  10. 10. 
    Maan S, Maan NS, Belaganahalli MN, Rao PP, Singh KP et al. 2015. Full-genome sequencing as a basis for molecular epidemiology studies of bluetongue virus in India. PLOS ONE 10:6e0131257
    [Google Scholar]
  11. 11. 
    Wright M. 2013. Serological and genetic characterisation of putative new serotypes of bluetongue virus and epizootic haemorrhagic disease virus isolated from an alpaca Diss. Thesis North-West Univ. Potchefstroom Campus, Potchefstroom, S. Afr.:
    [Google Scholar]
  12. 12. 
    Purse BV, Mellor PS, Rogers DJ, Samuel AR, Mertens PPC, Baylis M. 2005. Climate change and the recent emergence of bluetongue in Europe. Nat. Rev. Microbiol. 3:2171–81
    [Google Scholar]
  13. 13. 
    Mayo C, McDermott E, Kopanke J, Stenglein M, Lee J et al. 2020. Ecological dynamics impacting bluetongue virus transmission in North America. Front. Vet. Sci. 7:186
    [Google Scholar]
  14. 14. 
    Maclachlan NJ. 2010. Global implications of the recent emergence of bluetongue virus in Europe. Vet. Clin. N. Am. Food Anim. Pract. 26:1163–71
    [Google Scholar]
  15. 15. 
    Tabachnick WJ. 2004. Culicoides and the global distribution of bluetongue virus infections. Vet. Ital. 40:145–50
    [Google Scholar]
  16. 16. 
    Clavijo A, Munroe F, Zhou EM, Booth TF, Roblesky K. 2000. Incursion of bluetongue virus into the Okanagan Valley, British Columbia. Can. Vet. J. 41:4312–14
    [Google Scholar]
  17. 17. 
    Lundervold M, Milner-Gulland EJ, O'Callaghan CJ, Hamblin C. 2003. First evidence of bluetongue virus in Kazakhstan. Vet. Microbiol. 92:3281–87
    [Google Scholar]
  18. 18. 
    Wilson AJ, Mellor PS. 2009. Bluetongue in Europe: past, present and future. Philos. Trans. R. Soc. Lond. B 364:15302669–81
    [Google Scholar]
  19. 19. 
    Toussaint JF, Sailleau C, Mast J, Houdart P, Czaplicki G et al. 2007. Bluetongue in Belgium, 2006. Emerg. Infect. Dis. 13:4614–16
    [Google Scholar]
  20. 20. 
    Darpel KE, Batten CA, Veronesi E, Shaw AE, Anthony S et al. 2007. Clinical signs and pathology shown by British sheep and cattle infected with bluetongue virus serotype 8 derived from the 2006 outbreak in northern Europe. Vet. Rec. 161:8253–61
    [Google Scholar]
  21. 21. 
    Belbis G, Bréard E, Cordonnier N, Moulin V, Desprat A et al. 2013. Evidence of transplacental transmission of bluetongue virus serotype 8 in goats. Vet. Microbiol. 166:3–4394–404
    [Google Scholar]
  22. 22. 
    Desmecht D, Vanden Bergh R, Sartelet A, Leclerc M, Mignot C et al. 2008. Evidence for transplacental transmission of the current wild-type strain of bluetongue virus serotype 8 in cattle. Vet. Rec. 163:250–52
    [Google Scholar]
  23. 23. 
    Wilson A, Mellor P 2008. Bluetongue in Europe: vectors, epidemiology and climate change. Parasitol. Res. 103:Suppl.S69–77
    [Google Scholar]
  24. 24. 
    Hoogendam K. 2007. International Study on the Economic Consequences of Outbreaks of Bluetongue Serotype 8 in North-Western Europe Leeuwarden, Neth: Van Hall Inst.
    [Google Scholar]
  25. 25. 
    Miller MM, Brown J, Cornish T, Johnson G, Mecham JO et al. 2010. Investigation of a bluetongue disease epizootic caused by bluetongue virus serotype 17 in sheep in Wyoming. J. Am. Vet. Med. Assoc. 237:8955–59
    [Google Scholar]
  26. 26. 
    Stevens G, McCluskey B, King A, O'Hearn E, Mayr G. 2015. Review of the 2012 epizootic hemorrhagic disease outbreak in domestic ruminants in the United States. PLOS ONE 10:8e0133359
    [Google Scholar]
  27. 27. 
    Ruder MG, Lysyk TJ, Stallknecht DE, Foil LD, Johnson DJ et al. 2015. Transmission and epidemiology of bluetongue and epizootic hemorrhagic disease in North America: current perspectives, research gaps, and future directions. Vector-Borne Zoonotic Dis. 15:6348–63
    [Google Scholar]
  28. 28. 
