1932

Abstract

Mutations in any of at least sixteen FANC genes (FANCA–Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-022737
2014-05-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biophys/43/1/annurev-biophys-051013-022737.html?itemId=/content/journals/10.1146/annurev-biophys-051013-022737&mimeType=html&fmt=ahah

Literature Cited

  1. Ali AM, Pradhan A, Singh TR, Du C, Li J. 1.  et al. 2012. FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood 119:3285–94 [Google Scholar]
  2. Alpi AF, Pace PE, Babu MM, Patel KJ. 2.  2008. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32:767–77 [Google Scholar]
  3. Alter BP. 3.  2008. Diagnostic evaluation of FA Fanconi Anemia: Guidelines for Diagnosis and Management ME Eiler, D Frohnmayer, L Frohnmayer, K Larsen, J Owen 33–48 Eugene, OR: Fanconi Anemia Res. Fund, 3rd ed..
  4. Andersen SL, Bergstralh DT, Kohl KP, LaRocque JR, Moore CB, Sekelsky J. 4.  2009. Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Mol. Cell 35:128–35 [Google Scholar]
  5. Auerbach AD. 5.  2009. Fanconi anemia and its diagnosis. Mutat. Res. 668:4–10 [Google Scholar]
  6. Bakker ST, van de Vrugt HJ, Rooimans MA, Oostra AB, Steltenpool J. 6.  et al. 2009. Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M. Hum. Mol. Genet. 18:3484–95 [Google Scholar]
  7. Bessho T, Sancar A, Thompson LH, Thelen MP. 7.  1997. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J. Biol. Chem. 272:3833–37 [Google Scholar]
  8. Blackford AN, Schwab RA, Nieminuszczy J, Deans AJ, West SC, Niedzwiedz W. 8.  2013. The DNA translocase activity of FANCM protects stalled replication forks. Hum. Mol. Genet. 21:2005–16 [Google Scholar]
  9. Blom E, van de Vrugt HJ, de Vries Y, de Winter JP, Arwert F, Joenje H. 9.  2004. Multiple TPR motifs characterize the Fanconi anemia FANCG protein. DNA Repair 3:77–84 [Google Scholar]
  10. Bogliolo M, Schuster B, Stoepker C, Derkunt B, Su Y. 10.  et al. 2013. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 92:800–6 [Google Scholar]
  11. Buisson R, Dion-Côté AM, Coulombe Y, Launay H, Cai H. 11.  et al. 2010. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 17:1247–54 [Google Scholar]
  12. Castella M, Pujol R, Callén E, Trujillo JP, Casado JA. 12.  et al. 2011. Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations. Blood 117:3759–69 [Google Scholar]
  13. Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM. 13.  et al. 2012. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11:36–49 [Google Scholar]
  14. Chang JH, Kim JJ, Choi JM, Lee JH, Cho Y. 14.  2008. Crystal structure of the Mus81-Eme1 complex. Genes Dev. 22:1093–106 [Google Scholar]
  15. Ciccia A, Elledge SJ. 15.  2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179–204 [Google Scholar]
  16. Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y. 16.  et al. 2007. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25:331–43 [Google Scholar]
  17. Ciccia A, McDonald N, West SC. 17.  2008. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu. Rev. Biochem. 77:259–87 [Google Scholar]
  18. Cole AR, Lewis LP, Walden H. 18.  2010. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 17:294–98 [Google Scholar]
  19. Collins NB, Wilson JB, Bush T, Thomashevski A, Roberts KJ. 19.  et al. 2009. ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function. Blood 113:2181–90 [Google Scholar]
  20. Collis SJ, Ciccia A, Deans AJ, Horejsi Z, Martin JS. 20.  et al. 2008. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol. Cell 32:313–24 [Google Scholar]
  21. Coulthard R, Deans AJ, Swuec P, Bowles M, Costa A. 21.  et al. 2013. Architecture and DNA recognition elements of the Fanconi anemia FANCM-FAAP24 complex. Structure 21:1648–58 [Google Scholar]
  22. Crismani W, Girard C, Froger N, Pradillo M, Santos JL. 22.  et al. 2012. FANCM limits meiotic crossovers. Science 336:1588–90 [Google Scholar]
  23. Deans AJ, West SC. 23.  2009. FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia. Mol. Cell 36:943–53 [Google Scholar]
  24. Deans AJ, West SC. 24.  2011. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 11:467–80 [Google Scholar]
  25. Enzlin JH, Schärer OD. 25.  2002. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J. 21:2045–53 [Google Scholar]
  26. Fanconi G. 26.  1927. Familial infantile pernicious-like anemia. Yearb. Pediatr. Phys. Educ. (Vienna) 117:257–80 [Google Scholar]
