1932

Abstract

The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-061220-023149
2021-02-15
2024-07-22
Loading full text...

Full text loading...

/deliver/fulltext/animal/9/1/annurev-animal-061220-023149.html?itemId=/content/journals/10.1146/annurev-animal-061220-023149&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Burgin CJ, Colella JP, Kahn PL, Upham NS 2018. How many species of mammals are there?. J. Mammal. 99:11–14
    [Google Scholar]
  2. 2. 
    Simpson GG. 1945. The Principles of Classification and a Classification of Mammals, Vol. 85 Bull. Am. Mus. Nat. Hist New York: Am. Mus. Nat. Hist.
    [Google Scholar]
  3. 3. 
    Zoonomia Consort 2020. A comparative genomics multitool for scientific discovery and conservation. Nature 587:240–45
    [Google Scholar]
  4. 4. 
    Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J et al. 2018. Earth BioGenome Project: sequencing life for the future of life. PNAS 115:174325–33
    [Google Scholar]
  5. 5. 
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921
    [Google Scholar]
  6. 6. 
    O'Brien SJ, Eizirik E, Murphy WJ 2001. Genomics. On choosing mammalian genomes for sequencing. Science 292:55252264–66
    [Google Scholar]
  7. 7. 
    Springer MS, Stanhope MJ, Madsen O, de Jong WW 2004. Molecules consolidate the placental mammal tree. Trends Ecol. Evol. 19:8430–38
    [Google Scholar]
  8. 8. 
    Margulies EH, Vinson JP, NISC Comp. Seq. Program, Miller W, Jaffe DB et al. 2005. An initial strategy for the systematic identification of functional elements in the human genome by low-redundancy comparative sequencing. PNAS 102:134795–800
    [Google Scholar]
  9. 9. 
    Genome 10K Community Sci. 2009. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered. 100:6659–74
    [Google Scholar]
  10. 10. 
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:62151320–31
    [Google Scholar]
  11. 11. 
    McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 66:2526–38
    [Google Scholar]
  12. 12. 
    Ellegren H, Smeds L, Burri R, Olason PI, Backström N et al. 2012. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:7426756–60
    [Google Scholar]
  13. 13. 
    Foley NM, Springer MS, Teeling EC 2016. Mammal madness: Is the mammal tree of life not yet resolved?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371:169920150140
    [Google Scholar]
  14. 14. 
    Springer MS, Gatesy J. 2018. On the importance of homology in the age of phylogenomics. Syst. Biodivers. 16:3210–28
    [Google Scholar]
  15. 15. 
    Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J et al. 2019. Genomic architecture and introgression shape a butterfly radiation. Science 366:6465594–99
    [Google Scholar]
  16. 16. 
    Li G, Figueiró HV, Eizirik E, Murphy WJ 2019. Recombination-aware phylogenomics reveals the structured genomic landscape of hybridizing cat species. Mol. Biol. Evol. 36:1102111–26
    [Google Scholar]
  17. 17. 
    Martin SH, Davey JW, Salazar C, Jiggins CD 2019. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLOS Biol 17:2e2006288
    [Google Scholar]
  18. 18. 
    Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK et al. 2019. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 7:e6399
    [Google Scholar]
  19. 19. 
    Upham NS, Esselstyn JA, Jetz W 2019. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol 17:12e3000494
    [Google Scholar]
  20. 20. 
    Springer MS, Meredith RW, Teeling EC, Murphy WJ 2013. Technical comment on “The placental mammal ancestor and the post–K-Pg radiation of placentals.”. Science 341:613
    [Google Scholar]
  21. 21. 
    Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, González A et al. 2014. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23:61301–17
    [Google Scholar]
  22. 22. 
    Emerling CA, Widjaja AD, Nguyen NN, Springer MS 2017. Their loss is our gain: regressive evolution in vertebrates provides genomic models for uncovering human disease loci. J. Med. Genet. 54:12787–94
    [Google Scholar]
  23. 23. 
