1932

Abstract

Cholesterol has been conjectured to be a modulator of the amyloid cascade, the mechanism that produces the amyloid-β (Aβ) peptides implicated in the onset of Alzheimer's disease. We propose that cholesterol impacts the genesis of Aβ not through direct interaction with proteins in the bilayer, but indirectly by inducing the liquid-ordered phase and accompanying liquid–liquid phase separations, which partition proteins in the amyloid cascade to different lipid domains and ultimately to different endocytotic pathways. We explore the full process of Aβ genesis in the context of liquid-ordered phases induced by cholesterol, including protein partitioning into lipid domains, mechanisms of endocytosis experienced by lipid domains and secretases, and pH-controlled activation of amyloid precursor protein secretases in specific endocytotic environments. Outstanding questions on the essential role of cholesterol in the amyloid cascade are identified for future studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062823-023436
2024-07-16
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-062823-023436.html?itemId=/content/journals/10.1146/annurev-biophys-062823-023436&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abraham CB, Xu L, Pantelopulos GA, Straub JE. 2023.. Characterizing the transmembrane domains of ADAM10 and BACE1 and the impact of membrane composition. . Biophys. J. 122:(19):39994010
    [Crossref] [Google Scholar]
  2. 2.
    Aguayo-Ortiz R, Chávez-García C, Straub JE, Dominguez L. 2017.. Characterizing the structural ensemble of γ-secretase using a multiscale molecular dynamics approach. . Chem. Sci. 8::557684
    [Crossref] [Google Scholar]
  3. 3.
    Aguayo-Ortiz R, Straub JE, Dominguez L. 2018.. Influence of membrane lipid composition on the structure and activity of γ-secretase. . Phys. Chem. Chem. Phys. 20::27294304
    [Crossref] [Google Scholar]
  4. 4.
    Anderson SM, Mueller BK, Lange EJ, Senes A. 2017.. Combination of Cα–H hydrogen bonds and van der Waals packing modulates the stability of GxxxG-mediated dimers in membranes. . J. Am. Chem. Soc. 139::1577483
    [Crossref] [Google Scholar]
  5. 5.
    Ando J, Kinoshita M, Cui J, Yamakoshi H, Dodo K, et al. 2015.. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. . PNAS 112::455863
    [Crossref] [Google Scholar]
  6. 6.
    Andrew RJ, Fernandez CG, Stanley M, Jiang H, Nguyen P, et al. 2017.. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer's disease. . PNAS 114:(45):E966574
    [Crossref] [Google Scholar]
  7. 7.
    Andrew RJ, Kellett KA, Thinakaran G, Hooper NM. 2016.. A Greek tragedy: the growing complexity of Alzheimer amyloid precursor protein proteolysis. . J. Biol. Chem. 291::1923544
    [Crossref] [Google Scholar]
  8. 8.
    Audagnotto M, Lemmin T, Barducci A, Dal Peraro M. 2016.. Effect of the synaptic plasma membrane on the stability of the amyloid precursor protein homodimer. . J. Phys. Chem. Lett. 7::357278
    [Crossref] [Google Scholar]
  9. 9.
    Bandara A, Panahi A, Pantelopulos GA, Straub JE. 2017.. Exploring the structure and stability of cholesterol dimer formation in multicomponent lipid bilayers. . J. Comput. Chem. 38::147988
    [Crossref] [Google Scholar]
  10. 10.
    Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, et al. 2012.. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. . Science 336::116871
    [Crossref] [Google Scholar]
  11. 11.
    Barros M, Houlihan WJ, Paresi CJ, Brendel M, Rynearson KD, et al. 2020.. γ-Secretase partitioning into lipid bilayers remodels membrane microdomains after direct insertion. . Langmuir 36::656979
    [Crossref] [Google Scholar]
  12. 12.
    Baumkotter F, Schmidt N, Vargas C, Schilling S, Weber R, et al. 2014.. Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. . J. Neurosci. 34:(33):1115972
    [Crossref] [Google Scholar]
  13. 13.
    Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, et al. 2008.. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): Does APP function as a cholesterol sensor?. Biochemistry 47::942846
    [Crossref] [Google Scholar]
  14. 14.
    Beel AJ, Sakakura M, Barrett PJ, Sanders CR. 2010.. Direct binding of cholesterol to the amyloid precursor protein: an important interaction in lipid-Alzheimer's disease relationships?. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801::97582
    [Crossref] [Google Scholar]
  15. 15.
    Bekris LM, Yu CE, Bird TD, Tsuang DW. 2010.. Genetics of Alzheimer disease. . J. Geriatr. Psychiatry Neurol. 23::21327
    [Crossref] [Google Scholar]
  16. 16.
    Benjannet S, Elagoz A, Wickham L, Mamarbachi M, Munzer JS, et al. 2001.. Post-translational processing of β-secretase (β-amyloid-converting enzyme) and its ectodomain shedding: the pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-β production. . J. Biol. Chem. 276:(14):1087987
    [Crossref] [Google Scholar]
  17. 17.
    Bennion BJ, Daggett V. 2003.. The molecular basis for the chemical denaturation of proteins by urea. . PNAS 100:(9):514247
    [Crossref] [Google Scholar]
  18. 18.
    Bera S, Camblor-Perujo S, Calleja Barca E, Negrete-Hurtado A, Racho J, et al. 2020.. AP-2 reduces amyloidogenesis by promoting BACE1 trafficking and degradation in neurons. . EMBO Rep. 21:(6):e47954
    [Crossref] [Google Scholar]
  19. 19.
    Bezlyepkina N, Gracià R, Shchelokovskyy P, Lipowsky R, Dimova R. 2013.. Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol. . Biophys. J. 104::145664
    [Crossref] [Google Scholar]
  20. 20.
    Bhattacharyya R, Barren C, Kovacs DM. 2013.. Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. . J. Neurosci. 33::1116983
    [Crossref] [Google Scholar]
  21. 21.
    Bhattacharyya R, Fenn RH, Barren C, Tanzi RE, Kovacs DM. 2016.. Palmitoylated APP forms dimers, cleaved by BACE1. . PLOS ONE 11::e0166400
    [Crossref] [Google Scholar]
  22. 22.
    Bi C, Bi S, Li B. 2019.. Processing of mutant β-amyloid precursor protein and the clinicopathological features of familial Alzheimer's disease. . Aging Dis. 10::383403
    [Crossref] [Google Scholar]
  23. 23.
    Blaskovic S, Blanc M, Van Der Goot FG. 2013.. What does S-palmitoylation do to membrane proteins?. FEBS J. 280:(12):276674
    [Crossref] [Google Scholar]
  24. 24.
    Bleecker JV, Cox PA, Foster RN, Litz JP, Blosser MC, et al. 2016.. Thickness mismatch of coexisting liquid phases in noncanonical lipid bilayers. . J. Phys. Chem. B 120::276170
    [Crossref] [Google Scholar]
  25. 25.
    Bloom GS. 2014.. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. . JAMA Neurol. 71::5058
    [Crossref] [Google Scholar]
  26. 26.
    Borchman D, Yappert MC. 2010.. Lipids and the ocular lens. . J. Lipid Res. 51::247388
    [Crossref] [Google Scholar]
  27. 27.
    Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. 2001.. Biological basket weaving: formation and function of clathrin-coated vesicles. . Annu. Rev. Cell Dev. Biol. 17::51768
    [Crossref] [Google Scholar]
  28. 28.
    Brown MF, Seelig J. 1978.. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. . Biochemistry 17:(2):38184
    [Crossref] [Google Scholar]
  29. 29.
    Burgos PV, Mardones GA, Rojas AL, DaSilva LL, Prabhu Y, et al. 2010.. Sorting of the Alzheimer's disease amyloid precursor protein mediated by the AP-4 complex. . Dev. Cell 18::42536
    [Crossref] [Google Scholar]
  30. 30.
    Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, et al. 2001.. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. . Nat. Neurosci. 4::23334
    [Crossref] [Google Scholar]
  31. 31.
    Caldwell TA, Baoukina S, Brock AT, Oliver RC, Root KT, et al. 2018.. Low-q bicelles are mixed micelles. . J. Phys. Chem. Lett. 9::446973
    [Crossref] [Google Scholar]
  32. 32.
    Canchi DR, Paschek D, Garcia AE. 2010.. Equilibrium study of protein denaturation by urea. . J. Am. Chem. Soc. 132:(7):233844
    [Crossref] [Google Scholar]
  33. 33.
    Cao Z, Hutchison JM, Sanders CR, Bowie JU. 2017.. Backbone hydrogen bond strengths can vary widely in transmembrane helices. . J. Am. Chem. Soc. 139::1074249
    [Crossref] [Google Scholar]
  34. 34.
    Capell A, Steiner H, Willem M, Kaiser H, Meyer C, et al. 2000.. Maturation and pro-peptide cleavage of β-secretase. . J. Biol. Chem. 275::3084954
    [Crossref] [Google Scholar]
  35. 35.
    Capone R, Tiwari A, Hadziselimovic A, Peskova Y, Hutchison JM, et al. 2021.. The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. . J. Biol. Chem. 296::100652
    [Crossref] [Google Scholar]
  36. 36.
    Castro MA, Hadziselimovic A, Sanders CR. 2019.. The vexing complexity of the amyloidogenic pathway. . Protein Sci. 28::117793
    [Crossref] [Google Scholar]
  37. 37.
    Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. 2018.. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. . Redox Biol. 14::45064
    [Crossref] [Google Scholar]
  38. 38.
    Chen L, Yu Z, Quinn PJ. 2007.. The partition of cholesterol between ordered and fluid bilayers of phosphatidylcholine: a synchrotron X-ray diffraction study. . Biochim. Biophys. Acta Biomembr. 1768::287381
    [Crossref] [Google Scholar]
  39. 39.
    Cheng H, Vetrivel KS, Drisdel RC, Meckler X, Gong P, et al. 2009.. S-palmitoylation of γ-secretase subunits nicastrin and APH-1. . J. Biol. Chem. 284:(3):137384
    [Crossref] [Google Scholar]
  40. 40.
    Chyung JH, Raper DM, Selkoe DJ. 2005.. γ-Secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. . J. Biol. Chem. 280::438392
    [Crossref] [Google Scholar]
  41. 41.
    Coburger I, Dahms SO, Roeser D, Gührs KH, Hortschansky P, Than ME. 2013.. Analysis of the overall structure of the multi-domain amyloid precursor protein (APP). . PLOS ONE 8::e81926
    [Crossref] [Google Scholar]
  42. 42.
    Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ. 1998.. Solution structure of amyloid β-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is?. Biochemistry 37:(31):1106477
    [Crossref] [Google Scholar]
  43. 43.
    Connell SD, Heath G, Olmsted PD, Kisil A. 2013.. Critical point fluctuations in supported lipid membranes. . Faraday Discuss. 161::91111; discussion 113–50
    [Crossref] [Google Scholar]
  44. 44.
    Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ. 2003.. Exclusively targeting β-secretase to lipid rafts by GPI-anchor addition up-regulates β-site processing of the amyloid precursor protein. . PNAS 100::1173540
    [Crossref] [Google Scholar]
  45. 45.
    Dahms SO, Hoefgen S, Roeser D, Schlott B, Guhrs KH, Than ME. 2010.. Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. . PNAS 107::538186
    [Crossref] [Google Scholar]
  46. 46.
    Dahms SO, Mayer MC, Roeser D, Multhaup G, Than ME. 2015.. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes. . Acta Crystallogr. D 71::494504
    [Crossref] [Google Scholar]
  47. 47.
    Dai J, Alwarawrah M, Huang J. 2010.. Instability of cholesterol clusters in lipid bilayers and the cholesterol's umbrella effect. . J. Phys. Chem. B 114::84048
    [Crossref] [Google Scholar]
  48. 48.
    Das A, Mukhopadhyay C. 2009.. Urea-mediated protein denaturation: a consensus view. . J. Phys. Chem. B 113:(38):1281624
    [Crossref] [Google Scholar]
  49. 49.
    Das U, Scott DA, Ganguly A, Koo EH, Tang Y, Roy S. 2013.. Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. . Neuron 79:(3):44760
    [Crossref] [Google Scholar]
  50. 50.
    Davis JH, Clair JJ, Juhasz J. 2009.. Phase equilibria in DOPC/DPPC-d62/cholesterol mixtures. . Biophys. J. 96::52139
    [Crossref] [Google Scholar]
  51. 51.
    De I, Sadhukhan S. 2018.. Emerging roles of DHHC-mediated protein S-palmitoylation in physiological and pathophysiological context. . Eur. J. Cell Biol. 97:(5):31938
    [Crossref] [Google Scholar]
  52. 52.
    DelBove CE, Strothman CE, Lazarenko RM, Huang H, Sanders CR, Zhang Q. 2019.. Reciprocal modulation between amyloid precursor protein and synaptic membrane cholesterol revealed by live cell imaging. . Neurobiol. Dis. 127::44961
    [Crossref] [Google Scholar]
  53. 53.
    Deng Y, Wang Z, Wang R, Zhang X, Zhang S, et al. 2013.. Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1 (BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. . Eur. J. Neurosci. 37:(12):196269
    [Crossref] [Google Scholar]
  54. 54.
    Díaz M, Fabelo N, Martín V, Ferrer I, Gómez T, Marín R. 2014.. Biophysical alterations in lipid rafts from human cerebral cortex associate with increased BACE1/AβPP interaction in early stages of Alzheimer's disease. . J. Alzheimer's Dis. 43:(4):118598
    [Crossref] [Google Scholar]
  55. 55.
    Dimitrov M, Alattia JR, Lemmin T, Lehal R, Fligier A, et al. 2013.. Alzheimer's disease mutations in APP but not γ-secretase modulators affect epsilon-cleavage-dependent AICD production. . Nat. Commun. 4::2246
    [Crossref] [Google Scholar]
  56. 56.
    Dobson L, Szekeres LI, Gerdán C, Langó T, Zeke A, Tusnády GE. 2023.. TmAlphaFold database: membrane localization and evaluation of AlphaFold2 predicted alpha-helical transmembrane protein structures. . Nucleic Acids Res. 51:(D1):D51722
    [Crossref] [Google Scholar]
  57. 57.
    Dominguez L, Foster L, Meredith SC, Straub JE, Thirumalai D. 2014.. Structural heterogeneity in transmembrane amyloid precursor protein homodimer is a consequence of environmental selection. . J. Am. Chem. Soc. 136::961926
    [Crossref] [Google Scholar]
  58. 58.
    Dominguez L, Foster L, Straub JE, Thirumalai D. 2016.. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. . PNAS 113::E528187
    [Crossref] [Google Scholar]
  59. 59.
    Dominguez L, Meredith SC, Straub JE, Thirumalai D. 2014.. Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature. . J. Am. Chem. Soc. 136::85457
    [Crossref] [Google Scholar]
  60. 60.
    Donaldson SH, de Aguiar HB. 2018.. Molecular imaging of cholesterol and lipid distributions in model membranes. . J. Phys. Chem. Lett. 9::152833
    [Crossref] [Google Scholar]
  61. 61.
    Dufourc EJ, Parish EJ, Chitrakorn S, Smith ICP. 1984.. Structural and dynamical details of cholesterol-lipid interaction as revealed by deuterium NMR. . Biochemistry 23:(25):606271
    [Crossref] [Google Scholar]
  62. 62.