  27. Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A. 27.  et al. 2009. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138:78–89 [Google Scholar]
  28. Fink D, Nebel S, Aebi S, Zheng H, Cenni B. 28.  et al. 1996. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56:4881–86 [Google Scholar]
  29. Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. 29.  2012. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489:571–75 [Google Scholar]
  30. Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C. 30.  et al. 2001. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7:249–62 [Google Scholar]
  31. Gari K, Décaillet C, Delannoy M, Wu L, Constantinou A. 31.  2008. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl. Acad. Sci. USA 105:16107–12 [Google Scholar]
  32. Gari K, Décaillet C, Stasiak AZ, Stasiak A, Constantinou A. 32.  2008. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 29:141–18 [Google Scholar]
  33. Garner E, Smogorzewska A. 33.  2011. Ubiquitylation and the Fanconi anemia pathway. FEBS Lett. 585:2853–60 [Google Scholar]
  34. Geng L, Huntoon CJ, Karnitz LM. 34.  2010. RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. J. Cell Biol. 191:249–57 [Google Scholar]
  35. Gordon SM, Alon N, Buchwald M. 35.  2005. FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of the Fanconi anemia DNA damage response pathway. J. Biol. Chem. 280:36118–25 [Google Scholar]
  36. Hadjur S, Jirik FR. 36.  2003. Increased sensitivity of Fancc-deficient hematopoietic cells to nitric oxide and evidence that this species mediates growth inhibition by cytokines. Blood 101:3877–84 [Google Scholar]
  37. Hicks JK, Chute CL, Paulsen MT, Ragland RL, Howlett NG. 37.  et al. 2010. Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links. Mol. Cell. Biol. 30:1217–30 [Google Scholar]
  38. Ho TV, Schärer OD. 38.  2010. Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. Environ. Mol. Mutagen. 51:552–66 [Google Scholar]
  39. Hoatlin ME, Christianson TA, Keeble WW, Hammond AT, Zhi Y. 39.  et al. 1998. The Fanconi anemia group C gene product is located in both the nucleus and cytoplasm of human cells. Blood 91:1418–25 [Google Scholar]
  40. Hodson C, Cole AR, Lewis LP, Miles JA, Purkiss A, Walden H. 40.  2011. Structural analysis of human FANCL, the E3 ligase in the Fanconi anemia pathway. J. Biol. Chem. 286:32628–37 [Google Scholar]
  41. Hodson C, Walden H. 41.  2012. Towards a molecular understanding of the Fanconi anemia core complex. Anemia 2012:926787 [Google Scholar]
  42. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 42.  2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–41 [Google Scholar]
  43. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q. 43.  et al. 2002. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–9 [Google Scholar]
  44. Huang M, Kim JM, Shiotani B, Yang K, Zou L, D'Andrea AD. 44.  2010. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol. Cell 39:259–68 [Google Scholar]
  45. Hussain S, Wilson JB, Blom E, Thompson LH, Sung P. 45.  et al. 2006. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. DNA Repair 5:629–40 [Google Scholar]
  46. Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A. 46.  et al. 2008. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15:1138–46 [Google Scholar]
  47. Jensen RB, Carreira A, Kowalczykowski SC. 47.  2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678–83 [Google Scholar]
  48. Joo W, Xu G, Persky NS, Smogorzewska A, Rudge DG. 48.  et al. 2011. Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333:312–16 [Google Scholar]
  49. Kaddar T, Carreau M. 49.  2012. Fanconi anemia proteins and their interacting partners: a molecular puzzle. Anemia 2012:425814 [Google Scholar]
  50. Kannouche PL, Wing J, Lehmann AR. 50.  2004. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14:491–500 [Google Scholar]
  51. Kim H, D'Andrea AD. 51.  2012. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26:1393–408 [Google Scholar]
  52. Kim H, Yang K, Dejsuphong D, D'Andrea AD. 52.  2012. Regulation of Rev1 by the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 19:164–70 [Google Scholar]
  53. Kim Y, Spitz GS, Veturi U, Lach FP, Auerbach AD, Smogorzewska A. 53.  2013. Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood 121:54–63 [Google Scholar]