    Kumar S, Dudley JT, Filipski A, Liu L 2011. Phylomedicine: an evolutionary telescope to explore and diagnose the universe of disease mutations. Trends Genet 27:9377–86
    [Google Scholar]
  24. 24. 
    Somarelli JA, Ware KE, Kostadinov R, Robinson JM, Amri H et al. 2017. PhyloOncology: understanding cancer through phylogenetic analysis. Biochim. Biophys. Acta Rev. Cancer 1867:2101–8
    [Google Scholar]
  25. 25. 
    Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:7370476–82
    [Google Scholar]
  26. 26. 
    Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A 2010. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:1110–21
    [Google Scholar]
  27. 27. 
    Lam TT-Y, Jia N, Zhang Y-W, Shum MH-H, Jiang J-F et al. 2020. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 583:282–85
    [Google Scholar]
  28. 28. 
    Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S et al. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. PNAS 86:6196–200
    [Google Scholar]
  29. 29. 
    Lyons LA, Laughlin TF, Copeland NG, Jenkins NA, Womack JE, O'Brien SJ 1997. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat. Genet. 15:147–56
    [Google Scholar]
  30. 30. 
    Murphy WJ, O'Brien SJ. 2007. Designing and optimizing comparative anchor primers for comparative gene mapping and phylogenetic inference. Nat. Protoc. 2:113022–30
    [Google Scholar]
  31. 31. 
    Novacek MJ. 1992. Mammalian phylogeny: shaking the tree. Nature 356:6365121–25
    [Google Scholar]
  32. 32. 
    Springer MS, Burk-Herrick A, Meredith R, Eizirik E, Teeling E et al. 2007. The adequacy of morphology for reconstructing the early history of placental mammals. Syst. Biol. 56:4673–84
    [Google Scholar]
  33. 33. 
    Springer MS, Foley NM, Brady PL, Gatesy J, Murphy WJ 2019. Evolutionary models for the diversification of placental mammals across the KPg boundary. Front. Genet. 10:1241
    [Google Scholar]
  34. 34. 
    Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG et al. 1997. Endemic African mammals shake the phylogenetic tree. Nature 388:663761–64
    [Google Scholar]
  35. 35. 
    Stanhope MJ, Waddell VG, Madsen O, de Jong WW, Hedges SB et al. 1998. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. PNAS 95:9967–72
    [Google Scholar]
  36. 36. 
    Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW et al. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409:6820610–14
    [Google Scholar]
  37. 37. 
    Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409:6820614–18
    [Google Scholar]
  38. 38. 
    Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M et al. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:55502348–51
    [Google Scholar]
  39. 39. 
    Hedges SB. 2001. Afrotheria: Plate tectonics meets genomics. PNAS 98:11–2
    [Google Scholar]
  40. 40. 
    Hedges SB, Parker PH, Sibley CG, Kumar S 1996. Continental breakup and the ordinal diversification of birds and mammals. Nature 381:6579226–29
    [Google Scholar]
  41. 41. 
    Eizirik E, Murphy WJ, O'Brien SJ 2001. Molecular dating and biogeography of the early placental mammal radiation. J. Hered. 92:2212–19
    [Google Scholar]
  42. 42. 
    Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W 2007. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:4413–21
    [Google Scholar]
  43. 43. 
    Wildman DE, Uddin M, Opazo JC, Liu G, Lefort V et al. 2007. Genomics, biogeography, and the diversification of placental mammals. PNAS 104:3614395–400
    [Google Scholar]
  44. 44. 
    Hallström BM, Janke A. 2008. Resolution among major placental mammal interordinal relationships with genome data imply that speciation influenced their earliest radiations. BMC Evol. Biol. 8:162
    [Google Scholar]
  45. 45. 
    McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC 2012. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res 22:4746–54
    [Google Scholar]
  46. 46. 
    O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A et al. 2013. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:6120662–67
    [Google Scholar]
  47. 47. 
    Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:6055521–24
    [Google Scholar]
  48. 48. 
    dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PCJ, Yang Z 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. Biol. Sci. 279:17423491–500
    [Google Scholar]
  49. 49. 