    Philips R. 2015. Fish and Game confirms outbreak of bluetongue disease in whitetails Press Rel., Oct. 6 Ida. Dep. Fish Game Boise: https://idfg.idaho.gov/press/fish-and-game-confirms-outbreak-bluetongue-disease-whitetails
    [Google Scholar]
  29. 29. 
    Brenner J, Oura C, Asis I, Maan S, Elad D et al. 2010. Multiple serotypes of bluetongue virus in sheep and cattle, Israel. Emerg. Infect. Dis. 16:122003–4
    [Google Scholar]
  30. 30. 
    White JR, Williams DT, Wang J, Chen H, Melville LF et al. 2019. Identification and genomic characterization of the first isolate of bluetongue virus serotype 5 detected in Australia. Vet. Med. Sci. 5:2129–45
    [Google Scholar]
  31. 31. 
    Schirtzinger EE, Jasperson DC, Ostlund EN, Johnson DJ, Wilson WC 2018. Recent US bluetongue virus serotype 3 isolates found outside of Florida indicate evidence of reassortment with co-circulating endemic serotypes. J. Gen. Virol. 99:2157–68
    [Google Scholar]
  32. 32. 
    Maclachlan NJ, Zientara S, Wilson WC, Richt JA, Savini G. 2019. Bluetongue and epizootic hemorrhagic disease viruses: recent developments with these globally re-emerging arboviral infections of ruminants. Curr. Opin. Virol. 34:56–62
    [Google Scholar]
  33. 33. 
    Foxi C, Delrio G, Falchi G, Marche MG, Satta G, Ruiu L. 2016. Role of different Culicoides vectors (Diptera: Ceratopogonidae) in bluetongue virus transmission and overwintering in Sardinia (Italy). Parasites Vectors 9:440
    [Google Scholar]
  34. 34. 
    Borkent A. 2016. World species of biting midges (Diptera: Ceratopogonidae) https://www.inhs.illinois.edu/files/4514/6410/0252/CeratopogonidaeCatalog.pdf
    [Google Scholar]
  35. 35. 
    Meiswinkel R, Gomulski LM, Delécolle J-C, Goffredo M, Gasperi G 2004. The taxonomy of Culicoides vector complexes—unfinished business. Vet. Ital. 40:3151–59
    [Google Scholar]
  36. 36. 
    Purse BV, Carpenter S, Venter GJ, Bellis G, Mullens BA. 2015. Bionomics of temperate and tropical Culicoides midges: knowledge gaps and consequences for transmission of Culicoides-borne viruses. Annu. Rev. Entomol. 60:373–92
    [Google Scholar]
  37. 37. 
    Vigil SL, Ruder MG, Shaw D, Wlodkowski J, Garrett K et al. 2018. Apparent range expansion of Culicoides (Hoffmania) insignis (Diptera: Ceratopogonidae) in the Southeastern United States. J. Med. Entomol. 55:41043–46
    [Google Scholar]
  38. 38. 
    Venter GJ, Paweska JT, Van Dijk AA, Mellor PS, Tabachnick WJ. 1998. Vector competence of Culicoides bolitinos and C. imicola for South African bluetongue virus serotypes 1, 3 and 4. Med. Vet. Entomol. 12:4378–85
    [Google Scholar]
  39. 39. 
    Takken W, Verhulst N, Scholte EJ, Jacobs F, Jongema Y, van Lammeren R. 2008. The phenology and population dynamics of Culicoides spp. in different ecosystems in the Netherlands. Prev. Vet. Med. 87:1–241–54
    [Google Scholar]
  40. 40. 
    McGregor BL, Stenn T, Sayler KA, Blosser EM, Blackburn JK et al. 2019. Host use patterns of Culicoides spp. biting midges at a big game preserve in Florida, U.S.A., and implications for the transmission of orbiviruses. Med. Vet. Entomol. 33:1110–20
    [Google Scholar]
  41. 41. 
    McGregor BL, Blackburn JK, Wisely SM, Burkett-Cadena ND. 2021. Culicoides (Diptera: Ceratopogonidae) communities differ between a game preserve and nearby natural areas in northern Florida. J. Med. Entomol. 58:1450–57
    [Google Scholar]
  42. 42. 
    Bartsch S, Bauer B, Wiemann A, Clausen PH, Steuber S. 2009. Feeding patterns of biting midges of the Culicoides obsoletus and Culicoides pulicaris groups on selected farms in Brandenburg, Germany. Parasitol. Res. 105:2373–80
    [Google Scholar]
  43. 43. 
    Hopken MW, Ryan BM, Huyvaert KP, Piaggio AJ. 2017. Picky eaters are rare: DNA-based blood meal analysis of Culicoides (Diptera: Ceratopogonidae) species from the United States. Parasites Vectors 10:169
    [Google Scholar]
  44. 44. 
