1932

Abstract

The past decade has seen a dramatic expansion in the number and range of techniques available to obtain genome-wide information and to analyze this information so as to infer both the functions of individual molecules and how they interact to modulate the behavior of biological systems. Here, we review these techniques, focusing on the construction of physical protein-protein interaction networks, and highlighting approaches that incorporate protein structure, which is becoming an increasingly important component of systems-level computational techniques. We also discuss how network analyses are being applied to enhance our basic understanding of biological systems and their disregulation, as well as how these networks are being used in drug development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-022726
2014-05-06
2024-05-26
Loading full text...

Full text loading...

/deliver/fulltext/biophys/43/1/annurev-biophys-051013-022726.html?itemId=/content/journals/10.1146/annurev-biophys-051013-022726&mimeType=html&fmt=ahah

Literature Cited

  1. Acuner Ozbabacan SE, Keskin O, Nussinov R, Gursoy A. 1.  2012. Enriching the human apoptosis pathway by predicting the structures of protein–protein complexes. J. Struct. Biol. 179:338–46 [Google Scholar]
  2. Agarwal S, Deane CM, Porter MA, Jones NS. 2.  2010. Revisiting date and party hubs: novel approaches to role assignment in protein interaction networks. PLoS Comput. Biol. 6:e1000817 [Google Scholar]
  3. Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D. 3.  et al. 2010. An integrated approach to uncover drivers of cancer. Cell 143:1005–17 [Google Scholar]
  4. Alaimo S, Pulvirenti A, Giugno R, Ferro A. 4.  2013. Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 29:2004–8 [Google Scholar]
  5. Aloy P, Ceulemans H, Stark A, Russell RB. 5.  2003. The relationship between sequence and interaction divergence in proteins. J. Mol. Biol. 332:989–98 [Google Scholar]
  6. Aluru M, Zola J, Nettleton D, Aluru S. 6.  2013. Reverse engineering and analysis of large genome-scale gene networks. Nucleic Acids Res. 41:e24 [Google Scholar]
  7. Arnold R, Boonen K, Sun MGF, Kim PM. 7.  2012. Computational analysis of interactomes: Current and future perspectives for bioinformatics approaches to model the host–pathogen interaction space. Methods 57:508–18 [Google Scholar]
  8. Aytuna A, Gursoy A, Keskin O. 8.  2005. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21:2850–55 [Google Scholar]
  9. Azmi AS. 9.  2013. Network pharmacology: An emerging field in cancer drug discovery. Curr. Drug Discov. Technol. 10:93–94 [Google Scholar]
  10. Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH. 10.  2010. Proof of concept: Network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol. Cancer Ther. 9:3137–44 [Google Scholar]
  11. Barabasi A-L, Gulbahce N, Loscalzo J. 11.  2011. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12:56–68 [Google Scholar]
  12. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF. 12.  et al. 2013. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41:D991–95 [Google Scholar]
  13. Ben-Hur A, Noble WS. 13.  2005. Kernel methods for predicting protein–protein interactions. Bioinformatics 21:i38–46 [Google Scholar]
  14. Bhardwaj N, Lu H. 14.  2005. Correlation between gene expression profiles and protein–protein interactions within and across genomes. Bioinformatics 21:2730–38 [Google Scholar]
  15. Bickerton GR, Higueruelo AP, Blundell TL. 15.  2011. Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the PICCOLO database. BMC Bioinform. 12:313 [Google Scholar]
  16. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D. 16.  et al. 2010. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. USA 107:18545–50 [Google Scholar]
  17. Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I. 17.  et al. 2009. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods 6:91–97 [Google Scholar]
  18. Burger L, van Nimwegen E. 18.  2008. Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol. Syst. Biol. 4:1–14 [Google Scholar]
  19. Califano A, Butte AJ, Friend S, Ideker T, Schadt E. 19.  2012. Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat. Genet. 44:841–47 [Google Scholar]