    Ehehalt R, Keller P, Haass C, Thiele C, Simons K. 2003.. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. . J. Cell Biol. 160::11323
    [Crossref] [Google Scholar]
  63. 63.
    ElAli A, Rivest S. 2016.. Microglia in Alzheimer's disease: a multifaceted relationship. . Brain Behav. Immun. 55::13850
    [Crossref] [Google Scholar]
  64. 64.
    Elkins MR, Bandara A, Pantelopulos GA, Straub JE, Hong M. 2021.. Direct observation of cholesterol dimers and tetramers in lipid bilayers. . J. Phys. Chem. B 125::182537
    [Crossref] [Google Scholar]
  65. 65.
    Ellis CR, Shen J. 2015.. PH-dependent population shift regulates BACE1 activity and inhibition. . J. Am. Chem. Soc. 137::954346
    [Crossref] [Google Scholar]
  66. 66.
    Esbjörner EK, Chan F, Rees E, Erdelyi M, Luheshi LM, et al. 2014.. Direct observations of amyloid β self-assembly in live cells provide insights into differences in the kinetics of Aβ (1–40) and Aβ (1–42) aggregation. . Chem. Biol. 21:(6):73242
    [Crossref] [Google Scholar]
  67. 67.
    Fabelo N, Martín V, Marín R, Moreno D, Ferrer I, Díaz M. 2014.. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions. . Neurobiol. Aging 35:(8):180112
    [Crossref] [Google Scholar]
  68. 68.
    Fantini J, Barrantes FJ. 2013.. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. . Front. Physiol. 4::31
    [Google Scholar]
  69. 69.
    Farkas ER, Webb WW. 2010.. Precise and millidegree stable temperature control for fluorescence imaging: application to phase transitions in lipid membranes. . Rev. Sci. Instrum. 81::093704
    [Crossref] [Google Scholar]
  70. 70.
    Feldblum ES, Arkin IT. 2014.. Strength of a bifurcated H bond. . PNAS 111::408590
    [Crossref] [Google Scholar]
  71. 71.
    Feringa FM, van der Kant R. 2021.. Cholesterol and Alzheimer's disease; from risk genes to pathological effects. . Front. Aging Neurosci. 13::333
    [Crossref] [Google Scholar]
  72. 72.
    Feyt C, Pierrot N, Tasiaux B, Van Hees J, Kienlen-Campard P, et al. 2007.. Phosphorylation of APP695 at Thr668 decreases γ-cleavage and extracellular Aβ. . Biochem. Biophys. Res. Commun. 357::100410
    [Crossref] [Google Scholar]
  73. 73.
    Fourriere L, Cho EHJ, Gleeson PA. 2022.. Segregation of the membrane cargoes, BACE1 and amyloid precursor protein (APP) throughout the Golgi apparatus. . Traffic 23:(3):15873
    [Crossref] [Google Scholar]
  74. 74.
    Furthmayr H, Marchesi VT. 1976.. Subunit structure of human erythrocyte glycophorin A. . Biochemistry 15:(5):113744
    [Crossref] [Google Scholar]
  75. 75.
    Gao Q, Wu G, Lai KWC. 2020.. Cholesterol modulates the formation of the Aβ ion channel in lipid bilayers. . Biochemistry 59::99298
    [Crossref] [Google Scholar]
  76. 76.
    Giambarella U, Yamatsuji T, Okamoto T, Matsui T, Ikezu T, et al. 1997.. G protein βγ complex-mediated apoptosis by familial Alzheimer's disease mutant of APP. . EMBO J. 16::4897907
    [Crossref] [Google Scholar]
  77. 77.
    Grouleff J, Irudayam SJ, Skeby KK, Schiøtt B. 2015.. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. . Biochim. Biophys. Acta Biomembr. 1848::178395
    [Crossref] [Google Scholar]
  78. 78.
    Grüninger-Leitch F, Schlatter D, Küng E, Nelböck P, Döbeli H. 2002.. Substrate and inhibitor profile of BACE (β-secretase) and comparison with other mammalian aspartic proteases. . J. Biol. Chem. 277::468793
    [Crossref] [Google Scholar]
  79. 79.
    Guzmán-Ocampo DC, Aguayo-Ortiz R, Velasco-Bolom JL, Gupta PL, Roitberg AE, Dominguez L. 2023.. Elucidating the protonation state of the γ-secretase catalytic dyad. . ACS Chem. Neurosci. 14:(2):26169
    [Crossref] [Google Scholar]
  80. 80.
    Hardy J. 2009.. The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. . J. Neurochem. 110::112934
    [Crossref] [Google Scholar]
  81. 81.
    Hardy J, Higgins G. 1992.. Alzheimer's disease: the amyloid cascade hypothesis. . Science 256::18485
    [Crossref] [Google Scholar]
  82. 82.
    Hattori C, Asai M, Onishi H, Sasagawa N, Hashimoto Y, et al. 2006.. BACE1 interacts with lipid raft proteins. . J. Neurosci. Res. 84::91217
    [Crossref] [Google Scholar]
  83. 83.
    Haucke V, Kozlov MM. 2018.. Membrane remodeling in clathrin-mediated endocytosis. . J. Cell Sci. 131::jcs216812
    [Crossref] [Google Scholar]
  84. 84.
    Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW. 2010.. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. . Biophys. J. 99::330918
    [Crossref] [Google Scholar]
  85. 85.
    Heftberger P, Kollmitzer B, Rieder AA, Amenitsch H, Pabst G. 2015.. In situ determination of structure and fluctuations of coexisting fluid membrane domains. . Biophys. J. 108::85462
    [Crossref] [Google Scholar]
  86. 86.
    Hippius H, Neundörfer G. 2003.. The discovery of Alzheimer's disease. . Dialogues Clin. Neurosci. 5::1018
    [Crossref] [Google Scholar]
  87. 87.
    Hjort Ipsen J, Karlström G, Mourtisen OG, Wennerström H, Zuckermann MJ. 1987.. Phase equilibria in the phosphatidylcholine-cholesterol system. . Biochim. Biophys. Acta Biomembr. 905::16272
    [Crossref] [Google Scholar]
  88. 88.
    Hoefgen S, Dahms SO, Oertwig K, Than ME. 2014.. The amyloid precursor protein shows a pH-dependent conformational switch in its E1 domain. . J. Mol. Biol. 427::43342
    [Crossref] [Google Scholar]
  89. 89.
    Holmes O, Paturi S, Ye W, Wolfe MS, Selkoe DJ. 2012.. Effects of membrane lipids on the activity and processivity of purified γ-secretase. . Biochemistry 51::356575
    [Crossref] [Google Scholar]
  90. 90.
    Honerkamp-Smith AR, Cicuta P, Collins MD, Veatch SL, den Nijs M, et al. 2008.. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. . Biophys. J. 95::23646
    [Crossref] [Google Scholar]
  91. 91.
    Honerkamp-Smith AR, Machta BB, Keller SL. 2012.. Experimental observations of dynamic critical phenomena in a lipid membrane. . Phys. Rev. Lett. 108::265702
    [Crossref] [Google Scholar]
  92. 92.
    Hook VY, Toneff T, Aaron W, Yasothornsrikul S, Bundey R, Reisine T. 2002.. β-Amyloid peptide in regulated secretory vesicles of chromaffin cells: evidence for multiple cysteine proteolytic activities in distinct pathways for β-secretase activity in chromaffin vesicles. . J. Neurochem. 81::23756
    [Crossref] [Google Scholar]
  93. 93.
    Hsueh YW, Zuckermann M, Thewalt J. 2005.. Phase diagram determination for phospholipid/sterol membranes using deuterium NMR. . Concepts Magnet. Reson. A Bridg. Educ. Res. 26::3546
    [Crossref] [Google Scholar]
  94. 94.
