1932

Abstract

The equid family contains only one single extant genus, , including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. In recent years, genomic technologies have provided new analytical solutions that have enhanced our understanding of equine evolution, including the species radiation within ; the extinction dynamics of several lineages; and the domestication history of two individual species, the horse and the donkey. Here, we provide an overview of these recent developments and suggest areas for further research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-061220-023118
2021-02-15
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/animal/9/1/annurev-animal-061220-023118.html?itemId=/content/journals/10.1146/annurev-animal-061220-023118&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Moehlman PD 2002. Equids: Zebras, Asses and Horses: Status Survey and Conservation Action Plan Gland, Switz: Int. Union Conserv. Nat.
    [Google Scholar]
  2. 2. 
    Marsh OC. 1879. Polydactyl horses, recent and extinct. Am. J. Sci. Ser. 3 17:102499–505
    [Google Scholar]
  3. 3. 
    MacFadden BJ. 1994. Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  4. 4. 
    Cucchi T, Mohaseb A, Peigné S, Debue K, Orlando L, Mashkour M 2017. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies. R. Soc. Open Sci. 4:4160997
    [Google Scholar]
  5. 5. 
    Vershinina AO, Kapp JD, Baryshnikov GF, Shapiro B 2020. The case of an arctic wild ass highlights the utility of ancient DNA for validating problematic identifications in museum collections. Mol. Ecol. Resourc. 20:51182–90
    [Google Scholar]
  6. 6. 
    Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:5991282–84
    [Google Scholar]
  7. 7. 
    Jónsson H, Schubert M, Seguin-Orlando A, Ginolhac A, Petersen L et al. 2014. Speciation with gene flow in equids despite extensive chromosomal plasticity. PNAS 111:5218655–60
    [Google Scholar]
  8. 8. 
    Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S 2012. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLOS ONE 7:3e34131
    [Google Scholar]
  9. 9. 
    Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S 2001. Ancient DNA. Nat. Rev. Genet. 2:5353–59
    [Google Scholar]
  10. 10. 
    Leonardi M, Librado P, Der Sarkissian C, Schubert M, Alfarhan AH et al. 2017. Evolutionary patterns and processes: lessons from ancient DNA. Syst. Biol. 66:1e1–29
    [Google Scholar]
  11. 11. 
    Orlando L, Gilbert MTP, Willerslev E 2015. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16:7395–408
    [Google Scholar]
  12. 12. 
    Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:745674–78
    [Google Scholar]
  13. 13. 
    Froehlich DJ. 2002. Quo vadis eohippus? The systematics and taxonomy of the early Eocene equids (Perissodactyla). Zool. J. Linn. Soc. 134:2141–256
    [Google Scholar]
  14. 14. 
    MacFadden BJ, Hulbert RC. 1988. Explosive speciation at the base of the adaptive radiation of Miocene grazing horses. Nature 336:6198466–68
    [Google Scholar]
  15. 15. 
    Mihlbachler MC, Rivals F, Solounias N, Semprebon GM 2011. Dietary change and evolution of horses in North America. Science 331:60211178–81
    [Google Scholar]
  16. 16. 
    Semprebon GM, Rivals F, Solounias N, Hulbert RC 2016. Paleodietary reconstruction of fossil horses from the Eocene through Pleistocene of North America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 442:110–27
    [Google Scholar]
  17. 17. 
    Strömberg CAE. 2006. Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32:2236–58
    [Google Scholar]
  18. 18. 
    Janis CM, Bernor RL. 2019. The evolution of equid monodactyly: a review including a new hypothesis. Front. Ecol. Evol. 7:119
    [Google Scholar]
  19. 19. 
    Cantalapiedra JL, Prado JL, Fernández MH, Alberdi MT 2017. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355:6325627–30
    [Google Scholar]
  20. 20. 
    Parker AK, McHorse BK, Pierce SE 2018. Niche modeling reveals lack of broad-scale habitat partitioning in extinct horses of North America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 511:103–18
    [Google Scholar]
  21. 21. 