  20. Cannistraci CV, Alanis-Lobato G, Ravasi T. 20.  2013. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics 29:i199–209 [Google Scholar]
  21. Cao DS, Liu S, Xu QS, Lu HM, Huang JH. 21.  et al. 2012. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures. Anal. Chim. Acta 752:1–10 [Google Scholar]
  22. Ceol A, Chatr-aryamontri A, Santonico E, Sacco R, Castagnoli L, Cesareni G. 22.  2007. DOMINO: a database of domain–peptide interactions. Nucleic Acids Res. 35:D557–60 [Google Scholar]
  23. Chang RL, Andrews K, Kim D, Li Z, Godzik A, Palsson BO. 23.  2013. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 340:1220–23 [Google Scholar]
  24. Chen L, Qian Z, Fen K, Cai Y. 24.  2010. Prediction of interactiveness between small molecules and enzymes by combining gene ontology and compound similarity. J. Comput. Chem. 31:1766–76 [Google Scholar]
  25. Chen L, Wu L-Y, Wang Y, Zhang X-S. 25.  2006. Inferring protein interactions from experimental data by association probabilistic method. Proteins: Struct. Funct. Bioinform. 62:833–37 [Google Scholar]
  26. Chen X-W, Jeong JC. 26.  2009. Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 25:585–91 [Google Scholar]
  27. Chen X-W, Liu M. 27.  2005. Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 21:4394–400 [Google Scholar]
  28. Chen Y-C, Lo Y-S, Hsu W-C, Yang J-M. 28.  2007. 3D-partner: a web server to infer interacting partners and binding models. Nucleic Acids Res. 35:W561–67 [Google Scholar]
  29. Cheng F, Zhou Y, Li W, Liu G, Tang Y. 29.  2012. Prediction of chemical-protein interactions network with weighted network-based inference method. PLoS ONE 7:e41064 [Google Scholar]
  30. Cho D-Y, Kim Y-A, Przytycka TM. 30.  2012. Chapter 5: Network biology approach to complex diseases. PLoS Comput. Biol. 8:e1002820 [Google Scholar]
  31. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. 31.  2007. Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3:140 [Google Scholar]
  32. ENCODE Project Consortium. 2004. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306:636–40 [Google Scholar]
  33. Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. 33.  2013. Structure and dynamics of molecular networks: a novel paradigm of drug discovery. A comprehensive review. Pharmacol. Ther. 138:333–408 [Google Scholar]
  34. Cui G, Fang C, Han K. 34.  2012. Prediction of protein-protein interactions between viruses and human by an SVM model. BMC Bioinform. 13S5
  35. Dandekar T, Snel B, Huynen M, Bork P. 35.  1998. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23:324–28 [Google Scholar]
  36. De Bodt S, Proost S, Vandepoele K, Rouzé P, Van de Peer Y. 36.  2009. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression. BMC Genomics 10:288 [Google Scholar]
  37. de Juan D, Pazos F, Valencia A. 37.  2013. Emerging methods in protein co-evolution. Nat. Rev. Genet. 14:249–61 [Google Scholar]
  38. De Las Rivas J, Fontanillo C. 38.  2010. Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 6:e1000807 [Google Scholar]
  39. Deane C, Salwinski L, Xenarios I, Eisenberg D. 39.  2002. Two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics 1:349–56 [Google Scholar]
  40. Doolittle JM, Gomez SM. 40.  2010. Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens. Virol. J. 7:82 [Google Scholar]
  41. Drayman N, Glick Y, Ben-nun-Shaul O, Zer H, Zlotnick A. 41.  et al. 2013. Pathogens use structural mimicry of native host ligands as a mechanism for host receptor engagement. Cell Host Microbe 14:63–73 [Google Scholar]
  42. Duran-Frigola M, Mosca R, Aloy P. 42.  2013. Structural systems pharmacology: the role of 3D structures in next-generation drug development. Chem. Biol. 20:674–84 [Google Scholar]
  43. Dyer MD, Murali TM, Sobral BW. 43.  2011. Supervised learning and prediction of physical interactions between human and HIV proteins. Infect. Genet. Evol. 11:917–23 [Google Scholar]
  44. Eisen MB, Spellman PT, Brown PO, Botstein D. 44.  1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95:14863–68 [Google Scholar]
  45. Elefsinioti A, Saraç ÖS, Hegele A, Plake C, Hubner NC. 45.  et al. 2011. Large-scale de novo prediction of physical protein-protein association. Mol. Cell. Proteomics 10:M111.010629 [Google Scholar]
