For nuclear magnetic resonance determinations of the conformation of oligosaccharides in solution, simple molecular mechanics calculations and nuclear Overhauser enhancement measurements are adequate for small oligosaccharides that adopt single, relatively rigid conformations. Polysaccharides and larger or more flexible oligosaccharides generally require additional types of data, such as scalar and dipolar coupling constants, which are most conveniently measured in 13C-enriched samples. Nuclear magnetic resonance relaxation data provide information on the dynamics of oligosaccharides, which involves several different types of internal motion. Oligosaccharides complexed with lectins and antibodies have been successfully studied both by X-ray crystallography and by nuclear magnetic resonance spectroscopy. The complexes have been shown to be stabilized by a combination of polar hydrogen bonding interactions and van der Waals attractions. Although theoretical calculations of the conformation and stability of free oligosaccharides and of complexes with proteins can be carried out by molecular mechanics methods, the role of solvent water for these highly polar molecules continues to present computational problems.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error