    Hulbert RC. 1993. Taxonomic evolution in North American Neogene horses (subfamily Equinae): the rise and fall of an adaptive radiation. Paleobiology 19:2216–34
    [Google Scholar]
  22. 22. 
    Macfadden BJ. 1997. Pleistocene horses from Tarija, Bolivia, and validity of the genus †Onohippidium (Mammalia: Equidae). J. Vertebr. Paleontol. 17:1199–218
    [Google Scholar]
  23. 23. 
    Flower BP, Kennett JP. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108:3537–55
    [Google Scholar]
  24. 24. 
    MacFadden BJ. 2005. Fossil horses—evidence for evolution. Science 307:57161728–30
    [Google Scholar]
  25. 25. 
    Lundelius EL, Stevens MS. 1970. Equus francisci Hay, a small stilt-legged horse, Middle Pleistocene of Texas. J. Paleontol. 44:148–53
    [Google Scholar]
  26. 26. 
    O'Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA et al. 2016. Formation of the isthmus of Panama. Sci. Adv. 2:8e1600883
    [Google Scholar]
  27. 27. 
    Prado JL, Martinez-Maza C, Alberdi MT 2015. Megafauna extinction in South America: a new chronology for the Argentine Pampas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 425:41–49
    [Google Scholar]
  28. 28. 
    Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J et al. 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:7373359–64
    [Google Scholar]
  29. 29. 
    Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB 2004. Assessing the causes of late Pleistocene extinctions on the continents. Science 306:569370–75
    [Google Scholar]
  30. 30. 
    Orlando L, Eisenmann V, Reynier F, Sondaar P, Hänni C 2003. Morphological convergence in Hippidion and Equus (Amerhippus) South American equids elucidated by ancient DNA analysis. J. Mol. Evol. 57:1S29–40
    [Google Scholar]
  31. 31. 
    Weinstock J, Willerslev E, Sher A, Tong W, Ho SYW et al. 2005. Evolution, systematics, and phylogeography of Pleistocene horses in the New World: a molecular perspective. PLOS Biol 3:8e241
    [Google Scholar]
  32. 32. 
    MacFadden BJ. 2013. Dispersal of Pleistocene Equus (family Equidae) into South America and calibration of GABI 3 based on evidence from Tarija, Bolivia. PLOS ONE 8:3e59277
    [Google Scholar]
  33. 33. 
    Alberdi MT, Prado JL, Prieto A 2005. Considerations on the paper “Morphological convergence in Hippidion and Equus (Amerhippus) South American equids elucidated by ancient DNA analysis,” by Ludovic Orlando, Véra Eisenmann, Frédéric Reynier, PaulSondaar, Catherine Hänni. J. Mol. Evol. 61:1145–47
    [Google Scholar]
  34. 34. 
    Orlando L, Male D, Alberdi MT, Prado JL, Prieto A et al. 2008. Ancient DNA clarifies the evolutionary history of American late Pleistocene equids. J. Mol. Evol. 66:5533–38
    [Google Scholar]
  35. 35. 
    Der Sarkissian C, Vilstrup JT, Schubert M, Seguin-Orlando A, Eme D et al. 2015. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids. Biol. Lett. 11:320141058
    [Google Scholar]
  36. 36. 
    Vilstrup JT, Seguin-Orlando A, Stiller M, Ginolhac A, Raghavan M et al. 2013. Mitochondrial phylogenomics of modern and ancient equids. PLOS ONE 8:2e55950
    [Google Scholar]
  37. 37. 
    Heintzman PD, Zazula GD, MacPhee RD, Scott E, Cahill JA et al. 2017. A new genus of horse from Pleistocene North America. eLife 6:e29944
    [Google Scholar]
  38. 38. 
    Lindsay EH, Opdyke ND, Johnson NM 1980. Pliocene dispersal of the horse Equus and late Cenozoic mammalian dispersal events. Nature 287:5778135–38
    [Google Scholar]
  39. 39. 
    Rook L, Bernor RL, Avilla LS, Cirilli O, Flynn L et al. 2019. Mammal biochronology (land mammal ages) around the world from late Miocene to middle Pleistocene and major events in horse evolutionary history. Front. Ecol. Evol. 7:278
    [Google Scholar]
  40. 40. 