    Liu L, Zhang J, Rheindt FE, Lei F, Qu Y et al. 2017. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. PNAS 114:35E7282–90
    [Google Scholar]
  50. 50. 
    Tarver JE, dos Reis M, Mirarab S, Moran RJ, Parker S et al. 2016. The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol. Evol. 8:2330–44
    [Google Scholar]
  51. 51. 
    Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJP 2013. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol. Biol. Evol. 30:92134–44
    [Google Scholar]
  52. 52. 
    Scornavacca C, Galtier N. 2017. Incomplete lineage sorting in mammalian phylogenomics. Syst. Biol. 66:1112–20
    [Google Scholar]
  53. 53. 
    Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC 2017. Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biol. Evol. 9:92308–21
    [Google Scholar]
  54. 54. 
    Nishihara H, Maruyama S, Okada N 2009. Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. PNAS 106:135235–40
    [Google Scholar]
  55. 55. 
    Seiffert ER. 2002. The reality of afrotherian monophyly, and some of its implications for the evolution and conservation of Afro-Arabia's endemic placental mammals. Afrotherian Conserv 1:3–6
    [Google Scholar]
  56. 56. 
    McKenna MC, Bell SK. 1997. Classification of Mammals: Above the Species Level New York: Columbia Univ. Press
    [Google Scholar]
  57. 57. 
    Seiffert ER. 2007. A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evol. Biol. 7:224
    [Google Scholar]
  58. 58. 
    Nishihara H, Satta Y, Nikaido M, Thewissen JGM, Stanhope MJ, Okada N 2005. A retroposon analysis of afrotherian phylogeny. Mol. Biol. Evol. 22:91823–33
    [Google Scholar]
  59. 59. 
    Pardini AT, O'Brien PCM, Fu B, Bonde RK, Elder FFB et al. 2007. Chromosome painting among Proboscidea, Hyracoidea and Sirenia: support for Paenungulata (Afrotheria, Mammalia) but not Tethytheria. Proc. Biol. Sci. 274:16151333–40
    [Google Scholar]
  60. 60. 
    Robinson TJ, Fu B, Ferguson-Smith MA, Yang F 2004. Cross-species chromosome painting in the golden mole and elephant-shrew: support for the mammalian clades Afrotheria and Afroinsectiphillia but not Afroinsectivora. Proc. Biol. Sci. 271:15471477–84
    [Google Scholar]
  61. 61. 
    Schull JK, Turakhia Y, Dally WJ, Bejarano G 2019. Champagne: Whole-genome phylogenomic character matrix method places Myomorpha basal in Rodentia. bioRxiv 803957 https://doi.org/10.1101/803957
    [Crossref]
  62. 62. 
    Doronina L, Churakov G, Kuritzin A, Shi J, Baertsch R et al. 2017. Speciation network in Laurasiatheria: retrophylogenomic signals. Genome Res 27:6997–1003
    [Google Scholar]
  63. 63. 
    Springer MS, Molloy EK, Sloan DB, Simmons MP, Gatesy J 2019. ILS-aware analysis of low-homoplasy retroelement insertions: inference of species trees and introgression using quartets. J. Hered. 111:2147–68
    [Google Scholar]
  64. 64. 
    Chen M-Y, Liang D, Zhang P 2017. Phylogenomic resolution of the phylogeny of Laurasiatherian mammals: exploring phylogenetic signals within coding and noncoding sequences. Genome Biol. Evol. 9:81998–2012
    [Google Scholar]
  65. 65. 
    Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K et al. 2020. Six reference-quality genomes reveal evolution of bat adaptations. Nature 583:7817578–84
    [Google Scholar]
  66. 66. 
    Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A et al. 2007. Molecular and genomic data identify the closest living relative of primates. Science 318:5851792–94
    [Google Scholar]
  67. 67. 
    Mason VC, Li G, Minx P, Schmitz J, Churakov G et al. 2016. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates. Sci. Adv. 2:8e1600633
    [Google Scholar]
  68. 68. 