  46. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. 46.  1999. Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86–90 [Google Scholar]
  47. Finn RD, Marshall M, Bateman A. 47.  2005. iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21:410–12 [Google Scholar]
  48. Floratos A, Smith K, Ji Z, Watkinson J, Califano A. 48.  2010. geWorkbench: an open source platform for integrative genomics. Bioinformatics 26:1779–80 [Google Scholar]
  49. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M. 49.  et al. 2013. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41:D808–15 [Google Scholar]
  50. Franzosa EA, Garamszegi S, Xia Y. 50.  2012. Toward a three-dimensional view of protein networks between species. Front. Microbiol. 3:428 [Google Scholar]
  51. Fraser JS, Gross JD, Krogan NJ. 51.  2013. From systems to structure: bridging networks and mechanism. Mol. Cell 49:222–31 [Google Scholar]
  52. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ. 52.  et al. 2004. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47:1739–49 [Google Scholar]
  53. Furlong LI. 53.  2013. Human diseases through the lens of network biology. Trends Genet. 29:150–59 [Google Scholar]
  54. Gao M, Skolnick J. 54.  2010. Structural space of protein–protein interfaces is degenerate, close to complete, and highly connected. Proc. Natl. Acad. Sci. USA 107:22517–22 [Google Scholar]
  55. Garcia-Garcia J, Bonet J, Guney E, Fornes O, Planas J, Oliva B. 55.  2012. Networks of protein-protein interactions: From uncertainty to molecular details. Mol. Inform. 31:342–62 [Google Scholar]
  56. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M. 56.  et al. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80 [Google Scholar]
  57. Giguere S, Marchand M, Laviolette F, Drouin A, Corbeil J. 57.  2013. Learning a peptide-protein binding affinity predictor with kernel ridge regression. BMC Bioinform. 14:82 [Google Scholar]
  58. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. 58.  2011. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70:898–907 [Google Scholar]
  59. Gonzalez MW, Kann MG. 59.  2012. Chapter 4: Protein interactions and disease. PLoS Comput. Biol. 8:e1002819 [Google Scholar]
  60. Guerler A, Govindarajoo B, Zhang Y. 60.  2013. Mapping monomeric threading to protein–protein structure prediction. J. Chem. Inf. Model. 53:717–25 [Google Scholar]
  61. Gulati S, Cheng TMK, Bates PA. 61.  2013. Cancer networks and beyond: Interpreting mutations using the human interactome and protein structure. Semin. Cancer Biol. 23:219–26 [Google Scholar]
  62. Haigh JA, Pickup BT, Grant JA, Nicholls A. 62.  2005. Small molecule shape-fingerprints. J. Chem. Inf. Model. 45:673–84 [Google Scholar]
  63. Harrington ED, Jensen LJ, Bork P. 63.  2008. Predicting biological networks from genomic data. FEBS Lett. 582:1251–58 [Google Scholar]
  64. Hohman M, Gregory K, Chibale K, Smith PJ, Ekins S, Bunin B. 64.  2009. Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery. Drug Discov. Today 14:261–70 [Google Scholar]
  65. Hooda Y, Kim PM. 65.  2012. Computational structural analysis of protein interactions and networks. Proteomics 12:1697–705 [Google Scholar]
  66. Hoogland C, Mostaguir K, Sanchez J-C, Hochstrasser DF, Appel RD. 66.  2004. SWISS-2DPAGE, ten years later. Proteomics 4:2352–56 [Google Scholar]
  67. Hopkins AL. 67.  2008. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4:682–90 [Google Scholar]
  68. Hopkins AL, Groom CR. 68.  2002. The druggable genome. Nat. Rev. Drug Discov. 1:727–30 [Google Scholar]
  69. Hosur R, Peng J, Vinayagam A, Stelzl U, Xu J. 69.  et al. 2012. A computational framework for boosting confidence in high-throughput protein-protein interaction datasets. Genome Biol. 13:R76 [Google Scholar]
  70. Hsin Liu C, Li K-C, Yuan S. 70.  2013. Human protein–protein interaction prediction by a novel sequence-based co-evolution method: co-evolutionary divergence. Bioinformatics 29:92–98 [Google Scholar]
  71. Hu Y, Bajorath J. 71.  2013. Compound promiscuity: What can we learn from current data?. Drug Discov. Today 18:644–50 [Google Scholar]
  72. Hue M, Riffle M, Vert J-P, Noble W. 72.  2010. Large-scale prediction of protein-protein interactions from structures. BMC Bioinform. 11:144 [Google Scholar]