  54. Knipscheer P, Räschle M, Smogorzewska A, Enoiu M, Ho TV. 54.  et al. 2009. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326:1698–701 [Google Scholar]
  55. Komori K, Hidaka M, Horiuchi T, Fujikane R, Shinagawa H, Ishino Y. 55.  2004. Cooperation of the N-terminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks. J. Biol. Chem. 279:53175–85 [Google Scholar]
  56. Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T. 56.  2007. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J. Biol. Chem. 282:2047–55 [Google Scholar]
  57. Kozekov ID, Nechev LV, Moseley MS, Harris CM, Rizzo CJ. 57.  et al. 2003. DNA interchain cross-links formed by acrolein and crotonaldehyde. J. Am. Chem. Soc. 125:50–61 [Google Scholar]
  58. Kratz K, Schöpf B, Kaden S, Sendoel A, Eberhard R. 58.  et al. 2010. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142:77–88 [Google Scholar]
  59. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. 59.  2011. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475:53–58 [Google Scholar]
  60. Leung JW, Wang Y, Fong KW, Huen MS, Li L, Chen J. 60.  2012. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair. Proc. Natl. Acad. Sci. USA 109:4491–96 [Google Scholar]
  61. Léveillé F, Blom E, Medhurst AL, Bier P, Laghmani EH. 61.  et al. 2004. The Fanconi anemia gene product FANCF is a flexible adaptor protein. J. Biol. Chem. 279:39421–30 [Google Scholar]
  62. Lightfoot J, Alon N, Bosnoyan-Collins L, Buchwald M. 62.  1999. Characterization of regions functional in the nuclear localization of the Fanconi anemia group A protein. Hum. Mol. Genet. 8:1007–15 [Google Scholar]
  63. Ling C, Ishiai M, Ali AM, Medhurst AL, Neveling K. 63.  et al. 2007. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J. 26:2104–14 [Google Scholar]
  64. Liu T, Ghosal G, Yuan J, Chen J, Huang J. 64.  2010. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693–96 [Google Scholar]
  65. Longerich S, San Filippo J, Liu D, Sung P. 65.  2009. FANCI binds branched DNA and is monoubiquitinated by UBE2T-FANCL. J. Biol. Chem. 284:23182–86 [Google Scholar]
  66. Machida YJ, Machida Y, Chen Y, Gurtan AM, Kupfer GM. 66.  et al. 2006. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23:589–96 [Google Scholar]
  67. MacKay C, Déclais AC, Lundin C, Agostinho A, Deans AJ. 67.  et al. 2010. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142:65–76 [Google Scholar]
  68. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE. 68.  et al. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–66 [Google Scholar]
  69. Matsushita N, Kitao H, Ishiai M, Nagashima N, Hirano S. 69.  et al. 2005. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 19:841–47 [Google Scholar]
  70. McCauley J, Masand N, McGowan R, Rajagopalan S, Hunter A. 70.  et al. 2011. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am. J. Med. Genet. A 155:2370–80 [Google Scholar]
  71. McHugh PJ, Ward TA, Chovanec M. 71.  2012. A prototypical Fanconi anemia pathway in lower eukaryotes?. Cell Cycle 11:3739–44 [Google Scholar]
  72. McVey M. 72.  2010. Strategies for DNA interstrand crosslink repair: insights from worms, flies, frogs, and slime molds. Environ. Mol. Mutagen. 51:646–58 [Google Scholar]
  73. Medhurst AL, Laghmani EH, Steltenpool J, Ferrer M, Fontaine C. 73.  et al. 2006. Evidence for subcomplexes in the Fanconi anemia pathway. Blood 108:2072–80 [Google Scholar]
  74. Meetei AR, Levitus M, Xue Y, Medhurst AL, Zwaan M. 74.  et al. 2004. X-linked inheritance of Fanconi anemia complementation group B. Nat. Genet. 36:1219–24 [Google Scholar]
  75. Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR. 75.  et al. 2005. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat. Genet. 37:958–63 [Google Scholar]
  76. Mosedale G, Niedzwiedz W, Alpi A, Perrina F, Pereira-Leal JB. 76.  et al. 2005. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat. Struct. Mol. Biol. 12:763–71 [Google Scholar]
  77. Mu D, Bessho T, Nechev LV, Chen DJ, Harris TM. 77.  et al. 2000. DNA interstrand cross-links induce futile repair synthesis in mammalian cell extracts. Mol. Cell. Biol. 20:2446–54 [Google Scholar]
  78. Muñoz IM, Hain K, Déclais AC, Gardiner M, Toh GW. 78.  et al. 2009. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol. Cell 35:116–27 [Google Scholar]
  79. Nakanishi K, Taniguchi T, Ranganathan V, New HV, Moreau LA. 79.  et al. 2002. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat. Cell Biol. 4:913–20 [Google Scholar]
