1932

Abstract

Neuroimaging with positron emission tomography (PET) is the most powerful tool for understanding pharmacology, neurochemistry, and pathology in the living human brain. This technology combines high-resolution scanners to measure radioactivity throughout the human body with specific, targeted radioactive molecules, which allow measurements of a myriad of biological processes in vivo While PET brain imaging has been active for almost 40 years, the pace of development for neuroimaging tools, known as radiotracers, and for quantitative analytical techniques has increased dramatically over the past decade. Accordingly, the fundamental questions that can be addressed with PET have expanded in basic neurobiology, psychiatry, neurology, and related therapeutic development. In this review, we introduce the field of human PET neuroimaging, some of its conceptual underpinnings, and motivating questions. We highlight some of the more recent advances in radiotracer development, quantitative modeling, and applications of PET to the study of the human brain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-062117-121056
2019-06-04
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-062117-121056.html?itemId=/content/journals/10.1146/annurev-bioeng-062117-121056&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pike VW. 2016. Considerations in the development of reversibly binding PET radioligands for brain imaging. Curr. Med. Chem. 23:1818–69
    [Google Scholar]
  2. 2.
    Van de Bittner GC, Ricq EL, Hooker JM 2014. A philosophy for CNS radiotracer design. Acc. Chem. Res. 47:3127–34
    [Google Scholar]
  3. 3.
    Wager TT, Hou X, Verhoest PR, Villalobos A 2010. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 1:435–49
    [Google Scholar]
  4. 4.
    Wager TT, Hou X, Verhoest PR, Villalobos A 2016. Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem. Neurosci. 7:767–75
    [Google Scholar]
  5. 5.
    Zhang L, Villalobos A. 2017. Strategies to facilitate the discovery of novel CNS PET ligands. EJNMMI Radiopharm. Chem. 1:13
    [Google Scholar]
  6. 6.
    Auberson YP, Briard E, Sykes D, Reilly J, Healy M 2016. Ligand specific efficiency (LSE) index for PET tracer optimization. Chem. Med. Chem. 11:1415–27
    [Google Scholar]
  7. 7.
    Moldovan RP, Els-Heindl S, Worm DJ, Kniess T, Kluge M et al. 2017. Development of fluorinated non-peptidic ghrelin receptor ligands for potential use in molecular imaging. Int. J. Mol. Sci. 18:4
    [Google Scholar]
  8. 8.
    Abbott NJ, Dolman DE, Patabendige AK 2008. Assays to predict drug permeation across the blood–brain barrier, and distribution to brain. Curr. Drug Metab. 9:901–10
    [Google Scholar]
  9. 9.
    Ory D, Celen S, Gijsbers R, Van Den Haute C, Postnov A et al. 2016. Preclinical evaluation of a P2X7 receptor–selective radiotracer: PET studies in a rat model with local overexpression of the human P2X7 receptor and in nonhuman primates. J. Nucl. Med. 57:1436–41
    [Google Scholar]
  10. 10.
    Toth M, Haggkvist J, Stepanov V, Takano A, Nakao R et al. 2015. Molecular imaging of PDE10A knockout mice with a novel PET radiotracer: [11C]T-773. Mol. Imaging Biol. 17:445–49
    [Google Scholar]
  11. 11.
    Wajchenberg BL. 2007. β-Cell failure in diabetes and preservation by clinical treatment. Endocr. Rev. 28:187–218
    [Google Scholar]
  12. 12.
    Steele C, Hagopian WA, Gitelman S, Masharani U, Cavaghan M et al. 2004. Insulin secretion in type 1 diabetes. Diabetes 53:426–33
    [Google Scholar]
  13. 13.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC 2003. β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–10
    [Google Scholar]
  14. 14.
    Veronese M, Zanotti-Fregonara P, Rizzo G, Bertoldo A, Innis RB, Turkheimer FE 2016. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: the genomic plot. Neuroimage 130:1–12
    [Google Scholar]
  15. 15.