    Hu YB, Dammer EB, Ren RJ, Wang G. 2015.. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. . Transl. Neurodegenerat. 4::18
    [Crossref] [Google Scholar]
  95. 95.
    Hua L, Zhou R, Thirumalai D, Berne BJ. 2008.. Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. . PNAS 105:(44):1692833
    [Crossref] [Google Scholar]
  96. 96.
    Huang J, Buboltz JT, Feigenson GW. 1999.. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. . Biochim. Biophys. Acta Biomembr. 1417::89100
    [Crossref] [Google Scholar]
  97. 97.
    Hur JY, Welander H, Behbahani H, Aoki M, Frånberg J, et al. 2008.. Active γ-secretase is localized to detergent-resistant membranes in human brain. . FEBS J. 275::117487
    [Crossref] [Google Scholar]
  98. 98.
    Hutchison JM, Shih KC, Scheidt HA, Fantin SM, Parson KF, et al. 2020.. Bicelles rich in both sphingolipids and cholesterol and their use in studies of membrane proteins. . J. Am. Chem. Soc. 142::1271529
    [Crossref] [Google Scholar]
  99. 99.
    Ikeda K, Yamaguchi T, Fukunaga S, Hoshino M, Matsuzaki K. 2011.. Mechanism of amyloid β-protein aggregation mediated by GM1 ganglioside clusters. . Biochemistry 50:(29):643340
    [Crossref] [Google Scholar]
  100. 100.
    Ivankin A, Kuzmenko I, Gidalevitz D. 2010.. Cholesterol-phospholipid interactions: new insights from surface X-ray scattering data. . Phys. Rev. Lett. 104::108101
    [Crossref] [Google Scholar]
  101. 101.
    Javadpour MM, Eilers M, Groesbeek M, Smith SO. 1999.. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. . Biophys. J. 77::160918
    [Crossref] [Google Scholar]
  102. 102.
    Javanainen M, Martinez-Seara H, Vattulainen I. 2017.. Nanoscale membrane domain formation driven by cholesterol. . Sci. Rep. 7::1143
    [Crossref] [Google Scholar]
  103. 103.
    Jensen MH, Morris EJ, Simonsen AC. 2007.. Domain shapes, coarsening, and random patterns in ternary membranes. . Langmuir 23::813541
    [Crossref] [Google Scholar]
  104. 104.
    Jin J, Zhi X, Wang X, Meng D. 2021.. Protein palmitoylation and its pathophysiological relevance. . J. Cell. Physiol. 236:(5):322033
    [Crossref] [Google Scholar]
  105. 105.
    Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ. 2011.. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. . PNAS 108::581924
    [Crossref] [Google Scholar]
  106. 106.
    Joh NH, Grigoryan G, Wu Y, DeGrado WF. 2017.. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. . Philos. Trans. R. Soc. B 372:(1726):20160214
    [Crossref] [Google Scholar]
  107. 107.
    John BA, Meister M, Banning A, Tikkanen R. 2014.. Flotillins bind to the dileucine sorting motif of β-site amyloid precursor protein-cleaving enzyme 1 and influence its endosomal sorting. . FEBS J. 281:(8):207487
    [Crossref] [Google Scholar]
  108. 108.
    Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, et al. 2010.. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. . J. Neurosci. 30::483344
    [Crossref] [Google Scholar]
  109. 109.
    Kandel N, Matos JO, Tatulian SA. 2019.. Structure of amyloid β25–35 in lipid environment and cholesterol-dependent membrane pore formation. . Sci. Rep. 9::2689
    [Crossref] [Google Scholar]
  110. 110.
    Keyvanloo A, Shaghaghi M, Zuckermann MJ, Thewalt JL. 2018.. The phase behavior and organization of sphingomyelin/cholesterol membranes: a deuterium NMR study. . Biophys. J. 114::134456
    [Crossref] [Google Scholar]
  111. 111.
    Khadka NK, Ho CS, Pan J. 2015.. Macroscopic and nanoscopic heterogeneous structures in a three-component lipid bilayer mixtures determined by atomic force microscopy. . Langmuir 31::1241725
    [Crossref] [Google Scholar]
  112. 112.
    Khandogin J, Brooks CL. 2007.. Linking folding with aggregation in Alzheimer's β-amyloid peptides. . PNAS 104::1688085
    [Crossref] [Google Scholar]
  113. 113.
    Kimura A, Hata S, Suzuki T. 2016.. Alternative selection of β-site APP-cleaving enzyme 1 (BACE1) cleavage sites in amyloid β-protein precursor (APP) harboring protective and pathogenic mutations within the Aβ sequence. . J. Biol. Chem. 291::2404153
    [Crossref] [Google Scholar]
  114. 114.
    Kirshenbaum K, Daggett V. 1995.. pH-dependent conformations of the amyloid β(1–28) peptide fragment explored using molecular dynamics. . Biochemistry 34:(23):762939
    [Crossref] [Google Scholar]
  115. 115.
    Kolev M, Ruseva M, Harris C, Morgan B, Donev R. 2009.. Implication of complement system and its regulators in Alzheimer's disease. . Curr. Neuropharmacol. 7::18
    [Crossref] [Google Scholar]
  116. 116.
    Konyakhina TM, Feigenson GW. 2016.. Phase diagram of a polyunsaturated lipid mixture: brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol. . Biochim. Biophys. Acta Biomembr. 1858::15361
    [Crossref] [Google Scholar]
  117. 117.
    Kovall RA, Gebelein B, Sprinzak D, Kopan R. 2017.. The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. . Dev. Cell 41::22841
    [Crossref] [Google Scholar]
  118. 118.
    Krank HS, Franks F. 1968.. Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. . J. Chem. Phys. 48:(10):474657
    [Crossref] [Google Scholar]
  119. 119.
    Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, et al. 2016.. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. . eLife 5::e12748
    [Crossref] [Google Scholar]
  120. 120.
    Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, et al. 2010.. ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. . EMBO J. 29::302032
    [Crossref] [Google Scholar]
  121. 121.
    Kukar TL, Ladd TB, Robertson P, Pintchovski SA, Moore B, et al. 2011.. Lysine 624 of the amyloid precursor protein (APP) is a critical determinant of amyloid β peptide length. . J. Biol. Chem. 286::3980412
    [Crossref] [Google Scholar]
  122. 122.
    Leathes J. 1925.. Croonian lectures on the rôle of fats in vital phenomena. . Lancet 205:(5304):85356
    [Crossref] [Google Scholar]
  123. 123.
    Lee J, Retamal C, Cuitiño L, Caruano-Yzermans A, Shin JE, et al. 2008.. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. . J. Biol. Chem. 283::115018
    [Crossref] [Google Scholar]
  124. 124.
    Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM. 1992.. Sequence specificity in the dimerization of transmembrane α-helixes. . Biochemistry 31:(51):1271925
    [Crossref] [Google Scholar]
  125. 125.
    Lemmon MA, Treutlein HR, Adams PD, Brnger AT, Engelman DM. 1994.. A dimerization motif for transmembrane α-helices. . Nat. Struct. Biol. 1:(3):15763
    [Crossref] [Google Scholar]
  126. 126.
    Levental I, Wang HY. 2020.. Membrane domains beyond the reach of microscopy. . J. Lipid Res. 61::59294
    [Crossref] [Google Scholar]
  127. 127.
    Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. 2010.. Cholesterol and ion channels. . In Cholesterol Binding and Cholesterol Transport Proteins: Structure and Function in Health and Disease, ed. JR Harris , pp. 50949. Berlin:: Springer
    [Google Scholar]
  128. 128.