  80. Niedernhofer LJ. 80.  2007. The Fanconi anemia signalosome anchor. Mol. Cell 25:487–90 [Google Scholar]
  81. Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ. 81.  2004. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15:607–20 [Google Scholar]
  82. Nishino T, Komori K, Ishino Y, Morikawa K. 82.  2003. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes. Structure 11:445–57 [Google Scholar]
  83. Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T. 83.  et al. 2012. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148:487–501 [Google Scholar]
  84. Nookala RK, Hussain S, Pellegrini L. 84.  2007. Insights into Fanconi Anaemia from the structure of human FANCE. Nucleic Acids Res. 35:1638–48 [Google Scholar]
  85. Pace P, Johnson M, Tan WM, Mosedale G, Sng C. 85.  et al. 2002. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J. 21:3414–23 [Google Scholar]
  86. Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ. 86.  2010. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329:219–23 [Google Scholar]
  87. Pagano G, Talamanca AA, Castello G, Pallardó FV, Zatterale A, Degan P. 87.  2011. Oxidative stress in Fanconi anaemia: from cells and molecules toward prospects in clinical management. Biol. Chem. 393:11–21 [Google Scholar]
  88. Park HK, Wang H, Zhang J, Datta S, Fei P. 88.  2010. Convergence of Rad6/Rad18 and Fanconi anemia tumor suppressor pathways upon DNA damage. PLoS ONE 5:e13313 [Google Scholar]
  89. Pinto FO, Leblanc T, Chamousset D, Le Roux G, Brethon B. 89.  et al. 2009. Diagnosis of Fanconi anemia in patients with bone marrow failure. Haematologica 94:487–95 [Google Scholar]
  90. Rahman N, Seal S, Thompson D, Kelly P, Renwick A. 90.  et al. 2007. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 39:165–67 [Google Scholar]
  91. Räschle M, Knipscheer P, Enoiu M, Angelov T, Sun J. 91.  et al. 2008. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134:969–80 [Google Scholar]
  92. Reid S, Schindler D, Hanenberg H, Barker K, Hanks S. 92.  et al. 2007. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 39:162–64 [Google Scholar]
  93. Rosado IV, Langevin F, Crossan GP, Takata M, Patel KJ. 93.  2011. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat. Struct. Mol. Biol. 18:1432–34 [Google Scholar]
  94. Rosado IV, Niedzwiedz W, Alpi AF, Patel KJ. 94.  2009. The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair. Nucleic Acids Res. 37:4360–70 [Google Scholar]
  95. Rosenberg PS, Tamary H, Alter BP. 95.  2011. How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. Am. J. Med. Genet. A 155:1877–83 [Google Scholar]
  96. Sale JE, Lehmann AR, Woodgate R. 96.  2012. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13:141–52 [Google Scholar]
  97. Sareen A, Chaudhury I, Adams N, Sobeck A. 97.  2012. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res. 40:8425–39 [Google Scholar]
  98. Sato K, Toda K, Ishiai M, Takata M, Kurumizaka H. 98.  2012. DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI. Nucleic Acids Res. 40:4553–61 [Google Scholar]
  99. Schwab RA, Nieminuszczy J, Shin-ya K, Niedzwiedz W. 99.  2013. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J. Cell Biol. 201:33–48 [Google Scholar]
  100. Shamseldin HE, Elfaki M, Alkuraya FS. 100.  2012. Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation. J. Med. Genet. 49:184–86 [Google Scholar]
  101. Singh TR, Saro D, Ali AM, Zheng XF, Du CH. 101.  et al. 2010. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol. Cell 37:879–86 [Google Scholar]
  102. Smeaton MB, Hlavin EM, McGregor Mason T, Noronha AM, Wilds CJ, Miller PS. 102.  2008. Distortion-dependent unhooking of interstrand cross-links in mammalian cell extracts. Biochemistry 47:9920–30 [Google Scholar]
  103. Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP. 103.  et al. 2010. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39:36–47 [Google Scholar]
  104. Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER 3rd, Hurov KE. 104.  et al. 2007. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129:289–301 [Google Scholar]
  105. Somyajit K, Subramanya S, Nagaraju G. 105.  2010. RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 31:2031–38 [Google Scholar]
