- Home
- A-Z Publications
- Annual Review of Biophysics
- Previous Issues
- Volume 28, 1999
Annual Review of Biophysics - Volume 28, 1999
Volume 28, 1999
- Review Articles
-
-
-
RAMAN SPECTROSCOPY OF PROTEIN AND NUCLEIC ACID ASSEMBLIES
Vol. 28 (1999), pp. 1–27More Less▪ AbstractThe Raman spectrum of a protein or nucleic acid consists of numerous discrete bands representing molecular normal modes of vibration and serves as a sensitive and selective fingerprint of three-dimensional structure, intermolecular interactions, and dynamics. Recent improvements in instrumentation, coupled with innovative approaches in experimental design, dramatically increase the power and scope of the method, particularly for investigations of large supramolecular assemblies. Applications are considered that involve the use of (a) time-resolved Raman spectroscopy to elucidate assembly pathways in icosahedral viruses, (b) polarized Raman microspectroscopy to determine detailed structural parameters in filamentous viruses, (c) ultraviolet-resonance Raman spectroscopy to probe selective DNA and protein residues in nucleoprotein complexes, and (d) difference Raman methods to understand mechanisms of protein/DNA recognition in gene regulatory and chromosomal complexes.
-
-
-
-
MULTIPROTEIN-DNA COMPLEXES IN TRANSCRIPTIONAL REGULATION
Vol. 28 (1999), pp. 29–56More Less▪ AbstractTranscription in eukaryotes is frequently regulated by a mechanism termed combinatorial control, whereby several different proteins must bind DNA in concert to achieve appropriate regulation of the downstream gene. X-ray crystallographic studies of multiprotein complexes bound to DNA have been carried out to investigate the molecular determinants of complex assembly and DNA binding. This work has provided important insights into the specific protein-protein and protein-DNA interactions that govern the assembly of multiprotein regulatory complexes. The results of these studies are reviewed here, and the general insights into the mechanism of combinatorial gene regulation are discussed.
-
-
-
RNA Folds: Insights from Recent Crystal Structures
Vol. 28 (1999), pp. 57–73More LessAn RNA fold is the result of packing together two or more coaxial helical stacks. To date, four RNA folds have been determined at near-atomic resolution by X-ray crystallography: transfer RNA, the hammerhead ribozyme, the P4–P6 domain of the Tetrahymena group I intron, and the hepatitis delta virus ribozyme. All four folds result in RNAs that are considerably more compact than isolated A-form duplexes. These structures illustrate, to varying degrees, three modes of fold stabilization: association of complementary molecular surfaces, stabilization of close RNA packing by binding of cations, and stabilization through pseudoknotting.
-
-
-
MODERN APPLICATIONS OF ANALYTICAL ULTRACENTRIFUGATION
Vol. 28 (1999), pp. 75–100More Less▪ AbstractAnalytical ultracentrifugation is a classical method of biochemistry and molecular biology. Because it is a primary technique, sedimentation can provide first-principle hydrodynamic and first-principle thermodynamic information for nearly any molecule, in a wide range of solvents and over a wide range of solute concentrations. For many questions, it is the technique of choice. This review stresses what information is available from analytical ultracentrifugation and how that information is being extracted and used in contemporary applications.
-
-
-
DNA REPAIR MECHANISMS FOR THE RECOGNITION AND REMOVAL OF DAMAGED DNA BASES
Vol. 28 (1999), pp. 101–128More Less▪ AbstractRecent structural and biochemical studies have begun to illuminate how cells solve the problems of recognizing and removing damaged DNA bases. Bases damaged by environmental, chemical, or enzymatic mechanisms must be efficiently found within a large excess of undamaged DNA. Structural studies suggest that a rapid damage-scanning mechanism probes for both conformational deviations and local deformability of the DNA base stack. At susceptible lesions, enzyme-induced conformational changes lead to direct interactions with specific damaged bases. The diverse array of damaged DNA bases are processed through a two-stage pathway in which damage-specific enzymes recognize and remove the base lesion, creating a common abasic site intermediate that is processed by damage-general repair enzymes to restore the correct DNA sequence.
-
-
-
NITROXIDE SPIN-SPIN INTERACTIONS: Applications to Protein Structure and Dynamics
Vol. 28 (1999), pp. 129–153More Less▪ AbstractMeasurement of the distance between two spin label probes in proteins permits the spatial orientation of elements of defined secondary structure. By using site-directed spin labeling, it is possible to determine multiple distance constraints and thereby build tertiary and quaternary structural models as well as measure the kinetics of structural changes. New analytical methods for determining interprobe distances and relative orientations for uniquely oriented spin labels have been developed using global analysis of multifrequency electron paramagnetic resonance data. New methods have also been developed for determining interprobe distances for randomly oriented spin labels. These methods are being applied to a wide range of structural problems, including peptides, soluble proteins, and membrane proteins, that are not readily characterized by other structural techniques.