    Li CD, Xu Q, Gu RX, Qu J, Wei DQ. 2017.. The dynamic binding of cholesterol to the multiple sites of C99: as revealed by coarse-grained and all-atom simulations. . Phys. Chem. Chem. Phys. 19::384556
    [Crossref] [Google Scholar]
  129. 129.
    Li NM, Liu KF, Qiu YJ, Zhang HH, Nakanishi H, Qing H. 2019.. Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer's disease pathogenesis. . Neural Regen. Res. 14::65865
    [Crossref] [Google Scholar]
  130. 130.
    Lorent JH, Diaz-Rohrer B, Lin X, Spring K, Gorfe AA, et al. 2017.. Structural determinants and functional consequences of protein affinity for membrane rafts. . Nat. Commun. 8::1219
    [Crossref] [Google Scholar]
  131. 131.
    Losada-Pérez P, Mertens N, de Medio-Vasconcelos B, Slenders E, Leys J, et al. 2015.. Phase transitions of binary lipid mixtures: a combined study by adiabatic scanning calorimetry and quartz crystal microbalance with dissipation monitoring. . Adv. Condens. Matter Phys. 2015::479318
    [Crossref] [Google Scholar]
  132. 132.
    Luo Y, Bolon B, Damore MA, Fitzpatrick D, Liu H, et al. 2003.. BACE1 (β-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time. . Neurobiol. Dis. 14::8188
    [Crossref] [Google Scholar]
  133. 133.
    Ma Y, Ghosh SK, Dilena DA, Bera S, Lurio LB, et al. 2016.. Cholesterol partition and condensing effect in phase-separated ternary mixture lipid multilayers. . Biophys. J. 110::135566
    [Crossref] [Google Scholar]
  134. 134.
    MacKenzie KR, Prestegard JH, Engelman DM. 1997.. A transmembrane helix dimer: structure and implications. . Science 276:(5309):13133
    [Crossref] [Google Scholar]
  135. 135.
    Maesako M, Houser MC, Turchyna Y, Wolfe MS, Berezovska O. 2022.. Presenilin/γ-secretase activity is located in acidic compartments of live neurons. . J. Neurosci. 42:(1):14554
    [Crossref] [Google Scholar]
  136. 136.
    Majumder A, Kwon S, Straub JE. 2022.. On computing equilibrium binding constants for protein–protein association in membranes. . J. Chem. Theory Comput. 18:(6):396171
    [Crossref] [Google Scholar]
  137. 137.
    Mandrekar-Colucci S, Landreth GE. 2012.. Microglia and inflammation in Alzheimer's disease. . CNS Neurol. Disord. Drug Targets 9::15667
    [Crossref] [Google Scholar]
  138. 138.
    Marcello E, Saraceno C, Musardo S, Vara H, de la Fuente AG, et al. 2013.. Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer's disease. . J. Clin. Investig. 123::252338
    [Crossref] [Google Scholar]
  139. 139.
    Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. 2021.. Structural determinants of cholesterol recognition in helical integral membrane proteins. . Biophys. J. 120::1592604
    [Crossref] [Google Scholar]
  140. 140.
    Marquer C, Devauges V, Cossec JC, Liot G, Lécart S, et al. 2011.. Local cholesterol increase triggers amyloid precursor protein-BACE1 clustering in lipid rafts and rapid endocytosis. . FASEB J. 25::1295305
    [Crossref] [Google Scholar]
  141. 141.
    Marsh D. 2009.. Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams. . Biochim. Biophys. Acta Biomembr. 1788::211423
    [Crossref] [Google Scholar]
  142. 142.
    Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, et al. 2013.. Tau protein kinases: involvement in Alzheimer's disease. . Ageing Res. Rev. 12::289309
    [Crossref] [Google Scholar]
  143. 143.
    Massi F, Klimov D, Thirumalai D, Straub JE. 2009.. Charge states rather than propensity for β-structure determine enhanced fibrillogenesis in wild-type Alzheimer's β-amyloid peptide compared to E22Q Dutch mutant. . Protein Sci. 11::163947
    [Crossref] [Google Scholar]
  144. 144.
    Matsunaga Y, Saito N, Fujii A, Yokotani J, Takakura T, et al. 2002.. A pH-dependent conformational transition of Aβ peptide and physicochemical properties of the conformers in the glial cell. . Biochem. J. 361::54756
    [Crossref] [Google Scholar]
  145. 145.
    McLendon C, Xin T, Ziani-Cherif C, Murphy MP, Findlay KA, et al. 2000.. Cell-free assays for γ-secretase activity. . FASEB J. 14::238386
    [Crossref] [Google Scholar]
  146. 146.
    Mesa H, Zhang EY, Wang Y, Zhang Q. 2023.. Human neurons lacking amyloid precursor protein exhibit cholesterol-associated developmental and presynaptic deficits. . J. Cell. Physiol. In press. https://doi.org/10.1002/jcp.30999
    [Google Scholar]
  147. 147.
    Miao L, Nielsen M, Thewalt J, Ipsen JH, Bloom M, et al. 2002.. From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. . Biophys. J. 82::142944
    [Crossref] [Google Scholar]
  148. 148.
    Miyashita N, Straub JE, Thirumalai D, Sugita Y. 2009.. Transmembrane structures of amyloid precursor protein dimer predicted by replica-exchange molecular dynamics simulations. . J. Am. Chem. Soc. 131::343839
    [Crossref] [Google Scholar]
  149. 149.
    Montesinos J, Pera M, Larrea D, Guardia-Laguarta C, Agrawal RR, et al. 2020.. The Alzheimer's disease-associated C99 fragment of APP regulates cellular cholesterol trafficking. . EMBO J. 39::e103791
    [Crossref] [Google Scholar]
  150. 150.
    Moore DT, Berger BW, DeGrado WF. 2008.. Protein-protein interactions in the membrane: sequence, structural, and biological motifs. . Structure 16::9911001
    [Crossref] [Google Scholar]
  151. 151.
    Morrow IC, Rea S, Martin S, Prior IA, Prohaska R, et al. 2002.. Flotillin-1/Reggie-2 traffics to surface raft domains via a novel Golgi-independent pathway: identification of a novel membrane targeting domain and a role for palmitoylation. . J. Biol. Chem. 277:(50):4883441
    [Crossref] [Google Scholar]
  152. 152.
    Motoki K, Kume H, Oda A, Tamaoka A, Hosaka A, et al. 2012.. Neuronal β-amyloid generation is independent of lipid raft association of β-secretase BACE1: analysis with a palmitoylation-deficient mutant. . Brain Behav. 2::27082
    [Crossref] [Google Scholar]
  153. 153.
    Mueller BK, Subramaniam S, Senes A. 2014.. A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα–H hydrogen bonds. . PNAS 111::E88895
    [Google Scholar]
  154. 154.
    Müller UC, Deller T, Korte M. 2017.. Not just amyloid: physiological functions of the amyloid precursor protein family. . Nat. Rev. Neurosci. 18::28198
    [Crossref] [Google Scholar]
  155. 155.
    Nadezhdin KD, Bocharova OV, Bocharov EV, Arseniev AS. 2011.. Structural and dynamic study of the transmembrane domain of the amyloid precursor protein. . Acta Nat. 3:(1):6976
    [Crossref] [Google Scholar]
  156. 156.
    Naslavsky N, Weigert R, Donaldson JG. 2004.. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. . Mol. Biol. Cell 15:(8):354252
    [Crossref] [Google Scholar]
  157. 157.
    Neumann-Giesen C, Falkenbach B, Beicht P, Claasen S, Lüers G, et al. 2004.. Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. . Biochem. J. 378:(2):50918
    [Crossref] [Google Scholar]
  158. 158.