    Kirkeby C, Bødker R, Stockmarr A, Lind P, Heegaard PMH 2013. Quantifying dispersal of European Culicoides (Diptera: Ceratopogonidae) vectors between farms using a novel mark-release-recapture technique. PLOS ONE 8:4e61269
    [Google Scholar]
  45. 45. 
    Sanders CJ, Harrup LE, Tugwell LA, Brugman VA, England M, Carpenter S. 2017. Quantification of within- and between-farm dispersal of Culicoides biting midges using an immunomarking technique. J. Appl. Ecol. 54:51429–39
    [Google Scholar]
  46. 46. 
    Rigot T, Vercauteren Drubbel M, Delécolle JC, Gilbert M 2013. Farms, pastures and woodlands: the fine-scale distribution of Palearctic Culicoides spp. biting midges along an agro-ecological gradient. Med. Vet. Entomol. 27:129–38
    [Google Scholar]
  47. 47. 
    Guichard S, Guis HLN, Tran A, Garros C, Balenghien T, Kriticos DJ. 2014. Worldwide niche and future potential distribution of Culicoides imicola, a major vector of bluetongue and African horse sickness viruses. PLOS ONE 9:11e112491
    [Google Scholar]
  48. 48. 
    Jacquet S, Huber K, Pagès N, Talavera S, Burgin LE et al. 2016. Range expansion of the bluetongue vector, Culicoides imicola, in continental France likely due to rare wind-transport events. Sci. Rep. 6:27247
    [Google Scholar]
  49. 49. 
    Samal SK, el-Hussein A, Holbrook FR, Beaty BJ, Ramig RF. 1987. Mixed infection of Culicoides variipennis with bluetongue virus serotypes 10 and 17: evidence for high frequency reassortment in the vector. J. Gen. Virol. 68:92319–29
    [Google Scholar]
  50. 50. 
    Vogels CBF, Rückert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. 2019. Arbovirus coinfection and co-transmission: A neglected public health concern?. PLOS Biol 17:1e3000130
    [Google Scholar]
  51. 51. 
    Rückert C, Weger-Lucarelli J, Garcia-Luna SM, Young MC, Byas AD et al. 2017. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat. Commun. 8:15412
    [Google Scholar]
  52. 52. 
    Reinert JF, Harbach RE, Kitching IJ. 2004. Phylogeny and classification of Aedini (Diptera: Culicidae), based on morphological characters of all life stages. Zool. J. Linn. Soc. 142:3289–368
    [Google Scholar]
  53. 53. 
    Augot D, Mathieu B, Hadj-Henni L, Barriel V, Zapata Mena S et al. 2017. Molecular phylogeny of 42 species of Culicoides (Diptera, Ceratopogonidae) from three continents. Parasite 24:23
    [Google Scholar]
  54. 54. 
    Roy P. 2017. Bluetongue virus structure and assembly. Curr. Opin. Virol. 24:115–23
    [Google Scholar]
  55. 55. 
    Roy P. 2008. Bluetongue virus: dissection of the polymerase complex. J. Gen. Virol. 89:91789–804
    [Google Scholar]
  56. 56. 
    Forzan M, Marsh M, Roy P. 2007. Bluetongue virus entry into cells. J. Virol. 81:94819–27
    [Google Scholar]
  57. 57. 
    Zhang X, Patel A, Celma CC, Yu X, Roy P, Zhou ZH 2016. Atomic model of a nonenveloped virus reveals pH sensors for a coordinated process of cell entry. Nat. Struct. Mol. Biol. 23:174–80
    [Google Scholar]
  58. 58. 
    Kar AK, Iwatani N, Roy P. 2005. Assembly and intracellular localization of the bluetongue virus core protein VP3. J. Virol. 79:1711487–95
    [Google Scholar]
  59. 59. 
    Patel A, Roy P 2014. The molecular biology of bluetongue virus replication. Virus Res 182:5–20
    [Google Scholar]
  60. 60. 
    Kerviel A, Ge P, Lai M, Jih J, Boyce M et al. 2019. Atomic structure of the translation regulatory protein NS1 of bluetongue virus. Nat. Microbiol. 4:5837–45
    [Google Scholar]
  61. 61. 
    Boyce M, Celma CCP, Roy P. 2012. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis. Virol. J. 9:178
    [Google Scholar]
  62. 62. 
    Kar AK, Bhattacharya B, Roy P. 2007. Bluetongue virus RNA binding protein NS2 is a modulator of viral replication and assembly. BMC Mol. Biol. 8:4
    [Google Scholar]
  63. 63. 