  73. Hui S, Xing X, Bader GD. 73.  2013. Predicting PDZ domain mediated protein interactions from structure. BMC Bioinform. 14:27 [Google Scholar]
  74. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM. 74.  et al. 2005. A data integration methodology for systems biology. Proc. Natl. Acad. Sci. USA 102:17296–301 [Google Scholar]
  75. Ideker T, Ozier O, Schwikowski B, Siegel AF. 75.  2002. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18:S233–40 [Google Scholar]
  76. Ideker T, Sharan R. 76.  2008. Protein networks in disease. Genome Res. 18:644–52 [Google Scholar]
  77. Ivanov AA, Khuri FR, Fu H. 77.  2013. Targeting protein–protein interactions as an anticancer strategy. Trends Pharmacol. Sci. 34:393–400 [Google Scholar]
  78. Izarzugaza J, Juan D, Pons C, Pazos F, Valencia A. 78.  2008. Enhancing the prediction of protein pairings between interacting families using orthology information. BMC Bioinform. 9:35 [Google Scholar]
  79. Jaeger S, Aloy P. 79.  2012. From protein interaction networks to novel therapeutic strategies. IUBMB Life 64:529–37 [Google Scholar]
  80. Jansen R, Greenbaum D, Gerstein M. 80.  2002. Relating whole-genome expression data with protein-protein interactions. Genome Res. 12:37–46 [Google Scholar]
  81. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ. 81.  et al. 2003. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302:449–53 [Google Scholar]
  82. Jessulat M, Pitre S, Gui Y, Hooshyar M, Omidi K. 82.  et al. 2011. Recent advances in protein–protein interaction prediction: experimental and computational methods. Expert Opin. Drug Discov. 6:921–35 [Google Scholar]
  83. Jordan F, Nguyen T-P, Liu W-C. 83.  2012. Studying protein–protein interaction networks: a systems view on diseases. Brief. Funct. Genomics 11:497–504 [Google Scholar]
  84. Jothi R, Kann MG, Przytycka TM. 84.  2005. Predicting protein–protein interaction by searching evolutionary tree automorphism space. Bioinformatics 21:i241–50 [Google Scholar]
  85. Juan D, Pazos F, Valencia A. 85.  2008. High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc. Natl. Acad. Sci. USA 105:934–39 [Google Scholar]
  86. Kar G, Gursoy A, Keskin O. 86.  2009. Human cancer protein-protein interaction network: a structural perspective. PLoS Comput. Biol. 5:e1000601 [Google Scholar]
  87. Kar G, Keskin O, Nussinov R, Gursoy A. 87.  2011. Human proteome-scale structural modeling of E2–E3 interactions exploiting interface motifs. J. Proteome Res. 11:1196–207 [Google Scholar]
  88. Karaca E, Bonvin AMJJ. 88.  2013. Advances in integrative modeling of biomolecular complexes. Methods 59:372–81 [Google Scholar]
  89. Karagoz K, Arga KY. 89.  2013. Assessment of high-confidence protein-protein interactome in yeast. Comput. Biol. Chem. 45:1–8 [Google Scholar]
  90. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. 90.  2007. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25:197–206 [Google Scholar]
  91. Khurana E, Fu Y, Chen J, Gerstein M. 91.  2013. Interpretation of genomic variants using a unified biological network approach. PLoS Comput. Biol. 9e1002886
  92. Kiel C, Vogt A, Campagna A, Chatr-aryamontri A, Swiatek-de Lange M. 92.  et al. 2011. Structural and functional protein network analyses predict novel signaling functions for rhodopsin. Mol. Syst. Biol. 7:551 [Google Scholar]
  93. Kim PM, Lu LJ, Xia Y, Gerstein MB. 93.  2006. Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314:1938–41 [Google Scholar]
  94. Kim WK, Henschel A, Winter C, Schroeder M. 94.  2006. The many faces of protein-protein interactions: a compendium of interface geometry. PLoS Comput. Biol. 2:e124 [Google Scholar]
  95. Kim Y, Min B, Yi G-S. 95.  2012. IDDI: integrated domain-domain interaction and protein interaction analysis system. Proteome Sci. 10:Suppl. 1S9 [Google Scholar]
  96. Kim Y-A, Przytycka TM. 96.  2013. Bridging the gap between genotype and phenotype via network approaches. Front. Genet. 3:227 [Google Scholar]
  97. Kim Y-A, Wuchty S, Przytycka TM. 97.  2011. Identifying causal genes and dysregulated pathways in complex diseases. PLoS Comput. Biol. 7:e1001095 [Google Scholar]
  98. Kitano H. 98.  2007. A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov. 6:202–10 [Google Scholar]