    Piel M, Vernaleken I, Rosch F 2014. Positron emission tomography in CNS drug discovery and drug monitoring. J. Med. Chem. 57:9232–58
    [Google Scholar]
  16. 16.
    Foreman JC, Johansen T, Gibb AJ 2011. Textbook of Receptor Pharmacology Boca Raton, FL: CRC. , 3rd ed..
    [Google Scholar]
  17. 17.
    Wharton J, Polak JM 1993. Receptor Autoradiography: Principles and Practice Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  18. 18.
    Wagner HN Jr, Burns HD, Dannals RF, Wong DF, Langstrom B et al. 1983. Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–66
    [Google Scholar]
  19. 19.
    Kanthan M, Cumming P, Hooker JM, Vasdev N 2017. Classics in neuroimaging: imaging the dopaminergic pathway with PET. ACS Chem. Neurosci. 8:1817–19
    [Google Scholar]
  20. 20.
    Creese I, Schneider R, Snyder SH 1977. 3H-spiroperidol labels dopamine receptors in pituitary and brain. Eur. J. Pharmacol. 46:377–81
    [Google Scholar]
  21. 21.
    Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD et al. 2015. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22:362–69
    [Google Scholar]
  22. 22.
    Hansen HD, Mandeville JB, Sander CY, Hooker JM, Catana C et al. 2017. Functional characterization of 5-HT1B receptor drugs in nonhuman primates using simultaneous PET-MR. J. Neurosci. 37:10671–78
    [Google Scholar]
  23. 23.
    Sander CY, Hooker JM, Catana C, Normandin MD, Alpert NM et al. 2013. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. PNAS 110:11169–74
    [Google Scholar]
  24. 24.
    Sander CY, Hooker JM, Catana C, Rosen BR, Mandeville JB 2016. Imaging agonist-induced D2/D3 receptor desensitization and internalization in vivo with PET/fMRI. Neuropsychopharmacology 41:1427–36
    [Google Scholar]
  25. 25.
    Sander CY, Mandeville JB, Wey HY, Catana C, Hooker JM, Rosen BR 2019. Effects of flow changes on radiotracer binding: simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation. J. Cereb. Blood Flow Metab. 39:131–46
    [Google Scholar]
  26. 26.
    Villien M, Wey HY, Mandeville JB, Catana C, Polimeni JR et al. 2014. Dynamic functional imaging of brain glucose utilization using fPET-FDG. NeuroImage 100:192–99
    [Google Scholar]
  27. 27.
    Naganawa M, Jacobsen LK, Zheng MQ, Lin SF, Banerjee A et al. 2014. Evaluation of the agonist PET radioligand [11C]GR103545 to image κ opioid receptor in humans: kinetic model selection, test–retest reproducibility and receptor occupancy by the antagonist PF-04455242. NeuroImage 99:69–79
    [Google Scholar]
  28. 28.
    Naganawa M, Zheng MQ, Nabulsi N, Tomasi G, Henry S et al. 2014. Kinetic modeling of 11C-LY2795050, a novel antagonist radiotracer for PET imaging of the κ opioid receptor in humans. J. Cereb. Blood Flow Metab. 34:1818–25
    [Google Scholar]
  29. 29.
    Vijay A, Wang S, Worhunsky P, Zheng MQ, Nabulsi N et al. 2016. PET imaging reveals sex differences in κ opioid receptor availability in humans, in vivo. Am. J. Nucl. Med. Mol. Imaging 6:205–14
    [Google Scholar]
  30. 30.
    Roth BL 2015. The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics Scotts Valley, CA: CreateSpace
    [Google Scholar]
  31. 31.
    Shiue CY, Shiue GG, Mozley PD, Kung MP, Zhuang ZP et al. 1997. P-[18F]-MPPF: a potential radioligand for PET studies of 5-HT1A receptors in humans. Synapse 25:147–54
    [Google Scholar]
  32. 32.