    Nguyen PH, Li MS, Stock G, Straub JE, Thirumalai D. 2007.. Monomer adds to preformed structured oligomers of A β-peptides by a two-stage dock-lock mechanism. . PNAS 104:(1):11116
    [Crossref] [Google Scholar]
  159. 159.
    Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, et al. 2021.. Amyloid oligomers: a joint experimental/computational perspective on Alzheimer's disease, Parkinson's disease, type II diabetes, and amyotrophic lateral sclerosis. . Chem. Rev. 121::2545647
    [Crossref] [Google Scholar]
  160. 160.
    Nhan HS, Chiang K, Koo EH. 2015.. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. . Acta Neuropathol. 129::119
    [Crossref] [Google Scholar]
  161. 161.
    Nordstedt C, Caporaso GL, Thyberg J, Gandy SE, Greengard P. 1993.. Identification of the Alzheimer β/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells. . J. Biol. Chem. 268::60812
    [Crossref] [Google Scholar]
  162. 162.
    Nyholm TKM, Lindroos D, Westerlund B, Slotte JP. 2011.. Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid. . Langmuir 27::833950
    [Crossref] [Google Scholar]
  163. 163.
    Oishi M, Nairn AC, Czernik AJ, Lim GS, Isohara T, et al. 1997.. The cytoplasmic domain of Alzheimer's amyloid precursor protein is phosphorylated at Thr654, Ser655, and Thr668 in adult rat brain and cultured cells. . Mol. Med. 3::11123
    [Crossref] [Google Scholar]
  164. 164.
    Otto GP, Nichols BJ. 2011.. The roles of flotillin microdomains—endocytosis and beyond. . J. Cell Sci. 124:(23):393340
    [Crossref] [Google Scholar]
  165. 165.
    Panahi A, Bandara A, Pantelopulos GA, Dominguez L, Straub JE. 2016.. Specific binding of cholesterol to C99 domain of amyloid precursor protein depends critically on charge state of protein. . J. Phys. Chem. Lett. 7::353541
    [Crossref] [Google Scholar]
  166. 166.
    Pantelopulos GA, Matsuoka D, Hutchison JM, Sanders CR, Sugita Y, et al. 2022.. Formation of extramembrane β-strands controls dimerization of transmembrane helices in amyloid precursor protein C99. . PNAS 119:(52):e2212207119
    [Crossref] [Google Scholar]
  167. 167.
    Pantelopulos GA, Nagai T, Bandara A, Panahi A, Straub JE. 2017.. Critical size dependence of domain formation observed in coarse-grained simulations of bilayers composed of ternary lipid mixtures. . J. Chem. Phys. 147::095101
    [Crossref] [Google Scholar]
  168. 168.
    Pantelopulos GA, Panahi A, Straub JE. 2020.. Impact of cholesterol concentration and lipid phase on structure and fluctuation of amyloid precursor protein. . J. Phys. Chem. B 124::1017385
    [Crossref] [Google Scholar]
  169. 169.
    Pantelopulos GA, Straub JE. 2018.. Regimes of complex lipid bilayer phases induced by cholesterol concentration in MD simulation. . Biophys. J. 115::216778
    [Crossref] [Google Scholar]
  170. 170.
    Pantelopulos GA, Straub JE, Thirumalai D, Sugita Y. 2018.. Structure of APP-C99 1–99 and implications for role of extra-membrane domains in function and oligomerization. . Biochim. Biophys. Acta Biomembr. 1860::1698708
    [Crossref] [Google Scholar]
  171. 171.
    Panza F, Lozupone M, Logroscino G, Imbimbo BP. 2019.. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. . Nat. Rev. Neurol. 15::7388
    [Crossref] [Google Scholar]
  172. 172.
    Parisiadou L, Efthimiopoulos S. 2007.. Expression of mDab1 promotes the stability and processing of amyloid precursor protein and this effect is counteracted by X11α. . Neurobiol. Aging 28::37788
    [Crossref] [Google Scholar]
  173. 173.
    Parker A, Miles K, Cheng KH, Huang J. 2004.. Lateral distribution of cholesterol in dioleoylphosphatidylcholine lipid bilayers: cholesterol-phospholipid interactions at high cholesterol limit. . Biophys. J. 86::153244
    [Crossref] [Google Scholar]
  174. 174.
    Paroutis P, Touret N, Grinstein S. 2004.. The pH of the secretory pathway: measurement, determinants, and regulation. . Physiology 19::20715
    [Crossref] [Google Scholar]
  175. 175.
    Parvathy S, Hussain I, Karran EH, Turner AJ, Hooper NM. 1999.. Cleavage of Alzheimer's amyloid precursor protein by α-secretase occurs at the surface of neuronal cells. . Biochemistry 38::972834
    [Crossref] [Google Scholar]
  176. 176.
    Pencer J, Mills T, Anghel V, Krueger S, Epand RM, Katsaras J. 2005.. Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering. . Eur. Phys. J. E 18::44758
    [Crossref] [Google Scholar]
  177. 177.
    Pester O, Barrett PJ, Hornburg D, Hornburg P, Pröbstle R, et al. 2013.. The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase. . J. Am. Chem. Soc. 135::131729
    [Crossref] [Google Scholar]
  178. 178.
    Pfeiffer H, Klose G, Heremans K, Glorieux C. 2006.. Thermotropic phase behaviour of the pseudobinary mixtures of DPPC/C12E5 and DMPC/C12E5 determined by differential scanning calorimetry and ultrasonic velocimetry. . Chem. Phys. Lipids 139::5467
    [Crossref] [Google Scholar]
  179. 179.
    Piai A, Fu Q, Dev J, Chou JJ. 2017.. Optimal bicelle size q for solution NMR studies of the protein transmembrane partition. . Chemistry 23::136167
    [Crossref] [Google Scholar]
  180. 180.
    Pierrot N, Tyteca D, D'auria L, Dewachter I, Gailly P, et al. 2013.. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. . EMBO Mol. Med. 5::60825
    [Crossref] [Google Scholar]
  181. 181.
    Poulsen ET, Iannuzzi F, Rasmussen HF, Maier TJ, Enghild JJ, et al. 2017.. An aberrant phosphorylation of amyloid precursor protein tyrosine regulates its trafficking and the binding to the clathrin endocytic complex in neural stem cells of Alzheimer's disease patients. . Front. Mol. Neurosci. 10::59
    [Crossref] [Google Scholar]
  182. 182.
    Prox J, Bernreuther C, Altmeppen H, Grende J, Glatze M, et al. 2013.. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. . J. Neurosci. 33::1291528
    [Crossref] [Google Scholar]
  183. 183.
    Puglielli L, Tanzi RE, Kovacs DM. 2003.. Alzheimer's disease: the cholesterol connection. . Nat. Neurosci. 6::34551
    [Crossref] [Google Scholar]
  184. 184.
    Quintero-Monzon O, Martin MM, Fernandez MA, Cappello CA, Krzysiak AJ, et al. 2011.. Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations. . Biochemistry 50:(42):902335
    [Crossref] [Google Scholar]
  185. 185.
    Radhakrishnan A. 2010.. Phase separations in binary and ternary cholesterol-phospholipid mixtures. . Biophys. J. 98::L4143
    [Crossref] [Google Scholar]
  186. 186.
    Ratajczak MK, Chi EY, Frey SL, Cao KD, Luther LM, et al. 2009.. Ordered nanoclusters in lipid-cholesterol membranes. . Phys. Rev. Lett. 103::028103
    [Crossref] [Google Scholar]
  187. 187.
    Reddy G, Straub JE, Thirumalai D. 2009.. Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Aβ peptides with implications for rates of fibril formation. . J. Phys. Chem. B 113:(4):116272
    [Crossref] [Google Scholar]
  188. 188.
    Refolo L, Pappolla M, LaFrancois J, Malester B, Schmidt S, et al. 2001.. A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer's disease. . Neurobiol. Dis. 8::89099
    [Crossref] [Google Scholar]
  189. 189.