    Lymperopoulos K, Noad R, Tosi S, Nethisinghe S, Brierley I, Roy P. 2006. Specific binding of Bluetongue virus NS2 to different viral plus-strand RNAs. Virology 353:117–26
    [Google Scholar]
  64. 64. 
    Han Z, Harty RN 2004. The NS3 protein of bluetongue virus exhibits viroporin-like properties. J. Biol. Chem. 279:4143092–97
    [Google Scholar]
  65. 65. 
    Labadie T, Sullivan E, Roy P. 2020. Multiple routes of bluetongue virus egress. Microorganisms 8:7965
    [Google Scholar]
  66. 66. 
    Sung PY, Roy P. 2014. Sequential packaging of RNA genomic segments during the assembly of bluetongue virus. Nucleic Acids Res. 42:2213824–38
    [Google Scholar]
  67. 67. 
    Fajardo T, Sung PY, Roy P 2015. Disruption of specific RNA-RNA interactions in a double-stranded RNA virus inhibits genome packaging and virus infectivity. PLOS Pathog. 11:12e1005321
    [Google Scholar]
  68. 68. 
    Boyce M, McCrae MA. 2015. Rapid mapping of functional cis-acting RNA elements by recovery of virus from a degenerate RNA population: application to genome segment 10 of bluetongue virus. J. Gen. Virol. 96:103072–82
    [Google Scholar]
  69. 69. 
    Boyce M, McCrae MA, Boyce P, Kim JT 2016. Inter-segment complementarity in orbiviruses: A driver for co-ordinated genome packaging in the Reoviridae?. J. Gen. Virol. 97:51145–57
    [Google Scholar]
  70. 70. 
    Silverstein SC, Schonberg M, Levin DH, Acs G. 1970. The reovirus replicative cycle: conservation of parental RNA and protein. PNAS 67:1275–81
    [Google Scholar]
  71. 71. 
    Mohl BP, Roy P. 2016. Cellular casein kinase 2 and protein phosphatase 2A modulate replication site assembly of bluetongue virus. J. Biol. Chem. 291:2814566–74
    [Google Scholar]
  72. 72. 
    Steinhauer DA, Domingo E, Holland JJ 1992. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122:2281–88
    [Google Scholar]
  73. 73. 
    Andino R, Domingo E 2015. Viral quasispecies. Virology 479–80:46–51
    [Google Scholar]
  74. 74. 
    Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S 1982. Rapid evolution of RNA genomes. Science 215:45401577–85
    [Google Scholar]
  75. 75. 
    Drake JW, Holland JJ. 1999. Mutation rates among RNA viruses. PNAS 96:2413910–13
    [Google Scholar]
  76. 76. 
    Lauring AS, Andino R. 2010. Quasispecies theory and the behavior of RNA viruses. PLOS Pathog. 6:7e1001005
    [Google Scholar]
  77. 77. 
    Dow N, Chernick A, Orsel K, Van Marle G, Van Der Meer F. 2015. Genetic variability of bovine viral diarrhea virus and evidence for a possible genetic bottleneck during vertical transmission in persistently infected cattle. PLOS ONE 10:7e0131972
    [Google Scholar]
  78. 78. 
    Ward CD, Flanegan JB. 1992. Determination of the poliovirus RNA polymerase error frequency at eight sites in the viral genome. J. Virol. 66:63784–93
    [Google Scholar]
  79. 79. 
    Elena SF, Moya A 1999. Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J. Evol. Biol. 12:61078–88
    [Google Scholar]
  80. 80. 
    Elena SF, González-Candelas F, Novella IS, Duarte EA, Clarke DK et al. 1996. Evolution of fitness in experimental populations of vesicular stomatitis virus. Genetics 142:3673–79
    [Google Scholar]
  81. 81. 
    Escarmís C, Dávila M, Charpentier N, Bracho A, Moya A, Domingo E 1996. Genetic lesions associated with Muller's ratchet in an RNA virus. J. Mol. Biol. 264:2255–67
    [Google Scholar]
  82. 82. 
    Domingo E. 2000. Viruses at the edge of adaptation. Virology 270:2251–53
    [Google Scholar]
  83. 83. 
    Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. 2010. Viral mutation rates. J. Virol. 84:199733–48
    [Google Scholar]
  84. 84. 
    Peck KM, Lauring AS. 2018. Complexities of viral mutation rates. J. Virol. 92:14e01031–17
    [Google Scholar]
  85. 85. 
    Gerrish PJ, Colato A, Perelson AS, Sniegowski PD. 2007. Complete genetic linkage can subvert natural selection. PNAS 104:156266–71
    [Google Scholar]
  86. 86. 
    Martín V, Domingo E. 2008. Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol. Biol. Evol. 25:81544–54
    [Google Scholar]
  87. 87. 
    Ciota AT. 2019. The role of co-infection and swarm dynamics in arbovirus transmission. Virus Res. 265:88–93
    [Google Scholar]
  88. 88. 