    Kumar V, Hallström BM, Janke A 2013. Coalescent-based genome analyses resolve the early branches of the Euarchontoglires. PLOS ONE 8:4e60019
    [Google Scholar]
  69. 69. 
    Armstrong J, Hickey G, Diekhans M, Fiddles IT, Novak AMet al 2020. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 5877833246–51
    [Google Scholar]
  70. 70. 
    Gatesy J, Springer MS. 2017. Phylogenomic red flags: homology errors and zombie lineages in the evolutionary diversification of placental mammals. PNAS 114:45E9431–32
    [Google Scholar]
  71. 71. 
    Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24:6332–40
    [Google Scholar]
  72. 72. 
    Joly S, McLenachan PA, Lockhart PJ 2009. A statistical approach for distinguishing hybridization and incomplete lineage sorting. Am. Nat. 174:2E54–70
    [Google Scholar]
  73. 73. 
    Green RE, Krause J, Briggs AW, Maricic T, Stenzel U et al. 2010. A draft sequence of the Neandertal genome. Science 328:5979710–22
    [Google Scholar]
  74. 74. 
    Pease JB, Hahn MW 2015. Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64:4651–62
    [Google Scholar]
  75. 75. 
    Martin SH, Davey JW, Jiggins CD 2015. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32:1244–57
    [Google Scholar]
  76. 76. 
    Murphy WJ, Pevzner PA, O'Brien SJ 2004. Mammalian phylogenomics comes of age. Trends Genet 20:12631–39
    [Google Scholar]
  77. 77. 
    Heled J, Drummond AJ. 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27:3570–80
    [Google Scholar]
  78. 78. 
    Ogilvie HA, Bouckaert RR, Drummond AJ 2017. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34:82101–14
    [Google Scholar]
  79. 79. 
    Chifman J, Kubatko L. 2014. Quartet inference from SNP data under the coalescent model. Bioinformatics 30:233317–24
    [Google Scholar]
  80. 80. 
    Vachaspati P, Warnow T. 2018. SVDquest: improving SVDquartets species tree estimation using exact optimization within a constrained search space. Mol. Phylogenet. Evol. 124:122–36
    [Google Scholar]
  81. 81. 
    Liu L, Yu L, Pearl DK, Edwards SV 2009. Estimating species phylogenies using coalescence times among sequences. Syst. Biol. 58:5468–77
    [Google Scholar]
  82. 82. 
    He C, Liang D, Zhang P 2020. Asymmetric distribution of gene trees can arise under purifying selection if differences in population size exist. Mol. Biol. Evol. 37:3881–92
    [Google Scholar]
  83. 83. 
    Gatesy J, Springer MS. 2013. Concatenation versus coalescence versus “concatalescence. .” PNAS 110:13E1179
    [Google Scholar]
  84. 84. 
    Lanier HC, Knowles LL. 2012. Is recombination a problem for species-tree analyses. Syst. Biol. 61:4691–701
    [Google Scholar]
  85. 85. 
    Springer MS, Gatesy J. 2018. Delimiting coalescence genes (c-genes) in phylogenomic data sets. Genes 9:3123
    [Google Scholar]
  86. 86. 
    Springer MS, Gatesy J. 2016. The gene tree delusion. Mol. Phylogenet. Evol. 94:1–33
    [Google Scholar]
  87. 87. 
    Bergsten J. 2005. A review of long-branch attraction. Cladistics 21:2163–93
    [Google Scholar]
  88. 88. 
    Bromham L. 2019. Six impossible things before breakfast: assumptions, models, and belief in molecular dating. Trends Ecol. Evol. 34:5474–86
    [Google Scholar]
  89. 89. 
    Ali RH, Bogusz M, Whelan S 2019. Identifying clusters of high confidence homologies in multiple sequence alignments. Mol. Biol. Evol. 36:102340–51
    [Google Scholar]
  90. 90. 
    Árnason Ú, Lammers F, Kumar V, Nilsson MA, Janke A 2018. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Sci. Adv. 4:4eaap9873
    [Google Scholar]
  91. 91. 
