- Home
- A-Z Publications
- Annual Review of Biophysics
- Previous Issues
- Volume 43, 2014
Annual Review of Biophysics - Volume 43, 2014
Volume 43, 2014
- Preface
-
-
-
Fun and Games in Berkeley: The Early Years (1956–2013)
Vol. 43 (2014), pp. 1–17More LessLife at Berkeley for the past 57 years involved research on the thermodynamics, kinetics, and spectroscopic properties of RNA to better understand its structures, interactions, and functions. We (myself and all the graduate students and postdocs who shared in the fun) began with dinucleoside phosphates and slowly worked our way up to megadalton-sized RNA molecular motors. We used UV absorption, circular dichroism, circular intensity differential scattering, fluorescence, NMR, and single-molecule methods. We learned a lot and had fun doing it.
-
-
-
Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy
Vol. 43 (2014), pp. 19–39More LessFolding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate.
-
-
-
Mechanisms Underlying Nucleosome Positioning In Vivo
Vol. 43 (2014), pp. 41–63More LessIt has been some 40 years since repeating subunits in eukaryotic chromatin, initially termed “nu bodies,” were described. Four decades of study have characterized the structural organization of the nucleosome, from multiple crystal structures of individual nucleosomes to genome-wide maps of nucleosome positions in scores of organisms. Nucleosome positioning can impact essentially all DNA-templated processes, making an appreciation of the forces shaping the nucleosomal landscape in eukaryotes key to fully understanding genomic regulation. Here, we review the factors impacting nucleosome positioning and the ways that nucleosomes can control the output of the genome.
-
-
-
Microfluidics Expanding the Frontiers of Microbial Ecology
Vol. 43 (2014), pp. 65–91More LessMicrofluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.
-
-
-
Bacterial Multidrug Efflux Transporters
Vol. 43 (2014), pp. 93–117More LessInfections caused by bacteria are a leading cause of death worldwide. Although antibiotics remain a key clinical therapy, their effectiveness has been severely compromised by the development of drug resistance in bacterial pathogens. Multidrug efflux transporters—a common and powerful resistance mechanism—are capable of extruding a number of structurally unrelated antimicrobials from the bacterial cell, including antibiotics and toxic heavy metal ions, facilitating their survival in noxious environments. Transporters of the resistance-nodulation-cell division (RND) superfamily typically assemble as tripartite efflux complexes spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusCFBA complex, which mediates resistance to copper(I) and silver(I) ions, is the only known RND transporter specific to heavy metals. Here, we describe the current knowledge of individual pump components of the Cus system, a paradigm for efflux machinery, and speculate on how RND pumps assemble to fight diverse antimicrobials.
-
-
-
Mechanisms of Cellular Proteostasis: Insights from Single-Molecule Approaches
Vol. 43 (2014), pp. 119–140More LessCells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins.
-
-
-
Biophysical Challenges to Axonal Transport: Motor-Cargo Deficiencies and Neurodegeneration
Vol. 43 (2014), pp. 141–169More LessAxonal transport is indispensable for the distribution of vesicles, organelles, messenger RNAs (mRNAs), and signaling molecules along the axon. This process is mediated by kinesins and dyneins, molecular motors that bind to cargoes and translocate on microtubule tracks. Tight modulation of motor protein activity is necessary, but little is known about the molecules and mechanisms that regulate transport. Moreover, evidence suggests that transport impairments contribute to the initiation or progression of neurodegenerative diseases, or both, but the mechanisms by which motor activity is affected in disease are unclear. In this review, we discuss some of the physical and biophysical properties that influence motor regulation in healthy neurons. We further discuss the evidence for the role of transport in neurodegeneration, highlighting two pathways that may contribute to transport impairment–dependent disease: genetic mutations or variation, and protein aggregation. Understanding how and when transport parameters change in disease will help delineate molecular mechanisms of neurodegeneration.
-
-
-
Live Cell NMR
Vol. 43 (2014), pp. 171–192More LessEver since scientists realized that cells are the basic building blocks of all life, they have been developing tools to look inside them to reveal the architectures and mechanisms that define their biological functions. Whereas “looking into cells” is typically said in reference to optical microscopy, high-resolution in-cell and on-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful method that offers exciting new possibilities for structural and functional studies in and on live cells. In contrast to conventional imaging techniques, in- and on-cell NMR methods do not provide spatial information on cellular biomolecules. Instead, they enable atomic-resolution insights into the native cell states of proteins, nucleic acids, glycans, and lipids. Here we review recent advances and developments in both fields and discuss emerging concepts that have been delineated with these methods.