    Krakauer DC, Plotkin JB. 2002. Redundancy, antiredundancy, and the robustness of genomes. PNAS 99:31405–9
    [Google Scholar]
  89. 89. 
    Elena SF, Sanjuán R 2005. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 79:1811555–58
    [Google Scholar]
  90. 90. 
    Lauring AS, Frydman J, Andino R. 2013. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11:5327–36
    [Google Scholar]
  91. 91. 
    Wilke CO. 2001. Adaptive evolution on neutral networks. Bull. Math. Biol. 63:4715–30
    [Google Scholar]
  92. 92. 
    Schuster P, Swetina J. 1988. Stationary mutant distributions and evolutionary optimization. Bull. Math. Biol. 50:6635–60
    [Google Scholar]
  93. 93. 
    Fitzsimmons WJ, Woods RJ, McCrone JT, Woodman A, Arnold JJ et al. 2018. A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLOS Biol 16:6e2006459
    [Google Scholar]
  94. 94. 
    Acevedo A, Brodsky L, Andino R. 2014. Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505:7485686–90
    [Google Scholar]
  95. 95. 
    Visher E, Whitefield SE, McCrone JT, Fitzsimmons W, Lauring AS. 2016. The mutational robustness of influenza A virus. PLOS Pathog 12:81005856
    [Google Scholar]
  96. 96. 
    Grubaugh ND, Weger-Lucarelli J, Murrieta RA, Fauver JR, Garcia-Luna SM et al. 2016. Genetic drift during systemic arbovirus infection of mosquito vectors leads to decreased relative fitness during host switching. Cell Host Microbe 19:4481–92
    [Google Scholar]
  97. 97. 
    Weger-Lucarelli J, Garcia SM, Rückert C, Byas A, O'Connor SL et al. 2018. Using barcoded Zika virus to assess virus population structure in vitro and in Aedes aegypti mosquitoes. Virology 521:138–48
    [Google Scholar]
  98. 98. 
    Grubaugh ND, Ruckert C, Armstrong PM, Bransfield A, Anderson JF et al. 2016. Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution. Virus Evol 2:2vew033
    [Google Scholar]
  99. 99. 
    Forrester NL, Guerbois M, Seymour RL, Spratt H, Weaver SC. 2012. Vector-borne transmission imposes a severe bottleneck on an RNA virus population. PLOS Pathog 8:91002897
    [Google Scholar]
  100. 100. 
    Fu H, Leake CJ, Mertens PP, Mellor PS. 1999. The barriers to bluetongue virus infection, dissemination and transmission in the vector, Culicoides variipennis (Diptera: Ceratopogonidae). Arch. Virol. 144:4747–61
    [Google Scholar]
  101. 101. 
    Agarwal A, Parida M, Dash PK. 2017. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses. Rev. Med. Virol. 27:5e1941
    [Google Scholar]
  102. 102. 
    Jennings DM, Mellor PS. 1987. Archives of virology variation in the responses of Culicoides variipennis (Diptera, Ceratopogonidae) to oral infection with bluetongue virus. Arch. Virol. 95:177–82
    [Google Scholar]
  103. 103. 
    Mills MK, Michel K, Pfannenstiel RS, Ruder MG, Veronesi E, Nayduch D. 2017. Culicoides-virus interactions: infection barriers and possible factors underlying vector competence. Curr. Opin. Insect Sci. 22:7–15
    [Google Scholar]
  104. 104. 
    Leprince DJ, Higgins JA, Church GE, Issel CJ, McManus JM, Foil LD. 1989. Body size of Culicoides variipennis (Diptera: Ceratopogonidae) in relation to bloodmeal size estimates and the ingestion of Onchocerca cervicalis (Nematoda: Filarioidea) microfiliariae. J. Am. Mosq. Control Assoc. 5:1100–3
    [Google Scholar]
  105. 105. 
    Mills MK, Nayduch D, Michel K 2015. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis. Insect Mol. Biol. 24:1105–14
    [Google Scholar]
  106. 106. 
    Schnettler E, Ratinier M, Watson M, Shaw AE, McFarlane M et al. 2013. RNA interference targets arbovirus replication in Culicoides cells. J. Virol. 87:52441–54
    [Google Scholar]
  107. 107. 
    Brackney DE, Beane JE, Ebel GD. 2009. RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLOS Pathog 5:71000502
    [Google Scholar]
  108. 108. 
    Olson KE, Blair CD. 2015. Arbovirus-mosquito interactions: RNAi pathway. Curr. Opin. Virol. 15:119–26
    [Google Scholar]
  109. 109. 