    Azzaroli A. 1983. Quaternary mammals and the “end-Villafranchian” dispersal event—a turning point in the history of Eurasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 44:1–2117–39
    [Google Scholar]
  41. 41. 
    Forsten A. 1988. Middle Pleistocene replacement of stenonid horses by caballoid horses—ecological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 65:1–223–33
    [Google Scholar]
  42. 42. 
    Forsten A. 1988. The small caballoid horse of the upper Pleistocene and Holocene. J. Anim. Breed. Genet. 105:1–6161–76
    [Google Scholar]
  43. 43. 
    Crees JJ, Turvey ST. 2014. Holocene extinction dynamics of Equus hydruntinus, a late-surviving European megafaunal mammal. Quat. Sci. Rev. 91:16–29
    [Google Scholar]
  44. 44. 
    Nores C, Muñiz AM, Rodríguez LL, Bennett EA, Geigl E-M 2015. The Iberian zebro: What kind of a beast was it. Anthropozoologica 50:121–32
    [Google Scholar]
  45. 45. 
    Burke A, Eisenmann V, Ambler GK 2003. The systematic position of Equus hydruntinus, an extinct species of Pleistocene equid. Quat. Res. 59:3459–69
    [Google Scholar]
  46. 46. 
    Orlando L, Mashkour M, Burke A, Douady CJ, Eisenmann V, Hänni C 2006. Geographic distribution of an extinct equid (Equus hydruntinus: Mammalia, Equidae) revealed by morphological and genetical analyses of fossils. Mol. Ecol. 15:82083–93
    [Google Scholar]
  47. 47. 
    Orlando L, Metcalf JL, Alberdi MT, Telles-Antunes M, Bonjean D et al. 2009. Revising the recent evolutionary history of equids using ancient DNA. PNAS 106:5121754–59
    [Google Scholar]
  48. 48. 
    Bennett EA, Champlot S, Peters J, Arbuckle BS, Guimaraes S et al. 2017. Taming the late Quaternary phylogeography of the Eurasiatic wild ass through ancient and modern DNA. PLOS ONE 12:4e0174216
    [Google Scholar]
  49. 49. 
    Eisenmann V, Sergej V. 2011. Unexpected finding of a new Equus species (Mammalia, Perissodactyla) belonging to a supposedly extinct subgenus in late Pleistocene deposits of Khakassia (Southwestern Siberia). Geodiversitas 33:3519–30
    [Google Scholar]
  50. 50. 
    Yuan J-X, Hou X-D, Barlow A, Preick M, Taron UH et al. 2019. Molecular identification of late and terminal Pleistocene Equus ovodovi from northeastern China. PLOS ONE 14:5e0216883
    [Google Scholar]
  51. 51. 
    Druzhkova AS, Makunin AI, Vorobieva NV, Vasiliev SK, Ovodov ND et al. 2017. Complete mitochondrial genome of an extinct Equus (Sussemionus) ovodovi specimen from Denisova cave (Altai, Russia). Mitochondrial DNA B 2:179–81
    [Google Scholar]
  52. 52. 
    Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature 475:7357493–96
    [Google Scholar]
  53. 53. 
    Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A et al. 2018. Improved de novo genomic assembly for the domestic donkey. Sci. Adv. 4:4eaaq0392
    [Google Scholar]
  54. 54. 
    Rosenbom S, Costa V, Chen S, Khalatbari L, Yusefi GH et al. 2015. Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations. Mol. Phylogenet. Evol. 85:88–96
    [Google Scholar]
  55. 55. 
    Prothero DR, Schoch RM. 2002. Horns, Tusks, and Flippers: The Evolution of Hoofed Mammals Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  56. 56. 
    Sam Y. 2020. African origins of modern asses as seen from paleontology and DNA: What about the Atlas wild ass. Geobios 58:73–84
    [Google Scholar]
  57. 57. 