-
-
-
Structural Bioinformatics of the Interactome
Donald Petrey, and Barry HonigVol. 43 (2014), pp. 193–210More LessThe past decade has seen a dramatic expansion in the number and range of techniques available to obtain genome-wide information and to analyze this information so as to infer both the functions of individual molecules and how they interact to modulate the behavior of biological systems. Here, we review these techniques, focusing on the construction of physical protein-protein interaction networks, and highlighting approaches that incorporate protein structure, which is becoming an increasingly important component of systems-level computational techniques. We also discuss how network analyses are being applied to enhance our basic understanding of biological systems and their disregulation, as well as how these networks are being used in drug development.
-
-
-
Bringing Bioelectricity to Light
Vol. 43 (2014), pp. 211–232More LessAny bilayer lipid membrane can support a membrane voltage. The combination of optical perturbation and optical readout of membrane voltage opens the door to studies of electrophysiology in a huge variety of systems previously inaccessible to electrode-based measurements. Yet, the application of optogenetic electrophysiology requires careful reconsideration of the fundamentals of bioelectricity. Rules of thumb appropriate for neuroscience and cardiology may not apply in systems with dramatically different sizes, lipid compositions, charge carriers, or protein machinery. Optogenetic tools are not electrodes; thus, optical and electrode-based measurements have different quirks. Here we review the fundamental aspects of bioelectricity with the aim of laying a conceptual framework for all-optical electrophysiology.
-
-
-
Energetics of Membrane Protein Folding
Vol. 43 (2014), pp. 233–255More LessFundamental to the central goals of structural biology is knowledge of the energetics of molecular interactions. Because membrane proteins reside in a free energy minimum dictated by their sequences, their lipid environment, and water, one must understand the energetics of membrane protein folding to generate physical descriptions of cellular processes. Several technical obstacles have recently been overcome to enable folding measurements for membrane proteins in lipid and detergent micelle environments, and several new folding free energies have been published within the past ten years. This review discusses the challenges, successes, and novel insights into the physical basis underlying membrane protein folds.
-
-
-
The Fanconi Anemia DNA Repair Pathway: Structural and Functional Insights into a Complex Disorder
Vol. 43 (2014), pp. 257–278More LessMutations in any of at least sixteen FANC genes (FANCA–Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.
-
-
-
Ångström-Precision Optical Traps and Applications*
Vol. 43 (2014), pp. 279–302More LessSingle-molecule optical-trapping experiments are now resolving the smallest units of motion in biology, including 1-base-pair steps along DNA. This review initially concentrates on the experimental problems with achieving 1-Å instrumental stability and the technical advances necessary to overcome these issues. Instrumental advances are complemented by insights in optical-trapping geometry and single-molecule motility assay development to accommodate the elasticity of biological molecules. I then discuss general issues in applying this measurement capability in the context of precision measurements along DNA. Such enhanced optical-trapping assays are revealing the fundamental step sizes of increasingly complex enzymes, as well as informative pauses in enzymatic motion. This information in turn is providing mechanistic insight into kinetic pathways that are difficult to probe by traditional assays. I conclude with a brief discussion of emerging techniques and future directions.
-
-
-
Photocontrollable Fluorescent Proteins for Superresolution Imaging
Vol. 43 (2014), pp. 303–329More LessSuperresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization–based and nonlinear ensemble–based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine.
-
-
-
Itch Mechanisms and Circuits
Liang Han, and Xinzhong DongVol. 43 (2014), pp. 331–355More LessThe itch-scratch reflex serves as a protective mechanism in everyday life. However, chronic persistent itching can be devastating. Despite the clinical importance of the itch sensation, its mechanism remains elusive. In the past decade, substantial progress has been made to uncover the mystery of itching. Here, we review the molecules, cells, and circuits known to mediate the itch sensation, which, coupled with advances in understanding the pathophysiology of chronic itching conditions, will hopefully contribute to the development of new anti-itch therapies.
-
-
-
Structural and Functional Insights to Ubiquitin-Like Protein Conjugation
Vol. 43 (2014), pp. 357–379More LessAttachment of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins regulates numerous cellular processes including transcription, the cell cycle, stress responses, DNA repair, apoptosis, immune responses, and autophagy, to name a few. The mechanistically parallel but functionally distinct conjugation pathways typically require the concerted activities of three types of protein: E1 Ubl-activating enzymes, E2 Ubl carrier proteins, and E3 Ubl ligases. E1 enzymes initiate pathway specificity for each cascade by recognizing and activating cognate Ubls, followed by catalyzing Ubl transfer to cognate E2 protein(s). Under certain circumstances, the E2 Ubl complex can direct ligation to the target protein, but most often requires the cooperative activity of E3 ligases. Reviewed here are recent structural and functional studies that improve our mechanistic understanding of E1-, E2-, and E3-mediated Ubl conjugation.