    Pike VW, McCarron JA, Lammertsma AA, Osman S, Hume SP et al. 1996. Exquisite delineation of 5-HT1A receptors in human brain with PET and [carbonyl-11C]WAY-100635. Eur. J. Pharmacol. 301:R5–7
    [Google Scholar]
  33. 33.
    Sadzot B, Lemaire C, Maquet P, Salmon E, Plenevaux A et al. 1995. Serotonin 5HT2 receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]Altanserin: results in young normal controls. J. Cereb. Blood Flow Metab. 15:787–97
    [Google Scholar]
  34. 34.
    Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L 1998. PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. J. Nucl. Med. 39:208–14
    [Google Scholar]
  35. 35.
    Parker CA, Gunn RN, Rabiner EA, Slifstein M, Comley R et al. 2012. Radiosynthesis and characterization of 11C-GSK215083 as a PET radioligand for the 5-HT6 receptor. J. Nucl. Med. 53:295–303
    [Google Scholar]
  36. 36.
    Parker CA, Rabiner EA, Gunn RN, Searle G, Martarello L et al. 2015. Human kinetic modeling of the 5HT6 PET radioligand 11C-GSK215083 and its utility for determining occupancy at both 5HT6 and 5HT2A receptors by SB742457 as a potential therapeutic mechanism of action in Alzheimer disease. J. Nucl. Med. 56:1901–9
    [Google Scholar]
  37. 37.
    Meyer JH, Houle S, Sagrati S, Carella A, Hussey DF et al. 2004. Brain serotonin transporter binding potential measured with carbon 11–labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch. Gen. Psychiatry 61:1271–79
    [Google Scholar]
  38. 38.
    Gunn RN, Slifstein M, Searle GE, Price JC 2015. Quantitative imaging of protein targets in the human brain with PET. Phys. Med. Biol. 60:R363–411
    [Google Scholar]
  39. 39.
    Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF et al. 2013. [18F]T-807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimer's Dement 9:666–76
    [Google Scholar]
  40. 40.
    Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF et al. 2016. Imaging synaptic density in the living human brain. Sci. Transl. Med. 8:348ra96
    [Google Scholar]
  41. 41.
    Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P et al. 2016. Discovery of 6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK-6240): a positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs). J. Med. Chem. 59:4778–89
    [Google Scholar]
  42. 42.
    Zhang L, Chen L, Dutra JK, Beck EM, Nag S et al. 2018. Identification of a novel positron emission tomography (PET) ligand for imaging β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) in brain. J. Med. Chem. 61:3296–308
    [Google Scholar]
  43. 43.
    Holland JP, Cumming P, Vasdev N 2013. PET radiopharmaceuticals for probing enzymes in the brain. Am J. Nucl. Med. Mol. Imaging 3:194–216
    [Google Scholar]
  44. 44.
    Fowler JS, Volkow ND, Wang GJ, Logan J, Pappas N et al. 1997. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol. Aging 18:431–35
    [Google Scholar]
  45. 45.
    DaSilva JN, Lourenco CM, Meyer JH, Hussey D, Potter WZ, Houle S 2002. Imaging cAMP-specific phosphodiesterase 4 in human brain with R-[11C]rolipram and positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 29:1680–83
    [Google Scholar]
  46. 46.
    Plisson C, Weinzimmer D, Jakobsen S, Natesan S, Salinas C et al. 2014. Phosphodiesterase 10A PET radioligand development program: from pig to human. J. Nucl. Med. 55:595–601
    [Google Scholar]
  47. 47.
    Naganawa M, Waterhouse RN, Nabulsi N, Lin SF, Labaree D et al. 2016. First-in-human assessment of the novel PDE2A PET radiotracer 18F-PF-05270430. J. Nucl. Med. 57:1388–95
    [Google Scholar]
  48. 48.