  99. Kittichotirat W, Guerquin M, Bumgarner RE, Samudrala R. 99.  2009. Protinfo PPC: A web server for atomic level prediction of protein complexes. Nucleic Acids Res. 37:W519–25 [Google Scholar]
  100. Koh GCKW, Porras P, Aranda B, Hermjakob H, Orchard SE. 100.  2012. Analyzing protein–protein interaction networks. J. Proteome Res. 11:2014–31 [Google Scholar]
  101. Koike A, Takagi T. 101.  2004. Prediction of protein-protein interaction sites using support vector machines. Protein Eng. Des. Sel. 17:165–73 [Google Scholar]
  102. Kola I, Landis J. 102.  2004. Can the pharmaceutical industry reduce attrition rates?. Nat. Rev. Drug Discov. 3:711–16 [Google Scholar]
  103. Koonin EV, Wolf YI, Aravind L. 103.  2001. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res. 11:240–52 [Google Scholar]
  104. Korkin D, Davis FP, Sali A. 104.  2005. Localization of protein-binding sites within families of proteins. Protein Sci. 14:2350–60 [Google Scholar]
  105. Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV. 105.  et al. 2011. From in silico target prediction to multi-target drug design: Current databases, methods and applications. J. Proteomics 74:2554–74 [Google Scholar]
  106. Krissinel E, Henrick K. 106.  2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372:774–97 [Google Scholar]
  107. Kundrotas PJ, Zhu Z, Janin J, Vakser IA. 107.  2012. Templates are available to model nearly all complexes of structurally characterized proteins. Proc. Natl. Acad. Sci. USA 109:9438–41 [Google Scholar]
  108. Kundrotas PJ, Zhu Z, Vakser IA. 108.  2010. GWIDD: Genome-wide protein docking database. Nucleic Acids Res. 38:D513–17 [Google Scholar]
  109. Kuzu G, Keskin O, Gursoy A, Nussinov R. 109.  2012. Constructing structural networks of signaling pathways on the proteome scale. Curr. Opin. Struct. Biol. 22:367–77 [Google Scholar]
  110. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. 110.  2012. Bioinformatics and variability in drug response: a protein structural perspective. J. R. Soc. Interface 9:1409–37 [Google Scholar]
  111. Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK. 111.  et al. 2012. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:780–94 [Google Scholar]
  112. Lefebvre C, Rajbhandari P, Alvarez MJ, Bandaru P, Lim WK. 112.  et al. 2010. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6:377 [Google Scholar]
  113. Saeed R, Deane CM. 113.  Lewis ACF, 2010. Predicting protein-protein interactions in the context of protein evolution. Mol. Biosyst. 6:55–64 [Google Scholar]
  114. Li Y, Xu J, Chen H, Zhao Z, Li S. 114.  et al. 2013. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues. PLoS ONE 8e65871
  115. Liang Y, Wu H, Lei R, Chong RA, Wei Y. 115.  et al. 2012. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J. Biol. Chem. 287:33533–44 [Google Scholar]
  116. Lieber DS, Elemento O, Tavazoie S. 116.  2010. Large-scale discovery and characterization of protein regulatory motifs in eukaryotes. PLoS ONE 5:e14444 [Google Scholar]
  117. Lin C-Y, Chen Y-C, Lo Y-S, Yang J-M. 117.  2013. Inferring homologous protein-protein interactions through pair position specific scoring matrix. BMC Bioinform. 14:Suppl. 2S11 [Google Scholar]
  118. Lin X, Chen X-w. 118.  2013. Heterogeneous data integration by tree-augmented naïve Bayes for protein–protein interactions prediction. Proteomics 13:261–68 [Google Scholar]
  119. Liu Z-P, Chen L. 119.  2012. Proteome-wide prediction of protein-protein interactions from high-throughput data. Protein Cell 3:508–20 [Google Scholar]
  120. Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J. 120.  et al. 2012. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–67 [Google Scholar]
  121. Lu LJ, Xia Y, Paccanaro A, Yu H, Gerstein M. 121.  2005. Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 15:945–53 [Google Scholar]
  122. Maetschke SR, Simonsen M, Davis MJ, Ragan MA. 122.  2012. Gene Ontology-driven inference of protein–protein interactions using inducers. Bioinformatics 28:69–75 [Google Scholar]
  123. Mani KM, Lefebvre C, Wang K, Lim WK, Basso K. 123.  et al. 2008. A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol. Syst. Biol. 4:1–9 [Google Scholar]
  124. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. 124.  1999. Detecting protein function and protein-protein interactions from genome sequences. Science 285:751–53 [Google Scholar]