    Svardal H, Jasinska AJ, Apetrei C, Coppola G, Huang Y et al. 2017. Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nat. Genet. 49:121705–13
    [Google Scholar]
  92. 92. 
    Fan Z, Zhou A, Osada N, Yu J, Jiang J et al. 2018. Ancient hybridization and admixture in macaques (genus Macaca) inferred from whole genome sequences. Mol. Phylogenet. Evol. 127:376–86
    [Google Scholar]
  93. 93. 
    Kuhlwilm M, Han S, Sousa VC, Excoffier L, Marques-Bonet T 2019. Ancient admixture from an extinct ape lineage into bonobos. Nat. Ecol. Evol. 3:6957–65
    [Google Scholar]
  94. 94. 
    Palkopoulou E, Lipson M, Mallick S, Nielsen S, Rohland N et al. 2018. A comprehensive genomic history of extinct and living elephants. PNAS 115:11E2566–74
    [Google Scholar]
  95. 95. 
    Cahill JA, Stirling I, Kistler L, Salamzade R, Ersmark E et al. 2015. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24:61205–17
    [Google Scholar]
  96. 96. 
    Li G, Davis BW, Eizirik E, Murphy WJ 2016. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26:11–11
    [Google Scholar]
  97. 97. 
    Figueiró HV, Li G, Trindade FJ, Assis J, Pais F et al. 2017. Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Sci. Adv. 3:7e1700299
    [Google Scholar]
  98. 98. 
    vonHoldt BM, Aardema ML. 2020. Updating the bibliography of interbreeding among Canis in North America. J. Hered. 111:3249–62
    [Google Scholar]
  99. 99. 
    Wen D, Yu Y, Zhu J, Nakhleh L 2018. Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67:4735–40
    [Google Scholar]
  100. 100. 
    Solís-Lemus C, Ané C. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLOS Genet 12:3e1005896
    [Google Scholar]
  101. 101. 
    Bannert N, Kurth R. 2004. Retroelements and the human genome: new perspectives on an old relation. PNAS 101:Suppl. 214572–79
    [Google Scholar]
  102. 102. 
    Doronina L, Reising O, Clawson H, Ray DA, Schmitz J 2019. True homoplasy of retrotransposon insertions in primates. Syst. Biol. 68:3482–93
    [Google Scholar]
  103. 103. 
    Haenel Q, Laurentino TG, Roesti M, Berner D 2018. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 27:112477–97
    [Google Scholar]
  104. 104. 
    Schumer M, Xu C, Powell D, Durvasula A, Skov L et al. 2018. Natural selection interacts with the local recombination rate to shape the evolution of hybrid genomes. Science 360:6389656–60
    [Google Scholar]
  105. 105. 
    Chan AH, Jenkins PA, Song YS 2012. Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLOS Genet 8:12e1003090
    [Google Scholar]
  106. 106. 
    McVean G, Awadalla P, Fearnhead P 2002. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:31231–41
    [Google Scholar]
  107. 107. 
    Auton A, Fledel-Alon A, Pfeifer S, Venn O, Ségurel L et al. 2012. A fine-scale chimpanzee genetic map from population sequencing. Science 336:6078193–98
    [Google Scholar]
  108. 108. 
    Adrion JR, Galloway JG, Kern AD 2020. Predicting the landscape of recombination using deep learning. Mol. Biol. Evol. 37:61790–808
    [Google Scholar]
  109. 109. 
    Faurby S, Svenning J-C. 2015. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84:14–26
    [Google Scholar]
  110. 110. 
    Pennisi E. 2016. Shaking up the Tree of Life. Science 354:6314817–21
    [Google Scholar]
  111. 111. 
    Roca AL, Georgiadis N, O'Brien SJ 2005. Cytonuclear genomic dissociation in African elephant species. Nat. Genet. 37:196–100
    [Google Scholar]
  112. 112. 
    Toews DPL, Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21:163907–30
    [Google Scholar]
  113. 113. 
    Schaefer NK, Shapiro B, Green RE 2016. Detecting hybridization using ancient DNA. Mol. Ecol. 25:112398–412
    [Google Scholar]
  114. 114. 