    Albrecht DS, Granziera C, Hooker JM, Loggia ML 2016. In vivo imaging of human neuroinflammation. ACS Chem. Neurosci. 7:470–83
    [Google Scholar]
  49. 49.
    Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R et al. 1991. Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30:572–80
    [Google Scholar]
  50. 50.
    Feng G, Xiao F, Lu Y, Huang Z, Yuan J et al. 2009. Down-regulation synaptic vesicle protein 2A in the anterior temporal neocortex of patients with intractable epilepsy. J. Mol. Neurosci. 39:354–59
    [Google Scholar]
  51. 51.
    Glantz LA, Lewis DA. 2000. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57:65–73
    [Google Scholar]
  52. 52.
    Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G et al. 2014. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–43
    [Google Scholar]
  53. 53.
    Mercier J, Archen L, Bollu V, Carre S, Evrard Y et al. 2014. Discovery of heterocyclic nonacetamide synaptic vesicle protein 2A (SV2A) ligands with single-digit nanomolar potency: opening avenues towards the first SV2A positron emission tomography (PET) ligands. Chem. Med. Chem. 9:693–98
    [Google Scholar]
  54. 54.
    Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM et al. 2004. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. PNAS 101:9861–66
    [Google Scholar]
  55. 55.
    Finnema SJ, Nabulsi NB, Mercier J, Lin SF, Chen MK et al. 2018. Kinetic evaluation and test-retest reproducibility of [11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J. Cereb. Blood Flow Metab. 38:2041–52
    [Google Scholar]
  56. 56.
    Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T et al. 2018. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol 75:1215–24
    [Google Scholar]
  57. 57.
    Tollefsbol T 2012. Epigenetics in Human Disease Amsterdam: Elsevier
    [Google Scholar]
  58. 58.
    Yao T-P, Seto E 2011. Histone Deacetylases: The Biology and Clinical Implication Berlin: Springer
    [Google Scholar]
  59. 59.
    Wey HY, Gilbert TM, Zurcher NR, She A, Bhanot A et al. 2016. Insights into neuroepigenetics through human histone deacetylase PET imaging. Sci. Transl. Med. 8:351ra106
    [Google Scholar]
  60. 60.
    Penney J, Tsai LH. 2014. Histone deacetylases in memory and cognition. Sci. Signal. 7:re12
    [Google Scholar]
  61. 61.
    Mahady L, Nadeem M, Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ 2018. Frontal cortex epigenetic dysregulation during the progression of Alzheimer's disease. J. Alzheimer's Dis. 62:115–31
    [Google Scholar]
  62. 62.
    Schroeder FA, Gilbert TM, Feng N, Taillon BD, Volkow ND et al. 2017. Expression of HDAC2 but not HDAC1 transcript is reduced in dorsolateral prefrontal cortex of patients with schizophrenia. ACS Chem. Neurosci. 8:662–68
    [Google Scholar]
  63. 63.
    Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A et al. 2007. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J. Cereb. Blood Flow Metab. 27:1533–39
    [Google Scholar]
  64. 64.
    Koeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl DE 1999. Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography trace for measurement of acetylcholinesterase activity in human brain. J. Cereb. Blood Flow Metab. 19:1150–63
    [Google Scholar]
  65. 65.
    Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM et al. 1993. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J. Cereb. Blood Flow Metab. 13:24–42
    [Google Scholar]
  66. 66.
    Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ 1984. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann. Neurol. 15:217–27
    [Google Scholar]
  67. 67.
    Reader AJ, Verhaeghe J. 2014. 4D image reconstruction for emission tomography. Phys. Med. Biol. 59:R371
    [Google Scholar]
  68. 68.
    Shepp LA, Vardi Y. 1982. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1:113–22
    [Google Scholar]
  69. 69.
    Lange K, Carson R. 1984. EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 8:306–16
    [Google Scholar]
  70. 70.