  125. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G. 125.  et al. 2006. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7:Suppl. 1S7 [Google Scholar]
  126. Martin S, Roe D, Faulon JL. 126.  2005. Predicting protein-protein interactions using signature products. Bioinformatics 21:218–26 [Google Scholar]
  127. Matthews L, Vaglio P, Reboul J, Ge H, Davis B. 127.  et al. 2001. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res. 11:2120–26 [Google Scholar]
  128. McDowall MD, Scott MS, Barton GJ. 128.  2009. PIPs: human protein–protein interaction prediction database. Nucleic Acids Res. 37:D651–56 [Google Scholar]
  129. Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. 129.  2013. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today 18:495–501 [Google Scholar]
  130. Melville JL, Burke EK, Hirst JD. 130.  2009. Machine learning in virtual screening. Comb. Chem. High Throughput Screen. 12:332–43 [Google Scholar]
  131. Meyer MJ, Das J, Wang X, Yu H. 131.  2013. INstruct: a database of high-quality 3D structurally resolved protein interactome networks. Bioinformatics 29:1577–79 [Google Scholar]
  132. Morris JH, Meng EC, Ferrin TE. 132.  2010. Computational tools for the interactive exploration of proteomic and structural data. Mol. Cell. Proteomics 9:1703–15 [Google Scholar]
  133. Mosca R, Ceol A, Aloy P. 133.  2013. Interactome3D: adding structural details to protein networks. Nat. Methods 10:47–53 [Google Scholar]
  134. Mosca R, Pons C, Fernandez-Recio J, Aloy P. 134.  2009. Pushing structural information into the yeast interactome by high-throughput protein docking experiments. PLoS Comput. Biol. 5:e1000490 [Google Scholar]
  135. Mukherjee S, Zhang Y. 135.  2011. Protein-protein complex structure predictions by multimeric threading and template recombination. Structure 19:955–66 [Google Scholar]
  136. Muley VY, Ranjan A. 136.  2013. Evaluation of physical and functional protein-protein interaction prediction methods for detecting biological pathways. PLoS ONE 8:e54325 [Google Scholar]
  137. Muller F-J, Laurent LC, Kostka D, Ulitsky I, Williams R. 137.  et al. 2008. Regulatory networks define phenotypic classes of human stem cell lines. Nature 455:401–5 [Google Scholar]
  138. Ochoa D, Garcia-Gutiérrez P, Juan D, Valencia A, Pazos F. 138.  2013. Incorporating information on predicted solvent accessibility to the co-evolution-based study of protein interactions. Mol. Biosyst. 9:70–76 [Google Scholar]
  139. Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N. 139.  1999. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96:2896–901 [Google Scholar]
  140. Pancaldi V, Saraç ÖS, Rallis C, McLean JR, Převorovský M. 140.  et al. 2012. Predicting the fission yeast protein interaction network. G3: Genes Genomes Genet. 2:453–67 [Google Scholar]
  141. Pawson T, Linding R. 141.  2008. Network medicine. FEBS Lett. 582:1266–70 [Google Scholar]
  142. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. 142.  1999. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96:4285–88 [Google Scholar]
  143. Petrey D, Honig B. 143.  2009. Is protein classification necessary? Toward alternative approaches to function annotation. Curr. Opin. Struct. Biol. 19:363–68 [Google Scholar]
  144. Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A. 144.  et al. 2011. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 39:D465–74 [Google Scholar]
  145. Pruitt KD, Tatusova T, Maglott DR. 145.  2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61–65 [Google Scholar]
  146. Pujol A, Mosca R, Farrés J, Aloy P. 146.  2010. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol. Sci. 31:115–23 [Google Scholar]
  147. Rana J, Sreejith R, Gulati S, Bharti I, Jain S, Gupta S. 147.  2013. Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness. Arch. Virol. 158:1159–72 [Google Scholar]
  148. Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC. 148.  et al. 2006. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 5:11 [Google Scholar]
  149. Russell RB, Aloy P. 149.  2008. Targeting and tinkering with interaction networks. Nat. Chem. Biol. 4:666–73 [Google Scholar]