    Refolo LM, Pappolla MA, Malester B, LaFrancois J, Bryant-Thomas T, et al. 2000.. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. . Neurobiol. Dis. 7::32131
    [Crossref] [Google Scholar]
  190. 190.
    Reiss K, Cornelsen I, Husmann M, Gimpl G, Bhakdi S. 2011.. Unsaturated fatty acids drive disintegrin and metalloproteinase (ADAM)-dependent cell adhesion, proliferation, and migration by modulating membrane fluidity. . J. Biol. Chem. 286:(30):2693142
    [Crossref] [Google Scholar]
  191. 191.
    Roisman LC, Han S, Chuei MJ, Connor AR, Cappai R. 2019.. The crystal structure of amyloid precursor-like protein 2 E2 domain completes the amyloid precursor protein family. . FASEB J. 33::507681
    [Crossref] [Google Scholar]
  192. 192.
    Rossky PJ. 2008.. Protein denaturation by urea: slash and bond. . PNAS 105:(44):1682526
    [Crossref] [Google Scholar]
  193. 193.
    Rostagno A, Holton JL, Lashley T, Revesz T, Ghiso J. 2010.. Cerebral amyloidosis: amyloid subunits, mutants and phenotypes. . Cell. Mol. Life Sci. 67::581600
    [Crossref] [Google Scholar]
  194. 194.
    Russ WP, Engelman DM. 2000.. The GxxxG motif: a framework for transmembrane helix-helix association. . J. Mol. Biol. 296:(3):91119
    [Crossref] [Google Scholar]
  195. 195.
    Russo T, Faraonio R, Minopoli G, De Candia P, De Renzis S, Zambrano N. 1998.. Fe65 and the protein network centered around the cytosolic domain of the Alzheimer's β-amyloid precursor protein. . FEBS Lett. 434::17
    [Crossref] [Google Scholar]
  196. 196.
    Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, et al. 2011.. ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. . PNAS 108:(34):E55968
    [Crossref] [Google Scholar]
  197. 197.
    Sano Y, Nakaya T, Pedrini S, Takeda S, Iijima-Ando K, et al. 2006.. Physiological mouse brain Aβ levels are not related to the phosphorylation state of threonine-668 of Alzheimer's APP. . PLOS ONE 1::e51
    [Crossref] [Google Scholar]
  198. 198.
    Scheinfeld MH, Roncarati R, Vito P, Lopez PA, Abdallah M, D'Adamio L. 2002.. Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer's β-amyloid precursor protein (APP). . J. Biol. Chem. 277::376775
    [Crossref] [Google Scholar]
  199. 199.
    Seelig J. 1977.. Deuterium magnetic resonance: theory and application to lipid membranes. . Q. Rev. Biophys. 10::353418
    [Crossref] [Google Scholar]
  200. 200.
    Selkoe DJ. 1991.. In the beginning.…. Nature 354::43233
    [Crossref] [Google Scholar]
  201. 201.
    Senes A, Gerstein M, Engelman DM. 2000.. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. . J. Mol. Biol. 296:(3):92136
    [Crossref] [Google Scholar]
  202. 202.
    Senes A, Ubarretxena-Belandia I, Engelman DM. 2001.. The Cα—H·O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. . PNAS 98:(16):905661
    [Crossref] [Google Scholar]
  203. 203.
    Shaked GM, Kummer MP, Lu DC, Galvan V, Bredesen DE, Koo EH. 2006.. Aβ induces cell death by direct interaction with its cognate extracellular domain on APP (APP 597–624). . FASEB J. 20::125446
    [Crossref] [Google Scholar]
  204. 204.
    Shaw TR, Ghosh S, Veatch SL. 2020.. Critical phenomena in plasma membrane organization and function. . Annu. Rev. Phys. Chem. 72::5172
    [Crossref] [Google Scholar]
  205. 205.
    Shelby SA, Castello-Serrano I, Wisser KC, Levental I, Veatch SL. 2023.. Membrane phase separation drives responsive assembly of receptor signaling domains. . Nat. Chem. Biol. 19:(6):75058
    [Crossref] [Google Scholar]
  206. 206.
    Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. 1997.. Skeletal and CNS defects in presenilin-1-deficient mice. . Cell 89::62939
    [Crossref] [Google Scholar]
  207. 207.
    Shie FS, Jin LW, Cook DG, Leverenz JB, LeBoeuf RC. 2002.. Diet-induced hypercholesterolemia enhances brain Aβ accumulation in transgenic mice. . NeuroReport 13::45559
    [Crossref] [Google Scholar]
  208. 208.
    Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N. 2008.. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production. . Mol. Cell. Biol. 28::366371
    [Crossref] [Google Scholar]
  209. 209.
    Simons K, Toomre D. 2000.. Lipid rafts and signal transduction. . Nat. Rev. Mol. Cell Biol. 1:(1):3139
    [Crossref] [Google Scholar]
  210. 210.
    Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. 1998.. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. . PNAS 95::646064
    [Crossref] [Google Scholar]
  211. 211.
    Sisodia S, Koo E, Hoffman P, Perry G, Price D. 1993.. Identification and transport of full-length amyloid precursor proteins in rat peripheral nervous system. . J. Neurosci. 13:(7):313642
    [Crossref] [Google Scholar]
  212. 212.
    Smith SO, Song D, Shekar S, Groesbeek M, Ziliox M, Aimoto S. 2001.. Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers. . Biochemistry 40:(22):655358
    [Crossref] [Google Scholar]
  213. 213.
    Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E. 2014.. The molecular structure of the liquid-ordered phase of lipid bilayers. . J. Am. Chem. Soc. 136::72532
    [Crossref] [Google Scholar]
  214. 214.
    Solomonov I, Weygand MJ, Kjaer K, Rapaport H, Leiserowitz L. 2005.. Trapping crystal nucleation of cholesterol monohydrate: relevance to pathological crystallization. . Biophys. J. 88::180917
    [Crossref] [Google Scholar]
  215. 215.
    Song Y, Hustedt EJ, Brandon S, Sanders CR. 2013.. Competition between homodimerization and cholesterol binding to the C99 domain of the amyloid precursor protein. . Biochemistry 52::505164
    [Crossref] [Google Scholar]
  216. 216.
    Song Y, Mittendorf KF, Lu Z, Sanders CR. 2014.. Impact of bilayer lipid composition on the structure and topology of the transmembrane amyloid precursor C99 protein. . J. Am. Chem. Soc. 136::409396
    [Crossref] [Google Scholar]
  217. 217.
    Staubach S, Hanisch FG. 2011.. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. . Expert Rev. Proteom. 8::26377
    [Crossref] [Google Scholar]
  218. 218.
    Stevens MM, Honerkamp-Smith AR, Keller SL. 2010.. Solubility limits of cholesterol, lanosterol, ergosterol, stigmasterol, and β-sitosterol in electroformed lipid vesicles. . Soft Matter 6::588290
    [Crossref] [Google Scholar]
  219. 219.
    Stott BM, Vu MP, McLemore CO, Lund MS, Gibbons E, et al. 2008.. Use of fluorescence to determine the effects of cholesterol on lipid behavior in sphingomyelin liposomes and erythrocyte membranes. . J. Lipid Res. 49::120215
    [Crossref] [Google Scholar]
  220. 220.
    Straub JE, Thirumalai D. 2011.. Toward a molecular theory of early and late events in monomer to amyloid fibril formation. . Annu. Rev. Phys. Chem. 62::43763
    [Crossref] [Google Scholar]
  221. 221.