    Bernor RL, Cirilli O, Jukar AM, Potts R, Buskianidze M, Rook L 2019. Evolution of early Equus in Italy, Georgia, the Indian Subcontinent, East Africa, and the origins of African zebras. Front. Ecol. Evol. 7:166
    [Google Scholar]
  58. 58. 
    Churcher CS. 2006. Distribution and history of the Cape zebra (Equus capensis) in the Quarternary of Africa. Trans. R. Soc. South Afr. 61:289–95
    [Google Scholar]
  59. 59. 
    Churcher CS. 2014. A vacant niche? The curious distributions of African Perissodactyla. Trans. R. Soc. South Afr. 69:11–8
    [Google Scholar]
  60. 60. 
    Leonard JA, Rohland N, Glaberman S, Fleischer RC, Caccone A, Hofreiter M 2005. A rapid loss of stripes: the evolutionary history of the extinct quagga. Biol. Lett. 1:3291–95
    [Google Scholar]
  61. 61. 
    Pedersen C-ET, Albrechtsen A, Etter PD, Johnson EA, Orlando L et al. 2018. A southern African origin and cryptic structure in the highly mobile plains zebra. Nat. Ecol. Evol. 2:3491–98
    [Google Scholar]
  62. 62. 
    Lorenzen ED, Arctander P, Siegismund HR 2008. High variation and very low differentiation in wide ranging plains zebra (Equus quagga): insights from mtDNA and microsatellites. Mol. Ecol. 17:122812–24
    [Google Scholar]
  63. 63. 
    Shanahan TM, McKay NP, Hughen KA, Overpeck JT, Otto-Bliesner B et al. 2015. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8:2140–44
    [Google Scholar]
  64. 64. 
    Clutton-Brock J. 1992. Horse Power: A History of the Horse and Donkey in Human Societies Cambridge, MA: Harvard Univ. Press. , 1st. ed.
    [Google Scholar]
  65. 65. 
    Vilà C, Leonard J, Beja-Pereira A 2006. Genetic documentation of horse and donkey domestication. Documenting Domestication: New Genetic and Archaeological Paradigms MA Zeder, D Bradley, E Emshwiller, BD Smith 342–53 Berkeley: Univ. Calif. Press
    [Google Scholar]
  66. 66. 
    Beja-Pereira A, England PR, Ferrand N, Jordan S, Bakhiet AO et al. 2004. African origins of the domestic donkey. Science 304:56781781–81
    [Google Scholar]
  67. 67. 
    Han L, Zhu S, Ning C, Cai D, Wang K et al. 2014. Ancient DNA provides new insight into the maternal lineages and domestication of Chinese donkeys. BMC Evol. Biol. 14:246
    [Google Scholar]
  68. 68. 
    Van Bemmel ACV. 1972. Some remarks on the African wild ass. Zool. Meded. 47:21261–72
    [Google Scholar]
  69. 69. 
    Moehlman P, Kebede F, Yohannes H 2014. African wild ass Spec., IUCN Red List Threat. Species, Int. Union Conserv. Nat., Gland Switz: https://www.iucnredlist.org/species/7949/45170994
    [Google Scholar]
  70. 70. 
    Kimura B, Marshall FB, Chen S, Rosenbom S, Moehlman PD et al. 2011. Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proc. R. Soc. B 278:170250–57
    [Google Scholar]
  71. 71. 
    Kimura B, Marshall F, Beja-Pereira A, Mulligan C 2013. Donkey domestication. Afr. Archaeol. Rev. 30:183–95
    [Google Scholar]
  72. 72. 
    Ma X-Y, Ning T, Adeola AC, Li J, Esmailizadeh A et al. 2020. Potential dual expansion of domesticated donkeys revealed by worldwide analysis on mitochondrial sequences. Zool. Res. 41:151–60
    [Google Scholar]
  73. 73. 
    Rosenbom S, Costa V, Al‐Araimi N, Kefena E, Abdel‐Moneim AS et al. 2015. Genetic diversity of donkey populations from the putative centers of domestication. Anim. Genet. 46:130–36
    [Google Scholar]
  74. 74. 