    Jones MR, Mills LS, Alves PC, Callahan CM, Alves JM et al. 2018. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360:63951355–58
    [Google Scholar]
  115. 115. 
    Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE et al. 2015. Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347:62171258524
    [Google Scholar]
  116. 116. 
    Heliconius Genome Consort. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:740594–98
    [Google Scholar]
  117. 117. 
    Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J et al. 2014. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507:7492354–57
    [Google Scholar]
  118. 118. 
    Irisarri I, Singh P, Koblmüller S, Torres-Dowdall J, Henning F et al. 2018. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9:3159
    [Google Scholar]
  119. 119. 
    Martin SH, Jiggins CD. 2017. Interpreting the genomic landscape of introgression. Curr. Opin. Genet. Dev. 47:69–74
    [Google Scholar]
  120. 120. 
    Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR et al. 2013. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res 23:111817–28
    [Google Scholar]
  121. 121. 
    Storchová R, Reif J, Nachman MW 2010. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution 64:2456–71
    [Google Scholar]
  122. 122. 
    Presgraves DC. 2018. Evaluating genomic signatures of “the large X-effect” during complex speciation. Mol. Ecol. 27:193822–30
    [Google Scholar]
  123. 123. 
    Thompson MJ, Jiggins CD. 2014. Supergenes and their role in evolution. Heredity 113:1–8
    [Google Scholar]
  124. 124. 
    Carneiro M, Blanco-Aguiar JA, Villafuerte R, Ferrand N, Nachman MW 2010. Speciation in the European rabbit (Oryctolagus cuniculus): islands of differentiation on the X chromosome and autosomes. Evolution 64:123443–60
    [Google Scholar]
  125. 125. 
    Carneiro M, Albert FW, Afonso S, Pereira RJ, Burbano H et al. 2014. The genomic architecture of population divergence between subspecies of the European rabbit. PLOS Genet 10:8e1003519
    [Google Scholar]
  126. 126. 
    Nam K, Munch K, Hobolth A, Dutheil JY, Veeramah KR et al. 2015. Extreme selective sweeps independently targeted the X chromosomes of the great apes. PNAS 112:206413–18
    [Google Scholar]
  127. 127. 
    Ai H, Fang X, Yang B, Huang Z, Chen H et al. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet. 47:3217–25
    [Google Scholar]
  128. 128. 
    Ludwig MZ. 2016. Noncoding DNA evolution: junk DNA revisited. The Encyclopedia of Evolutionary Biology, Vol. 1 R Kliman 124–29 Amsterdam: Elsevier
    [Google Scholar]
  129. 129. 
    Eichler EE. 2001. Segmental duplications: What's missing, misassigned, and misassembled—and should we care?. Genome Res 11:5653–56
    [Google Scholar]
  130. 130. 
    Lee H, Schatz MC. 2012. Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score. Bioinformatics 28:162097–105
    [Google Scholar]
  131. 131. 
    Sedlazeck FJ, Lee H, Darby CA, Schatz MC 2018. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19:6329–46
    [Google Scholar]
  132. 132. 
    Dumbovic G, Forcales S-V, Perucho M 2017. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics 12:7515–26
    [Google Scholar]
  133. 133. 
    Gouy A, Excoffier L. 2020. Polygenic patterns of adaptive introgression in modern humans are mainly shaped by response to pathogens. Mol. Biol. Evol. 37:51420–33
    [Google Scholar]
  134. 134. 
    Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM et al. 2018. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36:1174–82
    [Google Scholar]
  135. 135. 
    Rice ES, Koren S, Rhie A, Heaton MP, Kalbfleisch TS et al. 2020. Continuous chromosome-scale haplotypes assembled from a single interspecies F1 hybrid of yak and cattle. GigaScience 9:4giaa029
    [Google Scholar]
  136. 136. 
    Bredemeyer KR, Harris AJ, Li G, Foley NM, Roelke-Parker M et al. 2021. Ultracontinuous single haplotype genome assemblies for the domestic cat (Felis catus) and Asian leopard cat (Prionailurus bengalensis). J. Hered. In press
    [Google Scholar]
  137. 137. 