    Squire KRE, Osburn BI, Chuang RY, Doi RH. 1983. A survey of electropherotype relationships of bluetongue virus isolates from the western United States. J. Gen. Virol. 64:102103–15
    [Google Scholar]
  110. 110. 
    Bonneau KR, Mullens BA, MacLachlan NJ. 2001. Occurrence of genetic drift and founder effect during quasispecies evolution of the VP2 and NS3/NS3A genes of bluetongue virus upon passage between sheep, cattle, and Culicoides sonorensis. J. Virol. 75:178298–305
    [Google Scholar]
  111. 111. 
    Pienaar E, Theron M, Nelson M, Viljoen HJ 2006. A quantitative model of error accumulation during PCR amplification. Comput. Biol. Chem. 30:2102–11
    [Google Scholar]
  112. 112. 
    Orton RJ, Wright CF, Morelli MJ, King DJ, Paton DJ et al. 2015. Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data. BMC Genom. 16:229
    [Google Scholar]
  113. 113. 
    Gould AR, Eaton BT. 1990. The amino acid sequence of the outer coat protein VP2 of neutralizing monoclonal antibody-resistant, virulent and attenuated bluetongue viruses. Virus Res 17:3161–72
    [Google Scholar]
  114. 114. 
    Lean FZX, Neave MJ, White JR, Payne J, Eastwood T et al. 2019. Attenuation of bluetongue virus (BTV) in an in ovo model is related to the changes of viral genetic diversity of cell-culture passaged BTV. Viruses 11:5481
    [Google Scholar]
  115. 115. 
    Escarmís C, Dávila M, Domingo E 1999. Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller's ratchet. J. Mol. Biol. 285:2495–505
    [Google Scholar]
  116. 116. 
    Muller HJ. 1964. The relation of recombination to mutational advance. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1:12–9
    [Google Scholar]
  117. 117. 
    Jacquot M, Rao PP, Yadav S, Nomikou K, Maan S et al. 2019. Contrasting selective patterns across the segmented genome of bluetongue virus in a global reassortment hotspot. Virus Evol 5:227
    [Google Scholar]
  118. 118. 
    Kopanke JH, Lee JS, Stenglein MD, Mayo CE. 2020. The genetic diversification of a single bluetongue virus strain using an in vitro model of alternating-host transmission. Viruses 12:91038
    [Google Scholar]
  119. 119. 
    Carpi G, Holmes EC, Kitchen A. 2010. The evolutionary dynamics of bluetongue virus. J. Mol. Evol. 70:6583–92
    [Google Scholar]
  120. 120. 
    Boyle DB, Amos-Ritchie R, Broz I, Walker PJ, Melville L et al. 2014. Evolution of bluetongue virus serotype 1 in Northern Australia over 30 years. J. Virol. 88:2413981–89
    [Google Scholar]
  121. 121. 
    Nomikou K, Hughes J, Wash R, Kellam P, Breard E et al. 2015. Widespread reassortment shapes the evolution and epidemiology of bluetongue virus following European invasion. PLOS Pathog 11:8e1005056
    [Google Scholar]
  122. 122. 
    Caporale M, Di Gialleonorado L, Janowicz A, Wilkie G, Shaw A et al. 2014. Virus and host factors affecting the clinical outcome of bluetongue virus infection. J. Virol. 88:1810399–411
    [Google Scholar]
  123. 123. 
    Lowen AC. 2018. It's in the mix: Reassortment of segmented viral genomes. PLOS Pathog. 14:9e1007200
    [Google Scholar]
  124. 124. 
    Briese T, Calisher CH, Higgs S. 2013. Viruses of the family Bunyaviridae: Are all available isolates reassortants?. Virology 446:1–2207–16
    [Google Scholar]
  125. 125. 
    Conceição-Neto N, Mesquita JR, Zeller M, Yinda CK, Álvares F et al. 2016. Reassortment among picobirnaviruses found in wolves. Arch. Virol. 161:102859–62
    [Google Scholar]
  126. 126. 
    Steel J, Lowen AC. 2014. Influenza A virus reassortment. Curr. Top. Microbiol. Immunol. 385:377–401
    [Google Scholar]
  127. 127. 
    Campbell E, Wells J, Gray A, Broadbent A 2019. Characterising Birnaviridae replication and reassortment in vitro: Virus factories derived from distinct input viruses form in the cytoplasm of co-infected cells and coalesce over time. Access Microbiol 1:1A294
    [Google Scholar]
  128. 128. 
    Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Tsuji T et al. 2016. Reassortment of human and animal rotavirus gene segments in emerging DS-1-like G1P[8]rotavirus strains. PLOS ONE 11:2e0148416
    [Google Scholar]
  129. 129. 
    Turner PE. 2003. Searching for the advantages of virus sex. Orig. Life Evol. Biosph. 33:195–108
    [Google Scholar]
  130. 130. 