    Kefena E, Dessie T, Tegegne A, Beja-Pereira A, Yusuf Kurtu M et al. 2014. Genetic diversity and matrilineal genetic signature of native Ethiopian donkeys (Equus asinus) inferred from mitochondrial DNA sequence polymorphism. Livest. Sci. 167:73–79
    [Google Scholar]
  75. 75. 
    Cattani M, Bökönyi S. 2002. Ash-Shumah: an Early Holocene settlement of desert hunters and mangrove foragers in the Yemeni Tihamah. Essays on the Late Prehistory of the Arabian Peninsula, Vol. 92 S Cleuziou, M Tosi, J Zarins 3–52 Rome: Inst. Ital. Afr. L'Oriente
    [Google Scholar]
  76. 76. 
    Walker M, Johnsen S, Rasmussen SO, Popp T, Steffensen J-P et al. 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J. Quat. Sci. 24:13–17
    [Google Scholar]
  77. 77. 
    Giesecke T, Brewer S, Finsinger W, Leydet M, Bradshaw RHW 2017. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44:71441–56
    [Google Scholar]
  78. 78. 
    Sandoval-Castellanos E, Wutke S, Gonzalez-Salazar C, Ludwig A 2017. Coat colour adaptation of post-glacial horses to increasing forest vegetation. Nat. Ecol. Evol. 1:121816–19
    [Google Scholar]
  79. 79. 
    Leonardi M, Boschin F, Giampoudakis K, Beyer RM, Krapp M et al. 2018. Late Quaternary horses in Eurasia in the face of climate and vegetation change. Sci. Adv. 4:7eaar5589
    [Google Scholar]
  80. 80. 
    Rieder S, Taourit S, Mariat D, Langlois B, Guérin G 2001. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm. Genome 12:6450–55
    [Google Scholar]
  81. 81. 
    Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N et al. 2018. Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science 360:6384111–14
    [Google Scholar]
  82. 82. 
    Sommer RS, Hegge C, Schmölcke U 2018. Lack of support for adaptation of post-glacial horses to woodlands. Nat. Ecol. Evol. 2:4582–83
    [Google Scholar]
  83. 83. 
    Warmuth V, Eriksson A, Bower MA, Cañon J, Cothran G et al. 2011. European domestic horses originated in two Holocene refugia. PLOS ONE 6:3e18194
    [Google Scholar]
  84. 84. 
    Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A et al. 2009. The earliest horse harnessing and milking. Science 323:59191332–35
    [Google Scholar]
  85. 85. 
    de Barros Damgaard P, Martiniano R, Kamm J, Moreno-Mayar JV, Kroonen G et al. 2018. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360:6396eaar7711
    [Google Scholar]
  86. 86. 
    Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P et al. 2015. Evolutionary genomics and conservation of the endangered Przewalski's horse. Curr. Biol. 25:192577–83
    [Google Scholar]
  87. 87. 
    Bernáldez Sánchez E, García-Víñas E 2019. The equids represented in cave art and current horses: a proposal to determine morphological differences and similarities. Anthropozoologica 54:11–12
    [Google Scholar]
  88. 88. 
    Lira J, Linderholm A, Olaria C, Durling MB, Gilbert MTP et al. 2010. Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses. Mol. Ecol. 19:164–78
    [Google Scholar]
  89. 89. 
    Jansen T, Forster P, Levine MA, Oelke H, Hurles M et al. 2002. Mitochondrial DNA and the origins of the domestic horse. PNAS 99:1610905–10
    [Google Scholar]
  90. 90. 
    Fages A, Hanghøj K, Khan N, Gaunitz C, Seguin-Orlando A et al. 2019. Tracking five millennia of horse management with extensive ancient genome time series. Cell 177:61419–35.e31
    [Google Scholar]
  91. 91. 
    Martin SH, Davey JW, Jiggins CD 2015. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32:1244–57
    [Google Scholar]
  92. 92. 
    Schubert M, Jónsson H, Chang D, Sarkissian CD, Ermini L et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:52E5661–69
    [Google Scholar]
  93. 93. 