  150. Sato T, Yamanishi Y, Kanehisa M, Toh H. 150.  2005. The inference of protein–protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21:3482–89 [Google Scholar]
  151. Schadt EE. 151.  2009. Molecular networks as sensors and drivers of common human diseases. Nature 461:218–23 [Google Scholar]
  152. Schaefer MH, Fontaine J-F, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA. 152.  2012. HIPPIE: Integrating protein interaction networks with experiment based quality scores. PLoS ONE 7:e31826 [Google Scholar]
  153. Schwede T, Kopp J, Guex N, Peitsch MC. 153.  2004. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31:3381–85 [Google Scholar]
  154. Shindyalov IN, Bourne PE. 154.  2000. An alternative view of protein fold space. Prot.: Struct. Funct. Genet. 38:247–60 [Google Scholar]
  155. Shoemaker BA, Panchenko AR. 155.  2007. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3:e43 [Google Scholar]
  156. Shoemaker BA, Panchenko AR. 156.  2007. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput. Biol. 3:e42 [Google Scholar]
  157. Shoemaker BA, Zhang D, Tyagi M, Thangudu RR, Fong JH. 157.  et al. 2012. IBIS (Inferred Biomolecular Interaction Server) reports, predicts and integrates multiple types of conserved interactions for proteins. Nucleic Acids Res. 40:D834–40 [Google Scholar]
  158. Singh R, Park D, Xu J, Hosur R, Berger B. 158.  2010. Struct2Net: a web service to predict protein–protein interactions using a structure-based approach. Nucleic Acids Res. 38:W508–15 [Google Scholar]
  159. Sprinzak E, Margalit H. 159.  2001. Correlated sequence-signatures as markers of protein-protein interaction. J. Mol. Biol. 311:681–92 [Google Scholar]
  160. Sprinzak E, Sattath S, Margalit H. 160.  2003. How reliable are experimental protein-protein interaction data?. J. Mol. Biol. 327:919–23 [Google Scholar]
  161. Stein A, Russell RB, Aloy P. 161.  2005. 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res. 33:D413–17 [Google Scholar]
  162. Tan S-L, Ganji G, Paeper B, Proll S, Katze MG. 162.  2007. Systems biology and the host response to viral infection. Nat. Biotechnol. 25:1383–89 [Google Scholar]
  163. Tuncbag N, Gursoy A, Nussinov R, Keskin O. 163.  2011. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat. Protoc. 6:1341–54 [Google Scholar]
  164. Tuncbag N, Kar G, Gursoy A, Keskin O, Nussinov R. 164.  2009. Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example. Mol. Biosyst. 5:1770–78 [Google Scholar]
  165. Turinsky AL, Razick S, Turner B, Donaldson IM, Wodak SJ. 165.  2010. Literature curation of protein interactions: measuring agreement across major public databases. Database 2010:baq026 [Google Scholar]
  166. Tyagi M, Hashimoto K, Shoemaker BA, Wuchty S, Panchenko AR. 166.  2012. Large-scale mapping of human protein interactome using structural complexes. EMBO Rep. 13:266–71 [Google Scholar]
  167. Uhlén M, Björling E, Agaton C, Szigyarto CA-K, Amini B. 167.  et al. 2005. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteomics 4:1920–32 [Google Scholar]
  168. Ulitsky I, Krishnamurthy A, Karp RM, Shamir R. 168.  2010. DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS ONE 5:e13367 [Google Scholar]
  169. Valente GT, Acencio ML, Martins C, Lemke N. 169.  2013. The development of a universal in silico predictor of protein-protein interactions. PLoS ONE 8:e65587 [Google Scholar]
  170. van Laarhoven T, Nabuurs SB, Marchiori E. 170.  2011. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27:3036–43 [Google Scholar]
  171. Vandin F, Upfal E, Raphael BJ. 171.  2012. De novo discovery of mutated driver pathways in cancer. Genome Res. 22:375–85 [Google Scholar]
  172. Vidal M, Cusick ME, Barabási A-L. 172.  2011. Interactome networks and human disease. Cell 144:986–98 [Google Scholar]
  173. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. 173.  2013. Cancer genome landscapes. Science 339:1546–58 [Google Scholar]
  174. von Mering C, Krause R, Snel B, Cornell M, Oliver SG. 174.  et al. 2002. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417:399–403 [Google Scholar]
  175. Wale N. 175.  2011. Machine learning in drug discovery and development. Drug Dev. Res. 72:112–19 [Google Scholar]
  176. Wang K, Nemenmann I, Banerjee N, Margolin A, Califano A. 176.  2006. Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes. Lect. Notes Comput. Sci. 3909:348–62 [Google Scholar]