    Ojosnegros S, García-Arriaza J, Escarmís C, Manrubia SC, Perales C et al. 2011. Viral genome segmentation can result from a trade-off between genetic content and particle stability. PLOS Genet 7:31001344
    [Google Scholar]
  131. 131. 
    Gerrard SR, Li L, Barrett AD, Nichol ST 2004. Ngari virus is a Bunyamwera virus reassortant that can be associated with large outbreaks of hemorrhagic fever in Africa. J. Virol. 78:168922–26
    [Google Scholar]
  132. 132. 
    Taubenberger JK, Kash JC. 2010. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7:6440–51
    [Google Scholar]
  133. 133. 
    Ma EJ, Hill NJ, Zabilansky J, Yuan K, Runstadler JA. 2016. Reticulate evolution is favored in influenza niche switching. PNAS 113:195335–39
    [Google Scholar]
  134. 134. 
    Shafiq M, Minakshi P, Bhateja A, Ranjan K, Prasad G. 2013. Evidence of genetic reassortment between Indian isolate of bluetongue virus serotype 21 (BTV-21) and bluetongue virus serotype 16 (BTV-16). Virus Res 173:2336–43
    [Google Scholar]
  135. 135. 
    Batten CA, Maan S, Shaw AE, Maan NS, Mertens PPC. 2008. A European field strain of bluetongue virus derived from two parental vaccine strains by genome segment reassortment. Virus Res 137:156–63
    [Google Scholar]
  136. 136. 
    Youssef L. 2017. Bluetongue in Morocco 2004 to 2015: an overview. J. Infect. Dis. Epidemiol. 3:023
    [Google Scholar]
  137. 137. 
    Samal SK, Livingston CW, McConnell S, Ramig RF. 1987. Analysis of mixed infection of sheep with bluetongue virus serotypes 10 and 17: evidence for genetic reassortment in the vertebrate host. J. Virol. 61:41086–91
    [Google Scholar]
  138. 138. 
    El Hussein A, Ramig RF, Holbrook FR, Beaty BJ. 1989. Asynchronous mixed infection of Culicoides variipennis with bluetongue virus serotypes 10 and 17. J. Gen. Virol. 70:123355–62
    [Google Scholar]
  139. 139. 
    Ramig RF, Garrison C, Chen D, Bell-Robinson D 1989. Analysis of reassortment and superinfection during mixed infection of vero cells with bluetongue virus serotypes 10 and 17. J. Gen. Virol. 70:102595–603
    [Google Scholar]
  140. 140. 
    Stott JL, Oberst RD, Channell MB, Osburn BI. 1987. Genome segment reassortment between two serotypes of bluetongue virus in a natural host. J. Virol. 61:92670–74
    [Google Scholar]
  141. 141. 
    Oberst RD, Stott JL, Blanchard-Channell M, Osburn BI. 1987. Genetic reassortment of bluetongue virus Serotype 11 strains in the bovine. Vet. Microbiol. 15:1–211–18
    [Google Scholar]
  142. 142. 
    Shaw AE, Ratinier M, Nunes SF, Nomikou K, Caporale M et al. 2013. Reassortment between two serologically unrelated bluetongue virus strains is flexible and can involve any genome segment. J. Virol. 87:1543–57
    [Google Scholar]
  143. 143. 
    Zeldovich KB, Liu P, Renzette N, Foll M, Pham ST et al. 2015. Positive selection drives preferred segment combinations during influenza virus reassortment. Mol. Biol. Evol. 32:61519–32
    [Google Scholar]
  144. 144. 
    Kopanke J, Lee J, Stenglein M, Mayo C. 2021. In vitro reassortment between endemic bluetongue viruses features global shifts in segment frequencies and preferred segment combinations. Microorganisms 9:2405
    [Google Scholar]
  145. 145. 
    Graw F, Perelson AS. 2016. Modeling viral spread. Annu. Rev. Virol. 3:555–72
    [Google Scholar]
  146. 146. 
    Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:52551582–86
    [Google Scholar]
  147. 147. 
    Iwami S, Takeuchi JS, Nakaoka S, Mammano F, Clavel F et al. 2015. Cell-to-cell infection by HIV contributes over half of virus infection. eLife 4:e08150
    [Google Scholar]
  148. 148. 
    Best K, Barouch DH, Guedj J, Ribeiro RM, Perelson AS. 2021. Zika virus dynamics: effects of inoculum dose, the innate immune response and viral interference. PLOS Comput. Biol. 17:1e1008564
    [Google Scholar]
  149. 149. 
    Graw F, Balagopal A, Kandathil AJ, Ray SC, Thomas DL et al. 2014. Inferring viral dynamics in chronically HCV infected patients from the spatial distribution of infected hepatocytes. PLOS Comput. Biol. 10:111003934
    [Google Scholar]
  150. 150. 