    Hudson HM, Larkin RS. 1994. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13:601–9
    [Google Scholar]
  71. 71.
    de Jong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA 2007. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys. Med. Biol. 52:1505–26
    [Google Scholar]
  72. 72.
    Hoffman EJ, Huang SC, Phelps ME 1979. Quantitation in positron emission computed tomography. 1. Effect of object size. J. Comput. Assist. Tomogr. 3:299–308
    [Google Scholar]
  73. 73.
    Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF 2012. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys. Med. Biol. 57:R119–59
    [Google Scholar]
  74. 74.
    Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E et al. 1992. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J. Cereb. Blood Flow Metab. 12:571–83
    [Google Scholar]
  75. 75.
    Rousset OG, Collins DL, Rahmim A, Wong DF 2008. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J. Nucl. Med. 49:1097–106
    [Google Scholar]
  76. 76.
    Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP et al. 2016. Different partial volume correction methods lead to different conclusions: an 18F-FDG-PET study of aging. NeuroImage 132:334–43
    [Google Scholar]
  77. 77.
    Fischl B. 2012. FreeSurfer. NeuroImage 62:774–81
    [Google Scholar]
  78. 78.
    Jin X, Mulnix T, Gallezot JD, Carson RE 2013. Evaluation of motion correction methods in human brain PET imaging—a simulation study based on human motion data. Med. Phys. 40:102503
    [Google Scholar]
  79. 79.
    Olesen OV, Sullivan JM, Mulnix T, Paulsen RR, Hojgaard L et al. 2013. List-mode PET motion correction using markerless head tracking: proof-of-concept with scans of human subject. IEEE Trans. Med. Imaging 32:200–9
    [Google Scholar]
  80. 80.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O et al. 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–89
    [Google Scholar]
  81. 81.
    Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF 2000. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl. Med. Biol. 27:627–30
    [Google Scholar]
  82. 82.
    Krejza J, Arkuszewski M, Kasner SE, Weigele J, Ustymowicz A et al. 2006. Carotid artery diameter in men and women and the relation to body and neck size. Stroke 37:1103–5
    [Google Scholar]
  83. 83.
    Terry JG, Tang R, Espeland MA, Davis DH, Vieira JL et al. 2003. Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects. Circulation 107:1146–51
    [Google Scholar]
  84. 84.
    Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A et al. 2009. Comparison of eight methods for the estimation of the image-derived input function in dynamic [18F]-FDG PET human brain studies. J. Cereb. Blood Flow Metab. 29:1825–35
    [Google Scholar]
  85. 85.
    Zanotti-Fregonara P, Chen K, Liow JS, Fujita M, Innis RB 2011. Image-derived input function for brain PET studies: many challenges and few opportunities. J. Cereb. Blood Flow Metab. 31:1986–98
    [Google Scholar]
  86. 86.
    Cobelli C, Foster D, Toffolo G 2001. Tracer Kinetics in Biomedical Research: From Data to Model New York: Plenum
    [Google Scholar]
  87. 87.
    Jacquez JA. 1985. Compartmental Analysis in Biology and Medicine Ann Arbor: Univ. Mich. Press
    [Google Scholar]
  88. 88.
    Li R, Barton HA, Yates PD, Ghosh A, Wolford AC et al. 2014. A “middle-out” approach to human pharmacokinetic predictions for OATP substrates using physiologically-based pharmacokinetic modeling. J. Pharmacokinet. Pharmacodyn. 41:197–209
    [Google Scholar]
  89. 89.
    Carson RE. 2003. Tracer kinetic modeling. Positron Emission Tomography: Basic Science and Clinical Practice PE Valk, DL Bailey, DW Townsend, MN Maisey 147–79 Berlin: Springer
    [Google Scholar]
  90. 90.
    Gunn RN, Gunn SR, Cunningham VJ 2001. Positron emission tomography compartmental models. J. Cereb. Blood Flow Metab. 21:635–52
    [Google Scholar]
  91. 91.