    Boeskorov GG, Potapova OR, Protopopov AV, Plotnikov VV, Maschenko EN et al. 2018. A study of a frozen mummy of a wild horse from the Holocene of Yakutia, East Siberia, Russia. Mamm. Res. 63:3307–14
    [Google Scholar]
  94. 94. 
    Librado P, Sarkissian CD, Ermini L, Schubert M, Jónsson H et al. 2015. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. PNAS 112:50E6889–97
    [Google Scholar]
  95. 95. 
    Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N et al. 2012. Ancient admixture in human history. Genetics 192:31065–93
    [Google Scholar]
  96. 96. 
    Fages A, Seguin-Orlando A, Germonpré M, Orlando L 2020. Horse males became over-represented in archaeological assemblages during the Bronze Age. J. Archaeol. Sci. Rep. 31:102364
    [Google Scholar]
  97. 97. 
    Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S et al. 2016. The evolutionary origin and genetic makeup of domestic horses. Genetics 204:2423–34
    [Google Scholar]
  98. 98. 
    Wallner B, Vogl C, Shukla P, Burgstaller JP, Druml T, Brem G 2013. Identification of genetic variation on the horse Y chromosome and the tracing of male founder lineages in modern breeds. PLOS ONE 8:4e60015
    [Google Scholar]
  99. 99. 
    Felkel S, Vogl C, Rigler D, Dobretsberger V, Chowdhary BP et al. 2019. The horse Y chromosome as an informative marker for tracing sire lines. Sci. Rep. 9:6095
    [Google Scholar]
  100. 100. 
    Raudsepp T, Finno CJ, Bellone RR, Petersen JL 2019. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim. Genet. 50:6569–97
    [Google Scholar]
  101. 101. 
    Liu X, Ma Y, Jiang L 2017. Genomic regions under selection for important traits in domestic horse breeds. Front. Agric. Sci. Eng. 4:3289–94
    [Google Scholar]
  102. 102. 
    Librado P, Orlando L. 2018. Detecting signatures of positive selection along defined branches of a population tree using LSD. Mol. Biol. Evol. 35:61520–35
    [Google Scholar]
  103. 103. 
    Librado P, Gamba C, Gaunitz C, Sarkissian CD, Pruvost M et al. 2017. Ancient genomic changes associated with domestication of the horse. Science 356:6336442–45
    [Google Scholar]
  104. 104. 
    Wilkins AS, Wrangham RW, Fitch WT 2014. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics 197:3795–808
    [Google Scholar]
  105. 105. 
    Lord KA, Larson G, Coppinger RP, Karlsson EK 2020. The history of farm foxes undermines the animal domestication syndrome. Trends Ecol. Evol. 35:2125–36
    [Google Scholar]
  106. 106. 
    Imsland F, McGowan K, Rubin C-J, Henegar C, Sundström E et al. 2016. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nat. Genet. 48:2152–58
    [Google Scholar]
  107. 107. 
    Ludwig A, Pruvost M, Reissmann M, Benecke N, Brockmann GA et al. 2009. Coat color variation at the beginning of horse domestication. Science 324:5926485
    [Google Scholar]
  108. 108. 
    Ludwig A, Reissmann M, Benecke N, Bellone R, Sandoval-Castellanos E et al. 2015. Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses. Philos. Trans. R. Soc. B 370:166020130386
    [Google Scholar]
  109. 109. 
    Wutke S, Benecke N, Sandoval-Castellanos E, Döhle H-J, Friederich S et al. 2016. Spotted phenotypes in horses lost attractiveness in the Middle Ages. Sci. Rep. 6:38548
    [Google Scholar]
  110. 110. 
    Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS et al. 2013. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLOS Genet 9:1e1003211
    [Google Scholar]
  111. 111. 
    Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D et al. 2012. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature 488:7413642–46
    [Google Scholar]
  112. 112. 
    Nolte W, Thaller G, Kuehn C 2019. Selection signatures in four German warmblood horse breeds: tracing breeding history in the modern sport horse. PLOS ONE 14:4e0215913
    [Google Scholar]
  113. 113. 