    Beauchemin CAA, Handel A. 2011. A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health 11:S7
    [Google Scholar]
  151. 151. 
    Ben-Shachar R, Koelle K. 2015. Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections. J. R. Soc. Interface 12:10320140886
    [Google Scholar]
  152. 152. 
    Clapham HE, Tricou V, Van Vinh Chau N, Simmons CP, Ferguson NM. 2014. Within-host viral dynamics of dengue serotype 1 infection. J. R. Soc. Interface 11:9620140094
    [Google Scholar]
  153. 153. 
    Best K, Perelson AS. 2018. Mathematical modeling of within-host Zika virus dynamics. Immunol. Rev. 285:181–96
    [Google Scholar]
  154. 154. 
    Teboh-Ewungkem MI, Yuster T. 2010. A within-vector mathematical model of Plasmodium falciparum and implications of incomplete fertilization on optimal gametocyte sex ratio. J. Theor. Biol. 264:2273–86
    [Google Scholar]
  155. 155. 
    Childs LM, Prosper OF. 2017. Simulating within-vector generation of the malaria parasite diversity. PLOS ONE 12:5e0177941
    [Google Scholar]
  156. 156. 
    Childs LM, Prosper OF. 2020. The impact of within-vector parasite development on the extrinsic incubation period. R. Soc. Open Sci. 7:10192173
    [Google Scholar]
  157. 157. 
    Stopard IJ, Churcher TS, Lambert B. 2021. Estimating the extrinsic incubation period of malaria using a mechanistic model of sporogony. PLOS Comput. Biol. 17:2e1008658
    [Google Scholar]
  158. 158. 
    Perelson AS. 2002. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2:128–36
    [Google Scholar]
  159. 159. 
    Graw F, Perelson AS 2013. Spatial aspects of HIV infection. Mathematical Methods and Models in Biomedicine U Ledzewicz, H Schättler, A Friedman, E Kashdan 3–31 New York: Springer
    [Google Scholar]
  160. 160. 
    Phan D, Wodarz D. 2015. Modeling multiple infection of cells by viruses: challenges and insights. Math. Biosci. 264:121–28
    [Google Scholar]
  161. 161. 
    Dixit NM, Perelson AS. 2005. HIV dynamics with multiple infections of target cells. PNAS 102:238198–203
    [Google Scholar]
  162. 162. 
    Koelle K, Farrell AP, Brooke CB, Ke R. 2019. Within-host infectious disease models accommodating cellular coinfection, with an application to influenza. Virus Evol 5:2vez018
    [Google Scholar]
  163. 163. 
    Wittmann EJ, Mellor PS, Baylis M. 2002. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis. Med. Vet. Entomol. 16:2147–56
    [Google Scholar]
  164. 164. 
    Dou D, Hernández-Neuta I, Wang H, Östbye H, Qian X et al. 2017. Analysis of IAV replication and co-infection dynamics by a versatile RNA viral genome labeling method. Cell Rep 20:1251–63
    [Google Scholar]
  165. 165. 
    Ramig RF. 1990. Superinfecting rotaviruses are not excluded from genetic interactions during asynchronous mixed infections in vitro. Virology 176:1308–10
    [Google Scholar]
  166. 166. 
    Bussiere LD, Choudhury P, Bellaire B, Miller CL. 2017. Characterization of a replicating mammalian orthoreovirus with tetracysteine-tagged μNS for live-cell visualization of viral factories. J. Virol. 91:22e01371-17
    [Google Scholar]
  167. 167. 
    Patton JT, Jones MT, Kalbach AN, He YW, Xiaobo J. 1997. Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J. Virol. 71:129618–26
    [Google Scholar]
  168. 168. 
    Marshall N, Priyamvada L, Ende Z, Steel J, Lowen AC. 2013. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLOS Pathog 9:61003421
    [Google Scholar]
  169. 169. 
    White MC, Steel J, Lowen AC. 2017. Heterologous packaging signals on segment 4, but not segment 6 or segment 8, limit influenza A virus reassortment. J. Virol. 91:11e00195-17
    [Google Scholar]
  170. 170. 
    Tilston-Lunel NL, Shi X, Elliott RM, Acrani GO 2017. The potential for reassortment between Oropouche and Schmallenberg orthobunyaviruses. Viruses 9:8220
    [Google Scholar]
  171. 171. 
    Iroegbu CU, Pringle CR. 1981. Genetic interactions among viruses of the Bunyamwera complex. J. Virol. 37:1383–94
    [Google Scholar]
/content/journals/10.1146/annurev-animal-051721-023724
Loading
/content/journals/10.1146/annurev-animal-051721-023724
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error