    Ichise M, Toyama H, Innis RB, Carson RE 2002. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J. Cereb. Blood Flow Metab. 22:1271–81
    [Google Scholar]
  92. 92.
    Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL et al. 1990. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10:740–47
    [Google Scholar]
  93. 93.
    Ichise M, Liow JS, Lu JQ, Takano A, Model K et al. 2003. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J. Cereb. Blood Flow Metab. 23:1096–112
    [Google Scholar]
  94. 94.
    Lammertsma AA, Hume SP. 1996. Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–58
    [Google Scholar]
  95. 95.
    Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL 1996. Distribution volume ratios without blood sampling from graphical analysis of PET data. J. Cereb. Blood Flow Metab. 16:834–40
    [Google Scholar]
  96. 96.
    Levenberg K. 1944. A method for the solution of certain non-liner problems in least squares. Q. Appl. Math. 2:164–68
    [Google Scholar]
  97. 97.
    Marquardt DW. 1963. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11:431–41
    [Google Scholar]
  98. 98.
    Muzic RF, Christian BT. 2006. Evaluation of objective functions for estimation of kinetic parameters. Med. Phys. 33:342–53
    [Google Scholar]
  99. 99.
    Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA 2006. Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys. Med. Biol. 51:4217–32
    [Google Scholar]
  100. 100.
    Hurvich CM, Tsai C-L. 1989. Regression and time series model selection in small samples. Biometrika 76:297–307
    [Google Scholar]
  101. 101.
    Xia Y, Zheng MQ, Holden D, Lin SF, Kapinos M et al. 2015. Measurement of Bmax and Kd with the glycine transporter 1 radiotracer 18F-MK6577 using a novel multi-infusion paradigm. J. Cereb. Blood Flow Metab. 35:2001–9
    [Google Scholar]
  102. 102.
    Blomqvist G, Pauli S, Farde L, Ericksson L, Person A, Halldin C 1989. Dynamic models for reversible ligand binding. Positron Emission Tomography in Clinical Research and Clinical Diagnosis C Beckers, A Goffinet, A Bol 35–44 Dordrecht, Neth: Kluwer
    [Google Scholar]
  103. 103.
    Cunningham VJ, Hume SP, Price GR, Ahier RG, Cremer JE, Jones AK 1991. Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J. Cereb. Blood Flow Metab. 11:1–9
    [Google Scholar]
  104. 104.
    Hume S, Myers R, Bloomfield P, Opacka-Juffry J, Cremer J et al. 1992. Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography. Synapse 12:47–54
    [Google Scholar]
  105. 105.
    Lammertsma AA, Hume SP. 1996. Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–58
    [Google Scholar]
  106. 106.
    Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ 1997. Parametric imaging of ligand–receptor binding in PET using a simplified reference region model. NeuroImage 6:279–87
    [Google Scholar]
  107. 107.
    Salinas CA, Searle GE, Gunn RN 2015. The simplified reference tissue model: model assumption violations and their impact on binding potential. J. Cereb. Blood Flow Metab. 35:304–11
    [Google Scholar]
  108. 108.
    Wu Y, Carson RE. 2002. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J. Cereb. Blood Flow Metab. 22:1440–52
    [Google Scholar]
  109. 109.
    Patlak CS, Blasberg RG, Fenstermacher JD 1983. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3:1–7
    [Google Scholar]
  110. 110.
    Slifstein M, Laruelle M. 2000. Effects of statistical noise on graphic analysis of PET neuroreceptor studies. J. Nucl. Med. 41:2083–88
    [Google Scholar]
  111. 111.
    Ogden RT. 2003. Estimation of kinetic parameters in graphical analysis of PET imaging data. Stat. Med. 22:3557–68
    [Google Scholar]
  112. 112.
    Ichise M, Liow J-S, Lu J-Q, Takano A, Model K et al. 2003. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J. Cereb. Blood Flow Metab. 23:1096–112
    [Google Scholar]
  113. 113.