    Vollger MR, Logsdon GA, Audano PA, Sulovari A, Porubsky D et al. 2020. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Ann. Hum. Genet. 84:2125–40
    [Google Scholar]
  138. 138. 
    Miga KH, Koren S, Rhie A, Vollger MR, Gershman A et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:782379–84
    [Google Scholar]
  139. 139. 
    Logsdon GA, Vollger MR, Hsieh P, Mao Y, Liskovykh MA et al. 2020. . The structure, function, and evolution of a complete human chromosome 8. bioRxiv. https://doi.org/10.1101/2020.09.08.285395
    [Crossref]
  140. 140. 
    Low WY, Tearle R, Koren S, Rhie S, Bickhart DM et al. 2020. Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle. Nat. Commun. 11:2071
    [Google Scholar]
  141. 141. 
    Henikoff S, Ahmad K, Malik HS 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:55321098–102
    [Google Scholar]
  142. 142. 
    Bayes JJ, Malik HS. 2009. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 326:59591538–41
    [Google Scholar]
  143. 143. 
    Ferree PM, Barbash DA. 2009. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLOS Biol 7:10e1000234
    [Google Scholar]
  144. 144. 
    Marques-Bonet T, Ryder OA, Eichler EE 2009. Sequencing primate genomes: What have we learned?. Annu. Rev. Genom. Hum. Genet. 10:355–86
    [Google Scholar]
  145. 145. 
    Gordon D, Huddleston J, Chaisson MJP, Hill CM, Kronenberg ZN et al. 2016. Long-read sequence assembly of the gorilla genome. Science 352:6281aae0344
    [Google Scholar]
  146. 146. 
    Kronenberg ZN, Fiddes IT, Gordon D, Murali S, Cantsilieris S et al. 2018. High-resolution comparative analysis of great ape genomes. Science 360:6393eaar6343
    [Google Scholar]
  147. 147. 
    Dougherty ML, Nuttle X, Penn O, Nelson BJ, Huddleston J et al. 2017. The birth of a human-specific neural gene by incomplete duplication and gene fusion. Genome Biol 18:49
    [Google Scholar]
  148. 148. 
    Nuttle X, Giannuzzi G, Duyzend MH, Schraiber JG, Narvaiza I et al. 2016. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility. Nature 536:7615205–9
    [Google Scholar]
  149. 149. 
    Johnson ME, Viggiano L, Bailey JA, Abdul-Rauf M, Goodwin G et al. 2001. Positive selection of a gene family during the emergence of humans and African apes. Nature 413:6855514–19
    [Google Scholar]
  150. 150. 
    Hsieh P, Vollger MR, Dang V, Porubsky D, Baker C et al. 2019. Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science 366:6463eaax2083
    [Google Scholar]
  151. 151. 
    Meiklejohn CD, Landeen EL, Gordon KE, Rzatkiewicz T, Kingan SB et al. 2018. Gene flow mediates the role of sex chromosome meiotic drive during complex speciation. eLife 7:e35468
    [Google Scholar]
  152. 152. 
    Presgraves DC. 2008. Sex chromosomes and speciation in Drosophila. Trends Genet 24:7336–43
    [Google Scholar]
  153. 153. 
    Presgraves DC. 2010. The molecular evolutionary basis of species formation. Nat. Rev. Genet. 11:3175–80
    [Google Scholar]
  154. 154. 
    Warburton PE, Hasson D, Guillem F, Lescale C, Jin X, Abrusan G 2008. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genom 9:533
    [Google Scholar]
  155. 155. 
    Bellott DW, Skaletsky H, Pyntikova T, Mardis ER, Graves T et al. 2010. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature 466:7306612–16
    [Google Scholar]
  156. 156. 
    Mueller JL, Skaletsky H, Brown LG, Zaghlul S, Rock S et al. 2013. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45:91083–87
    [Google Scholar]
  157. 157. 