-
-
-
MOLECULAR DYNAMICS SIMULATIONS OF BIOMOLECULES: Long-Range Electrostatic Effects
Vol. 28 (1999), pp. 155–179More Less▪ AbstractCurrent computer simulations of biomolecules typically make use of classical molecular dynamics methods, as a very large number (tens to hundreds of thousands) of atoms are involved over timescales of many nanoseconds. The methodology for treating short-range bonded and van der Waals interactions has matured. However, long-range electrostatic interactions still represent a bottleneck in simulations. In this article, we introduce the basic issues for an accurate representation of the relevant electrostatic interactions. In spite of the huge computational time demanded by most biomolecular systems, it is no longer necessary to resort to uncontrolled approximations such as the use of cutoffs. In particular, we discuss the Ewald summation methods, the fast particle mesh methods, and the fast multipole methods. We also review recent efforts to understand the role of boundary conditions in systems with long-range interactions, and conclude with a short perspective on future trends.
-
-
-
THE LYSOSOMAL CYSTEINE PROTEASES
Vol. 28 (1999), pp. 181–204More Less▪ AbstractA significant number of exciting papain-like cysteine protease structures have been determined by crystallographic methods over the last several years. This trove of data allows for an analysis of the structural features that empower these molecules as they efficiently carry out their specialized tasks. Although the structure of the paradigm for the family, papain, has been known for twenty years, recent efforts have reaped several structures of specialized mammalian enzymes. This review first covers the commonalities of architecture and purpose of the papain-like cysteine proteases. From that broad platform, each of the lysosomal enzymes for which there is an X-ray structure (or structures) is then examined to gain an understanding of what structural features are used to customize specificity and activity. Structure-based design of inhibitors to control pathological cysteine protease activity will also be addressed.
-
-
-
ROTATIONAL COUPLING IN THE F0F1 ATP SYNTHASE
Vol. 28 (1999), pp. 205–234More Less▪ AbstractThe F0F1 ATP synthase is a large multisubunit complex that couples translocation of protons down an electrochemical gradient to the synthesis of ATP. Recent advances in structural analyses have led to the demonstration that the enzyme utilizes a rotational catalytic mechanism. Kinetic and biochemical evidence is consistent with the expected equal participation of the three catalytic sites in the α3β3 hexamer, which operate in sequential, cooperative reaction pathways. The rotation of the core γ subunit plays critical roles in establishing the conformation of the sites and the cooperative interactions. Mutational analyses have shown that the rotor subunits are responsible for coupling and in doing so transmit specific conformational information between transport and catalysis.
-
-
-
SOLID-STATE NUCLEAR MAGNETIC RESONANCE INVESTIGATION OF PROTEIN AND POLYPEPTIDE STRUCTURE
Vol. 28 (1999), pp. 235–268More Less▪ AbstractSolid-state nuclear magnetic resonance (NMR) is rapidly emerging as a successful and important technique for protein and peptide structural elucidation from samples in anisotropic environments. Because of the diversity of nuclei and nuclear spin interactions that can be observed, and because of the broad range of sample conditions that can be studied by solid-state NMR, the potential for gaining structural constraints is great. Structural constraints in the form of orientational, distance, and torsional constraints can be obtained on proteins in crystalline, liquid-crystalline, or amorphous preparations. Great progress in the past few years has been made in developing techniques for obtaining these constraints, and now it has also been clearly demonstrated that these constraints can be assembled into uniquely defined three-dimensional structures at high resolution. Although much progress toward the development of solid-state NMR as a routine structural tool has been documented, the future is even brighter with the continued development of the experiments, of NMR hardware, and of the molecular biological methods for the preparation of labeled samples.
-
-
-
STRUCTURE AND CONFORMATION OF COMPLEX CARBOHYDRATES OF GLYCOPROTEINS, GLYCOLIPIDS, AND BACTERIAL POLYSACCHARIDES
Vol. 28 (1999), pp. 269–293More Less▪ AbstractFor nuclear magnetic resonance determinations of the conformation of oligosaccharides in solution, simple molecular mechanics calculations and nuclear Overhauser enhancement measurements are adequate for small oligosaccharides that adopt single, relatively rigid conformations. Polysaccharides and larger or more flexible oligosaccharides generally require additional types of data, such as scalar and dipolar coupling constants, which are most conveniently measured in 13C-enriched samples. Nuclear magnetic resonance relaxation data provide information on the dynamics of oligosaccharides, which involves several different types of internal motion. Oligosaccharides complexed with lectins and antibodies have been successfully studied both by X-ray crystallography and by nuclear magnetic resonance spectroscopy. The complexes have been shown to be stabilized by a combination of polar hydrogen bonding interactions and van der Waals attractions. Although theoretical calculations of the conformation and stability of free oligosaccharides and of complexes with proteins can be carried out by molecular mechanics methods, the role of solvent water for these highly polar molecules continues to present computational problems.