    Carson RE. 2000. PET physiological measurements using constant infusion. Nucl. Med. Biol. 27:657–60
    [Google Scholar]
  114. 114.
    Park E, Sullivan JM, Planeta B, Gallezot JD, Lim K et al. 2015. Test–retest reproducibility of the metabotropic glutamate receptor 5 ligand [18F]FPEB with bolus plus constant infusion in humans. Eur. J. Nucl. Med. Mol. Imaging 42:1530–41
    [Google Scholar]
  115. 115.
    Gallezot JD, Zheng MQ, Lim K, Lin SF, Labaree D et al. 2014. Parametric imaging and test–retest variability of 11C-(+)-PHNO binding to D2/D3 dopamine receptors in humans on the high-resolution research tomograph PET scanner. J. Nucl. Med. 55:960–66
    [Google Scholar]
  116. 116.
    Koeppe RA, Holden JE, Ip WR 1985. Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography. J. Cereb. Blood Flow Metab. 5:224–34
    [Google Scholar]
  117. 117.
    Gravel P, Reader AJ. 2015. Direct 4D PET MLEM reconstruction of parametric images using the simplified reference tissue model with the basis function method for [¹¹C]raclopride. Phys. Med. Biol. 60:4533–49
    [Google Scholar]
  118. 118.
    Yan J, Planeta-Wilson B, Carson RE 2012. Direct 4-D PET list mode parametric reconstruction with a novel EM algorithm. IEEE Trans. Med. Imaging 31:2213–23
    [Google Scholar]
  119. 119.
    Su K-H, Yen T-C, Fang Y-HD 2013. A novel approach for direct reconstruction of parametric images for myocardial blood flow from PET imaging. Med. Phys. 40:102505
    [Google Scholar]
  120. 120.
    Wang G, Qi J. 2012. An optimization transfer algorithm for nonlinear parametric image reconstruction from dynamic PET data. IEEE Trans. Med. Imaging 31:1977–88
    [Google Scholar]
  121. 121.
    Kamasak ME, Bouman CA, Morris ED, Sauer K 2005. Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans. Med. Imaging 24:636–50
    [Google Scholar]
  122. 122.
    Laruelle M. 2000. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J. Cereb. Blood Flow Metab. 20:423–51
    [Google Scholar]
  123. 123.
    Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD et al. 1996. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. PNAS 93:9235–40
    [Google Scholar]
  124. 124.
    Breier A, Su TP, Saunders R, Carson RE, Kolachana BS et al. 1997. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. PNAS 94:2569–74
    [Google Scholar]
  125. 125.
    Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E et al. 2015. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology 232:4129–57
    [Google Scholar]
  126. 126.
    Carson RE, Breier A, de Bartolomeis A, Saunders RC, Su TP et al. 1997. Quantification of amphetamine-induced changes in [11C]raclopride binding with continuous infusion. J. Cereb. Blood Flow Metab. 17:437–47
    [Google Scholar]
  127. 127.
    Watabe H, Endres CJ, Breier A, Schmall B, Eckelman WC, Carson RE 2000. Measurement of dopamine release with continuous infusion of [11C]raclopride: optimization and signal-to-noise considerations. J. Nucl. Med. 41:522–30
    [Google Scholar]
  128. 128.
    Morris ED, Yoder KK, Wang C, Normandin MD, Zheng QH et al. 2005. ntPET: a new application of PET imaging for characterizing the kinetics of endogenous neurotransmitter release. Mol. Imaging 4:473–89
    [Google Scholar]
  129. 129.
    Cosgrove KP, Wang S, Kim SJ, McGovern E, Nabulsi N et al. 2014. Sex differences in the brain's dopamine signature of cigarette smoking. J. Neurosci. 34:16851–55
    [Google Scholar]
  130. 130.