    Grilz-Seger G, Neuditschko M, Ricard A, Velie B, Lindgren G et al. 2019. Genome-wide homozygosity patterns and evidence for selection in a set of European and near Eastern horse breeds. Genes 10:7491
    [Google Scholar]
  114. 114. 
    Camillo F, Rota A, Biagini L, Tesi M, Fanelli D, Panzani D 2018. The current situation and trend of donkey industry in Europe. J. Equine Vet. Sci. 65:44–49
    [Google Scholar]
  115. 115. 
    Ivankovic A, Kavar T, Caput P, Mioc B, Pavic V, Dovc P 2002. Genetic diversity of three donkey populations in the Croatian coastal region. Anim. Genet. 33:3169–77
    [Google Scholar]
  116. 116. 
    Bordonaro S, Guastella AM, Criscione A, Zuccaro A, Marletta D 2012. Genetic diversity and variability in endangered Pantesco and two other Sicilian donkey breeds assessed by microsatellite markers. Sci. World J. 2012:648427
    [Google Scholar]
  117. 117. 
    Zhang RF, Xie WM, Zhang T, Lei CZ 2016. High polymorphism at microsatellite loci in the Chinese donkey. Genet. Mol. Res. 15:2gmr8291
    [Google Scholar]
  118. 118. 
    Charlesworth B. 2009. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10:3195–205
    [Google Scholar]
  119. 119. 
    Orlando L, Librado P. 2019. Origin and evolution of deleterious mutations in horses. Genes 10:9649
    [Google Scholar]
  120. 120. 
    Haller BC, Messer PW. 2019. SLiM 3: forward genetic simulations beyond the Wright-Fisher model. Mol. Biol. Evol. 36:3632–37
    [Google Scholar]
  121. 121. 
    McGivney BA, Han H, Corduff LR, Katz LM, Tozaki T et al. 2020. Genomic inbreeding trends, influential sire lines and selection in the global thoroughbred horse population. Sci. Rep. 10:466
    [Google Scholar]
  122. 122. 
    Todd ET, Ho SYW, Thomson PC, Ang RA, Velie BD, Hamilton NA 2018. Founder-specific inbreeding depression affects racing performance in thoroughbred horses. Sci. Rep. 8:6167
    [Google Scholar]
  123. 123. 
    Todd ET, Hamilton NA, Velie BD, Thomson PC 2020. The effects of inbreeding on covering success, gestation length and foal sex ratio in Australian thoroughbred horses. BMC Genet 21:41
    [Google Scholar]
  124. 124. 
    Welker F, Ramos-Madrigal J, Kuhlwilm M, Liao W, Gutenbrunner P et al. 2019. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576:7786262–65
    [Google Scholar]
  125. 125. 
    Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D et al. 2019. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574:7776103–7
    [Google Scholar]
  126. 126. 
    Han H, Chen N, Jordana J, Li C, Sun T et al. 2017. Genetic diversity and paternal origin of domestic donkeys. Anim. Genet. 48:6708–11
    [Google Scholar]
  127. 127. 
    Guimaraes S, Arbuckle BS, Peters J, Adcock SE, Buitenhuis H et al. 2020. Ancient DNA shows domestic horses were introduced in the southern Caucasus and Anatolia during the Bronze Age. Sci. Adv. 6:38eabb0030
    [Google Scholar]
  128. 128. 
    McHugo GP, Dover MJ, MacHugh DE 2019. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol 17:98
    [Google Scholar]
  129. 129. 
    Frantz LAF, Bradley DG, Larson G, Orlando L 2020. Animal domestication in the era of ancient genomics. Nat. Rev. Genet. 21:8449–60
    [Google Scholar]
  130. 130. 
    Orlando L. 2020. The evolutionary and historical foundation of the modern horse: lessons from ancient genomics. Annu. Rev. Genet. 54:563–81
    [Google Scholar]
/content/journals/10.1146/annurev-animal-061220-023118
Loading
/content/journals/10.1146/annurev-animal-061220-023118
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error