  106. Strathdee CA, Gavish H, Shannon WR, Buchwald M. 106.  1992. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature 356:763–67 [Google Scholar]
  107. Svendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP. 107.  et al. 2009. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138:63–77 [Google Scholar]
  108. Sy SM, Huen MS, Chen J. 108.  2009. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl. Acad. Sci. USA 106:7155–60 [Google Scholar]
  109. Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC. 109.  et al. 2002. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109:459–72 [Google Scholar]
  110. Tao Y, Jin C, Li X, Qi S, Chu L. 110.  et al. 2012. The structure of the FANCM-MHF complex reveals physical features for functional assembly. Nat. Commun. 3:782 [Google Scholar]
  111. Thomashevski A, High AA, Drozd M, Shabanowitz J, Hunt DF. 111.  et al. 2004. The Fanconi anemia core complex forms four complexes of different sizes in different subcellular compartments. J. Biol. Chem. 279:26201–9 [Google Scholar]
  112. Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M. 112.  et al. 2010. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat. Struct. Mol. Biol. 17:1263–65 [Google Scholar]
  113. Timmers C, Taniguchi T, Hejna J, Reifsteck C, Lucas L. 113.  et al. 2001. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell 7:241–48 [Google Scholar]
  114. Titus TA, Selvig DR, Qin B, Wilson C, Starks AM. 114.  et al. 2006. The Fanconi anemia gene network is conserved from zebrafish to human. Gene 371:211–23 [Google Scholar]
  115. Tripsianes K, Folkers G, Ab E, Das D, Odijk H. 115.  et al. 2005. The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. Structure 13:1849–58 [Google Scholar]
  116. Trujillo JP, Mina LB, Pujol R, Bogliolo M, Andrieux J. 116.  et al. 2012. On the role of FAN1 in Fanconi anemia. Blood 120:86–89 [Google Scholar]
  117. Tsodikov OV, Enzlin JH, Schärer OD, Ellenberger T. 117.  2005. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc. Natl. Acad. Sci. USA 102:11236–41 [Google Scholar]
  118. Ulrich HD, Walden H. 118.  2010. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 11:479–89 [Google Scholar]
  119. Vandenberg CJ, Gergely F, Ong CY, Pace P, Mallery DL. 119.  et al. 2003. BRCA1-independent ubiquitination of FANCD2. Mol. Cell 12:247–54 [Google Scholar]
  120. Vinciguerra P, D'Andrea AD. 120.  2009. FANCM: a landing pad for the Fanconi Anemia and Bloom's Syndrome complexes. Mol. Cell 36:916–17 [Google Scholar]
  121. Wang W. 121.  2007. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat. Rev. Genet. 8:735–48 [Google Scholar]
  122. Wang W, Guo Q, Shtykova EV, Liu G, Xu J. 122.  et al. 2013. Structural peculiarities of the (MHF1–MHF2)4 octamer provide a long DNA binding patch to anchor the MHF-FANCM complex to chromatin: a solution SAXS study. FEBS Lett. 587:2912–17 [Google Scholar]
  123. Wang X, Kennedy RD, Ray K, Stuckert P, Ellenberger T, D'Andrea AD. 123.  2007. Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol. Cell. Biol. 27:3098–108 [Google Scholar]
  124. Wang Y, Leung JW, Jiang Y, Lowery MG, Do H. 124.  et al. 2013. FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. Mol. Cell 49:997–1009 [Google Scholar]
  125. Xue Y, Li Y, Guo R, Ling C, Wang W. 125.  2008. FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Hum. Mol. Genet. 17:1641–52 [Google Scholar]
  126. Yamamoto KN, Kobayashi S, Tsuda M, Kurumizaka H, Takata M. 126.  et al. 2011. Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proc. Natl. Acad. Sci. USA 108:6492–96 [Google Scholar]
  127. Yan Z, Delannoy M, Ling C, Daee D, Osman F. 127.  et al. 2010. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 37:865–78 [Google Scholar]
  128. Yan Z, Guo R, Paramasivam M, Shen W, Ling C. 128.  et al. 2012. A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network. Mol. Cell 47:61–75 [Google Scholar]
  129. Yuan F, El Hokayem J, Zhou W, Zhang Y. 129.  2009. FANCI protein binds to DNA and interacts with FANCD2 to recognize branched structures. J. Biol. Chem. 284:24443–52 [Google Scholar]
  130. Yuan F, Qian L, Zhao X, Liu JY, Song L. 130.  et al. 2012. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms. J. Biol. Chem. 287:4800–7 [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-022737
Loading
/content/journals/10.1146/annurev-biophys-051013-022737
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error