    Martinez D, Greene K, Broft A, Kumar D, Liu F et al. 2009. Lower level of endogenous dopamine in patients with cocaine dependence: findings from PET imaging of D2/D3 receptors following acute dopamine depletion. Am. J. Psychiatry 166:1170–77
    [Google Scholar]
  131. 131.
    DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N et al. 2015. In vivo ketamine-induced changes in [11C]ABP688 binding to metabotropic glutamate receptor subtype 5. Biol. Psychiatry 77:266–75
    [Google Scholar]
  132. 132.
    Frankle WG, Cho RY, Narendran R, Mason NS, Vora S et al. 2009. Tiagabine increases [11C]flumazenil binding in cortical brain regions in healthy control subjects. Neuropsychopharmacology 34:624–33
    [Google Scholar]
  133. 133.
    Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T et al. 2012. Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. NeuroImage 63:232–39
    [Google Scholar]
  134. 134.
    Sandiego CM, Gallezot JD, Pittman B, Nabulsi N, Lim K et al. 2015. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. PNAS 112:12468–73
    [Google Scholar]
  135. 135.
    Donnelly DJ. 2017. Small molecule PET tracers in drug discovery. Semin. Nucl. Med. 47:454–60
    [Google Scholar]
  136. 136.
    Naganawa M, Gallezot JD, Rossano S, Carson RE 2017. Quantitative PET imaging in drug development: estimation of target occupancy. Bull. Math. Biol. https://doi.org/10.1007/s11538-017-0374-2
    [Crossref] [Google Scholar]
  137. 137.
    Esterlis I, Hannestad JO, Bois F, Sewell RA, Tyndale RF et al. 2013. Imaging changes in synaptic acetylcholine availability in living human subjects. J. Nucl. Med. 54:78–82
    [Google Scholar]
  138. 138.
    Gallezot JD, Planeta B, Nabulsi N, Palumbo D, Li X et al. 2017. Determination of receptor occupancy in the presence of mass dose: [11C]GSK189254 PET imaging of histamine H3 receptor occupancy by PF-03654746. J. Cereb. Blood Flow Metab. 37:1095–107
    [Google Scholar]
  139. 139.
    Naganawa M, Dickinson GL, Zheng MQ, Henry S, Vandenhende F et al. 2016. Receptor occupancy of the κ-opioid antagonist LY2456302 measured with positron emission tomography and the novel radiotracer 11C-LY2795050. J. Pharmacol. Exp. Ther. 356:260–66
    [Google Scholar]
  140. 140.
    Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF et al. 2016. Imaging synaptic density in the living human brain. Sci. Transl. Med. 8:348ra96
    [Google Scholar]
  141. 141.
    Nicolas JM, Hannestad J, Holden D, Kervyn S, Nabulsi N et al. 2016. Brivaracetam, a selective high-affinity synaptic vesicle protein 2A (SV2A) ligand with preclinical evidence of high brain permeability and fast onset of action. Epilepsia 57:201–9
    [Google Scholar]
  142. 142.
    Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN 2010. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J. Cereb. Blood Flow Metab. 30:46–50
    [Google Scholar]
  143. 143.
    Schain M, Zanderigo F, Ogden RT 2018. Likelihood estimation of drug occupancy for brain PET studies. NeuroImage 178:255–65
    [Google Scholar]
  144. 144.
    Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC et al. 2012. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann. Neurol. 72:578–86
    [Google Scholar]
  145. 145.
    Matuskey D, Gallezot JD, Pittman B, Williams W, Wanyiri J et al. 2014. Dopamine D3 receptor alterations in cocaine-dependent humans imaged with [C](+)PHNO. Drug Alcohol Depend 139:100–5
    [Google Scholar]
  146. 146.
    Deng X, Rong J, Wang L, Vasdev N, Zhang L et al. 2019. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N- and 15O-labeling reactions. Angew. Chem. Int. Ed. Engl. 58:2580–605
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-062117-121056
Loading
/content/journals/10.1146/annurev-bioeng-062117-121056
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error