-
-
-
THE PROTEASOME
Vol. 28 (1999), pp. 295–317More Less▪ AbstractProteasomes are large multisubunit proteases that are found in the cytosol, both free and attached to the endoplasmic reticulum, and in the nucleus of eukaryotic cells. Their ubiquitous presence and high abundance in these compartments reflects their central role in cellular protein turnover. Proteasomes recognize, unfold, and digest protein substrates that have been marked for degradation by the attachment of a ubiquitin moiety. Individual subcomplexes of the complete 26S proteasome are involved in these different tasks: The ATP-dependent 19S caps are believed to unfold substrates and feed them to the actual protease, the 20S proteasome. This core particle appears to be more ancient than the ubiquitin system. Both prokaryotic and archaebacterial ancestors have been identified. Crystal structures are now available for the E. coli proteasome homologue and the T. acidophilum and S. cerevisiae 20S proteasomes. All three enzymes are cylindrical particles that have their active sites on the inner walls of a large central cavity. They share the fold and a novel catalytic mechanism with an N-terminal nucleophilic threonine, which places them in the family of Ntn (N terminal nucleophile) hydrolases. Evolution has added complexity to the comparatively simple prokaryotic prototype. This minimal proteasome is a homododecamer made from two hexameric rings stacked head to head. Its heptameric version is the catalytic core of archaebacterial proteasomes, where it is sandwiched between two inactive antichambers that are made up from a different subunit. In eukaryotes, both subunits have diverged into seven different subunits each, which are present in the particle in unique locations such that a complex dimer is formed that has six active sites with three major specificities that can be attributed to individual subunits. Genetic, biochemical, and high-resolution electron microscopy data, but no crystal structures, are available for the 19S caps. A first step toward a mechanistic understanding of proteasome activation and regulation has been made with the elucidation of the X-ray structure of the alternative, mammalian proteasome activator PA28.
-
-
-
MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles
Vol. 28 (1999), pp. 319–365More Less▪ AbstractStably folded membrane proteins reside in a free energy minimum determined by the interactions of the peptide chains with each other, the lipid bilayer hydrocarbon core, the bilayer interface, and with water. The prediction of three-dimensional structure from sequence requires a detailed understanding of these interactions. Progress toward this objective is summarized in this review by means of a thermodynamic framework for describing membrane protein folding and stability. The framework includes a coherent thermodynamic formalism for determining and describing the energetics of peptide-bilayer interactions and a review of the properties of the environment of membrane proteins—the bilayer milieu. Using a four-step thermodynamic cycle as a guide, advances in three main aspects of membrane protein folding energetics are discussed: protein binding and folding in bilayer interfaces, transmembrane helix insertion, and helix-helix interactions. The concepts of membrane protein stability that emerge provide insights to fundamental issues of protein folding.
-
-
-
CLOSING IN ON BACTERIORHODOPSIN: Progress in Understanding the Molecule
Vol. 28 (1999), pp. 367–399More Less▪ AbstractBacteriorhodopsin is the best understood ion transport protein and has become a paradigm for membrane proteins in general and transporters in particular. Models up to 2.5 Å resolution of bacteriorhodopsin's structure have been published during the last three years and are basic for understanding its function. Thus one focus of this review is to summarize and to compare these models in detail. Another focus is to follow the protein through its catalytic cycle in summarizing more recent developments. We focus on literature published since 1995; a comprehensive series of reviews was published in 1995 (112).
-
Previous Volumes
-
Volume 53 (2024)
-
Volume 52 (2023)
-
Volume 51 (2022)
-
Volume 50 (2021)
-
Volume 49 (2020)
-
Volume 48 (2019)
-
Volume 47 (2018)
-
Volume 46 (2017)
-
Volume 45 (2016)
-
Volume 44 (2015)
-
Volume 43 (2014)
-
Volume 42 (2013)
-
Volume 41 (2012)
-
Volume 40 (2011)
-
Volume 39 (2010)
-
Volume 38 (2009)
-
Volume 37 (2008)
-
Volume 36 (2007)
-
Volume 35 (2006)
-
Volume 34 (2005)
-
Volume 33 (2004)
-
Volume 32 (2003)
-
Volume 31 (2002)
-
Volume 30 (2001)
-
Volume 29 (2000)
-
Volume 28 (1999)
-
Volume 27 (1998)
-
Volume 26 (1997)
-
Volume 25 (1996)
-
Volume 24 (1995)
-
Volume 23 (1994)
-
Volume 22 (1993)
-
Volume 21 (1992)
-
Volume 20 (1991)
-
Volume 19 (1990)
-
Volume 18 (1989)
-
Volume 17 (1988)
-
Volume 16 (1987)
-
Volume 15 (1986)
-
Volume 14 (1985)
-
Volume 13 (1984)
-
Volume 12 (1983)
-
Volume 11 (1982)
-
Volume 10 (1981)
-
Volume 9 (1980)
-
Volume 8 (1979)
-
Volume 7 (1978)
-
Volume 6 (1977)
-
Volume 5 (1976)
-
Volume 4 (1975)
-
Volume 3 (1974)
-
Volume 2 (1973)
-
Volume 1 (1972)
-
Volume 0 (1932)