  177. Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK. 177.  et al. 2009. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat. Biotechnol. 27:829–37 [Google Scholar]
  178. Wang X, Wei X, Thijssen B, Das J, Lipkin SM, Yu H. 178.  2012. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat. Biotechnol. 30:159–64 [Google Scholar]
  179. Wass MN, Fuentes G, Pons C, Pazos F, Valencia A. 179.  2011. Towards the prediction of protein interaction partners using physical docking. Mol. Syst. Biol. 7:469 [Google Scholar]
  180. Witte JS. 180.  2010. Genome-wide association studies and beyond. Annu. Rev. Public Health 31:9–20 [Google Scholar]
  181. Xie L, Xie L, Bourne PE. 181.  2011. Structure-based systems biology for analyzing off-target binding. Curr. Opin. Struct. Biol. 21:189–99 [Google Scholar]
  182. Xu Q, Dunbrack RL. 182.  2011. The protein common interface database (ProtCID)—a comprehensive database of interactions of homologous proteins in multiple crystal forms. Nucleic Acids Res. 39:D761–70 [Google Scholar]
  183. Xu Q, Xiang EW, Yang Q. 183.  2011. Transferring network topological knowledge for predicting protein–protein interactions. Proteomics 11:3818–25 [Google Scholar]
  184. Yabuuchi H, Niijima S, Takematsu H, Ida T, Hirokawa T. 184.  et al. 2011. Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol. 7:472 [Google Scholar]
  185. Yildirim MA, Goh K-I, Cusick ME, Barabasi A-L, Vidal M. 185.  2007. Drug-target network. Nat. Biotechnol. 25:1119–26 [Google Scholar]
  186. You Z-H, Lei Y-K, Zhu L, Xia J, Wang B. 186.  2013. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinform. 14S10
  187. Yousef A, Moghadam Charkari N. 187.  2013. A novel method based on new adaptive LVQ neural network for predicting protein–protein interactions from protein sequences. J. Theor. Biol. 336:231–39 [Google Scholar]
  188. Yu C-Y, Chou L-C, Chang D. 188.  2010. Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. BMC Bioinform. 11:167 [Google Scholar]
  189. Yu X, Wallqvist A, Reifman J. 189.  2012. Inferring high-confidence human protein-protein interactions. BMC Bioinform. 13:79 [Google Scholar]
  190. Zahiri J, Yaghoubi O, Mohammad-Noori M, Ebrahimpour R, Masoudi-Nejad A. 190.  2013. PPlevo: protein–protein interaction prediction from PSSM based evolutionary information. Genomics 102:237–42 [Google Scholar]
  191. Zaman A, Rahaman MH, Razzaque S. 191.  2013. Kaposi's sarcoma: A computational approach through protein-protein interaction and gene regulatory networks analysis. Virus Genes 46:242–54 [Google Scholar]
  192. Zhang KX, Ouellette BFF. 192.  2011. CAERUS: predicting CAncER oUtcomeS using relationship between protein structural information, protein networks, gene expression data, and mutation data. PLoS Comput. Biol. 7:e1001114 [Google Scholar]
  193. Zhang L, Li S, Hao C, Hong G, Zou J. 193.  et al. 2013. Extracting a few functionally reproducible biomarkers to build robust subnetwork-based classifiers for the diagnosis of cancer. Gene 526:232–38 [Google Scholar]
  194. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y. 194.  et al. 2012. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490:556–60 [Google Scholar]
  195. Zhang QC, Petrey D, Garzón JI, Deng L, Honig B. 195.  2013. PrePPI: a structure-informed database of protein–protein interactions. Nucleic Acids Res. 41:D828–33 [Google Scholar]
  196. Zhang QC, Petrey D, Norel R, Honig BH. 196.  2010. Protein interface conservation across structure space. Proc. Natl. Acad. Sci. USA 107:10896–901 [Google Scholar]
  197. Zhang Y, Hubner IA, Arakaki AK, Shakhnovich E, Skolnick J. 197.  2006. On the origin and highly likely completeness of single-domain protein structures. Proc. Natl. Acad. Sci. USA 103:2605–10 [Google Scholar]
  198. Zhu J, Zhang B, Smith EN, Drees B, Brem RB. 198.  et al. 2008. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet. 40:854–61 [Google Scholar]
  199. Zimmermann GR, Lehár J, Keith CT. 199.  2007. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12:34–42 [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-022726
Loading
/content/journals/10.1146/annurev-biophys-051013-022726
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error