-
-
-
Fidelity of Cotranslational Protein Targeting by the Signal Recognition Particle
Xin Zhang, and Shu-ou ShanVol. 43 (2014), pp. 381–408More LessAccurate folding, assembly, localization, and maturation of newly synthesized proteins are essential to all cells and require high fidelity in the protein biogenesis machineries that mediate these processes. Here, we review our current understanding of how high fidelity is achieved in one of these processes, the cotranslational targeting of nascent membrane and secretory proteins by the signal recognition particle (SRP). Recent biochemical, biophysical, and structural studies have elucidated how the correct substrates drive a series of elaborate conformational rearrangements in the SRP and SRP receptor GTPases; these rearrangements provide effective fidelity checkpoints to reject incorrect substrates and enhance the fidelity of this essential cellular pathway. The mechanisms used by SRP to ensure fidelity share important conceptual analogies with those used by cellular machineries involved in DNA replication, transcription, and translation, and these mechanisms likely represent general principles for other complex cellular pathways.
-
-
-
Metals in Protein–Protein Interfaces
Vol. 43 (2014), pp. 409–431More LessFrom the catalytic reactions that sustain the global oxygen, nitrogen, and carbon cycles to the stabilization of DNA processing proteins, transition metal ions and metallocofactors play key roles in biology. Although the exquisite interplay between metal ions and protein scaffolds has been studied extensively, the fact that the biological roles of the metals often stem from their placement in the interfaces between proteins and protein subunits is not always recognized. Interfacial metal ions stabilize permanent or transient protein–protein interactions, enable protein complexes involved in cellular signaling to adopt distinct conformations in response to environmental stimuli, and catalyze challenging chemical reactions that are uniquely performed by multisubunit protein complexes. This review provides a structural survey of transition metal ions and metallocofactors found in protein–protein interfaces, along with a series of selected examples that illustrate their diverse biological utility and significance.
-
-
-
Computational Analysis of Conserved RNA Secondary Structure in Transcriptomes and Genomes
Vol. 43 (2014), pp. 433–456More LessTranscriptomics experiments and computational predictions both enable systematic discovery of new functional RNAs. However, many putative noncoding transcripts arise instead from artifacts and biological noise, and current computational prediction methods have high false positive rates. I discuss prospects for improving computational methods for analyzing and identifying functional RNAs, with a focus on detecting signatures of conserved RNA secondary structure. An interesting new front is the application of chemical and enzymatic experiments that probe RNA structure on a transcriptome-wide scale. I review several proposed approaches for incorporating structure probing data into the computational prediction of RNA secondary structure. Using probabilistic inference formalisms, I show how all these approaches can be unified in a well-principled framework, which in turn allows RNA probing data to be easily integrated into a wide range of analyses that depend on RNA secondary structure inference. Such analyses include homology search and genome-wide detection of new structural RNAs.
-
Previous Volumes
-
Volume 53 (2024)
-
Volume 52 (2023)
-
Volume 51 (2022)
-
Volume 50 (2021)
-
Volume 49 (2020)
-
Volume 48 (2019)
-
Volume 47 (2018)
-
Volume 46 (2017)
-
Volume 45 (2016)
-
Volume 44 (2015)
-
Volume 43 (2014)
-
Volume 42 (2013)
-
Volume 41 (2012)
-
Volume 40 (2011)
-
Volume 39 (2010)
-
Volume 38 (2009)
-
Volume 37 (2008)
-
Volume 36 (2007)
-
Volume 35 (2006)
-
Volume 34 (2005)
-
Volume 33 (2004)
-
Volume 32 (2003)
-
Volume 31 (2002)
-
Volume 30 (2001)
-
Volume 29 (2000)
-
Volume 28 (1999)
-
Volume 27 (1998)
-
Volume 26 (1997)
-
Volume 25 (1996)
-
Volume 24 (1995)
-
Volume 23 (1994)
-
Volume 22 (1993)
-
Volume 21 (1992)
-
Volume 20 (1991)
-
Volume 19 (1990)
-
Volume 18 (1989)
-
Volume 17 (1988)
-
Volume 16 (1987)
-
Volume 15 (1986)
-
Volume 14 (1985)
-
Volume 13 (1984)
-
Volume 12 (1983)
-
Volume 11 (1982)
-
Volume 10 (1981)
-
Volume 9 (1980)
-
Volume 8 (1979)
-
Volume 7 (1978)
-
Volume 6 (1977)
-
Volume 5 (1976)
-
Volume 4 (1975)
-
Volume 3 (1974)
-
Volume 2 (1973)
-
Volume 1 (1972)
-
Volume 0 (1932)