    Davis BW, Seabury CM, Brashear WA, Li G, Roelke-Parker M, Murphy WJ 2015. Mechanisms underlying mammalian hybrid sterility in two feline interspecies models. Mol. Biol. Evol. 32:102534–46
    [Google Scholar]
  158. 158. 
    Soh YQS, Alföldi J, Pyntikova T, Brown LG, Graves T et al. 2014. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159:4800–13
    [Google Scholar]
  159. 159. 
    Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S et al. 2009. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLOS Biol 7:5e1000112
    [Google Scholar]
  160. 160. 
    Bellott DW, Cho T-J, Hughes JF, Skaletsky H, Page DC 2018. Cost-effective high-throughput single-haplotype iterative mapping and sequencing for complex genomic structures. Nat. Protoc. 13:4787–809
    [Google Scholar]
  161. 161. 
    Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L et al. 2003. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:6942825–37
    [Google Scholar]
  162. 162. 
    Meiklejohn CD, Tao Y. 2010. Genetic conflict and sex chromosome evolution. Trends Ecol. Evol. 25:4215–23
    [Google Scholar]
  163. 163. 
    Good JM. 2012. The conflict within and the escalating war between the sex chromosomes. PLOS Genet 8:9e1002955
    [Google Scholar]
  164. 164. 
    Cocquet J, Ellis PJI, Mahadevaiah SK, Affara NA, Vaiman D, Burgoyne PS 2012. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLOS Genet 8:9e1002900
    [Google Scholar]
  165. 165. 
    Kruger AN, Brogley MA, Huizinga JL, Kidd JM, de Rooij DG et al. 2019. A neofunctionalized X-linked ampliconic gene family is essential for male fertility and equal sex ratio in mice. Curr. Biol. 29:213699–706.e5
    [Google Scholar]
  166. 166. 
    Janečka JE, Davis BW, Ghosh S, Paria N, Das PJ et al. 2018. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat. Commun. 9:2945
    [Google Scholar]
  167. 167. 
    Brashear WA, Raudsepp T, Murphy WJ 2018. Evolutionary conservation of Y chromosome ampliconic gene families despite extensive structural variation. Genome Res 28:121841–51
    [Google Scholar]
  168. 168. 
    Coyne JA, Orr HA. 1989. Two rules of speciation. Speciation and Its Consequences D Otte, JA Endler 180–207 Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  169. 169. 
    Li G, Hillier LW, Grahn RA, Zimin AV, David VA et al. 2016. A high-resolution SNP array-based linkage map anchors a new domestic cat draft genome assembly and provides detailed patterns of recombination. G3 6:61607–16
    [Google Scholar]
  170. 170. 
    Deng X, Ma W, Ramani V, Hill A, Yang F et al. 2015. Bipartate structure of the inactive mouse X chromosome. Genome Biol 16:152
    [Google Scholar]
  171. 171. 
    Du Y, Wu S, Edwards SV, Liu L 2019. The effect of alignment uncertainty, substitution models and priors in building and dating the mammal tree of life. BMC Evol. Biol. 19:203
    [Google Scholar]
  172. 172. 
    Nery MF, González DJ, Hoffmann FG, Opazo JC 2012. Resolution of laurasiatherian phylogeny: evidence from genomic data. Mol. Phylogenet. Evol. 64:3685–89
    [Google Scholar]
  173. 173. 
    Shaw TI, Srivastava A, Chou W-C, Liu L, Hawkinson A et al. 2012. Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensis). PLOS ONE 7:11e48472
    [Google Scholar]
  174. 174. 
    Song S, Liu L, Edwards SV, Wu S 2012. Resolving conflicts in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl. Acad. Sci. USA 109:3714942–47
    [Google Scholar]
  175. 175. 
    Tsagkogeorga G, Parker J, Stupka E, Cotton JA, Rossiter SJ 2013. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr. Biol. 23:222262–67
    [Google Scholar]
/content/journals/10.1146/annurev-animal-061220-023149
Loading
/content/journals/10.1146/annurev-animal-061220-023149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error