    Sun HY, Wu FG, Li ZH, Deng G, Zhou Y, Yu ZW. 2017.. Phase behavior of a binary lipid system containing long- and short-chain phosphatidylcholines. . RSC Adv. 7::571524
    [Crossref] [Google Scholar]
  222. 222.
    Suzuki T, Oishi M, Marshak DR, Czernik AJ, Nairn AC, Greengard P. 1994.. Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. . EMBO J. 13::111422
    [Crossref] [Google Scholar]
  223. 223.
    Sych T, Levental KR, Sezgin E. 2022.. Lipid-protein interactions in plasma membrane organization and function. . Annu. Rev. Biophys. 51::13556
    [Crossref] [Google Scholar]
  224. 224.
    Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, et al. 2009.. γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. . J. Neurosci. 29:(41):1304252
    [Crossref] [Google Scholar]
  225. 225.
    Tian A, Johnson C, Wang W, Baumgart T. 2007.. Line tension at fluid membrane domain boundaries measured by micropipette aspiration. . Phys. Rev. Lett. 98::208102
    [Crossref] [Google Scholar]
  226. 226.
    Tian Y, Viles JH. 2022.. pH dependence of amyloid-β fibril assembly kinetics: unravelling the microscopic molecular processes. . Angew. Chem. Int. Ed. 61:(48):e202210675
    [Crossref] [Google Scholar]
  227. 227.
    Todd S, McKnight AJ, Liu WW, Carson R, Heggarty S, et al. 2008.. BACE1 polymorphisms do not influence platelet membrane β-secretase activity or genetic susceptibility for Alzheimer's disease in the Northern Irish population. . NeuroMol. Med. 10::36876
    [Crossref] [Google Scholar]
  228. 228.
    Tomita T, Iwatsubo T. 2013.. Structural biology of presenilins and signal peptide peptidases. . J. Biol. Chem. 288::1467380
    [Crossref] [Google Scholar]
  229. 229.
    Toppozini L, Meinhardt S, Armstrong CL, Yamani Z, Kučerka N, et al. 2014.. Structure of cholesterol in lipid rafts. . Phys. Rev. Lett. 113::228101
    [Crossref] [Google Scholar]
  230. 230.
    Treiber H, Hagemeyer N, Ehrenreich H, Simons M. 2012.. BACE1 in central nervous system myelination revisited. . Mol. Psychiatry 17::23739
    [Crossref] [Google Scholar]
  231. 231.
    Treutlein HR, Lemmon MA, Engelman DM, Brunger A. 1992.. The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helixes. . Biochemistry 31:(51):1272632
    [Crossref] [Google Scholar]
  232. 232.
    Usery RD, Enoki TA, Wickramasinghe SP, Weiner MD, Tsai WC, et al. 2017.. Line tension controls liquid-disordered + liquid-ordered domain size transition in lipid bilayers. . Biophys. J. 112::143143
    [Crossref] [Google Scholar]
  233. 233.
    Vassar R. 2013.. ADAM10 prodomain mutations cause late-onset Alzheimer's disease: not just the latest FAD. . Neuron 80::25053
    [Crossref] [Google Scholar]
  234. 234.
    Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Baird B. 2008.. Critical fluctuations in plasma membrane vesicles. . ACS Chem. Biol. 3::28793
    [Crossref] [Google Scholar]
  235. 235.
    Veatch SL, Gawrisch K, Keller SL. 2006.. Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. . Biophys. J. 90::442836
    [Crossref] [Google Scholar]
  236. 236.
    Veatch SL, Keller SL. 2003.. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. . Biophys. J. 85::307483
    [Crossref] [Google Scholar]
  237. 237.
    Veatch SL, Keller SL. 2005.. Miscibility phase diagrams of giant vesicles containing sphingomyelin. . Phys. Rev. Lett. 94::36
    [Crossref] [Google Scholar]
  238. 238.
    Veatch SL, Keller SL. 2005.. Seeing spots: complex phase behavior in simple membranes. . Biochim. Biophys. Acta Mol. Cell Res. 1746::17285
    [Crossref] [Google Scholar]
  239. 239.
    Veatch SL, Soubias O, Keller SL, Gawrisch K. 2007.. Critical fluctuations in domain-forming lipid mixtures. . PNAS 104::1765055
    [Crossref] [Google Scholar]
  240. 240.
    Venugopal C, Demos C, Jagannatha Rao KS, Pappolla M, Sambamurti K. 2008.. Beta-secretase: structure, function, and evolution. . CNS Neurol. Disord. Drug Targets 7::27894
    [Crossref] [Google Scholar]
  241. 241.
    Vetrivel KS, Barman A, Chen Y, Nguyen PD, Wagner SL, et al. 2011.. Loss of cleavage at β′-site contributes to apparent increase in β-amyloid peptide (Aβ) secretion by β-secretase (BACE1)-glycosylphosphatidylinositol (GPI) processing of amyloid precursor protein. . J. Biol. Chem. 286:(29):2616677
    [Crossref] [Google Scholar]
  242. 242.
    Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, et al. 2004.. Association of γ-secretase with lipid rafts in post-Golgi and endosome membranes. . J. Biol. Chem. 279::4494554
    [Crossref] [Google Scholar]
  243. 243.
    Vetrivel KS, Meckler X, Chen Y, Nguyen PD, Seidah NG, et al. 2009.. Alzheimer disease Aβ production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. . J. Biol. Chem. 284::3793803
    [Crossref] [Google Scholar]
  244. 244.
    Viles JH. 2023.. Imaging amyloid-β membrane interactions: ion-channel pores and lipid-bilayer permeability in Alzheimer's disease. . Angew. Chem. Int. Ed. 62:(25):e202215785
    [Crossref] [Google Scholar]
  245. 245.
    Vist MR, Davis JH. 1990.. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. . Biochemistry 29::45164
    [Crossref] [Google Scholar]
  246. 246.
    Viswanath S, Dominguez L, Foster LS, Straub JE, Elber R. 2015.. Extension of a protein docking algorithm to membranes and applications to amyloid precursor protein dimerization. . Proteins 83::217085
    [Crossref] [Google Scholar]
  247. 247.
    Wang C, Chen Z, Hong X, Ning F, Liu H, et al. 2014.. The structural basis of urea-induced protein unfolding in β-catenin. . Acta Crystallogr. D 70:(11):284047
    [Crossref] [Google Scholar]
  248. 248.
    Wang HY, Chan SH, Dey S, Castello-Serrano I, Rosen MK, et al. 2023.. Coupling of protein condensates to ordered lipid domains determines functional membrane organization. . Sci. Adv. 9:(17):eadf6205
    [Crossref] [Google Scholar]
  249. 249.
    Wassall SR, Brzustowicz MR, Shaikh SR, Cherezov V, Caffrey M, Stillwell W. 2004.. Order from disorder, corralling cholesterol with chaotic lipids: the role of polyunsaturated lipids in membrane raft formation. . Chem. Phys. Lipids 132::7988
    [Google Scholar]
  250. 250.
    Weggen S, Beher D. 2012.. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease. . Alzheimer's Res. Ther. 4::9
    [Crossref] [Google Scholar]
  251. 251.
    Winkler E, Kamp F, Scheuring J, Ebke A, Fukumori A, Steiner H. 2012.. Generation of Alzheimer disease-associated amyloid β42/43 peptide by γ-secretase can be inhibited directly by modulation of membrane thickness. . J. Biol. Chem. 287::2132634
    [Crossref] [Google Scholar]
  252. 252.
    Wolfe MS. 2019.. Structure and function of the γ-secretase complex. . Biochemistry 58::295366
    [Crossref] [Google Scholar]
  253. 253.
    Wood GW, Ling L, Muller W, Eckert G. 2014.. Cholesterol as a causative agent in Alzheimer disease: a debatable hypothesis. . J. Neurochem. 129::55972
    [Crossref] [Google Scholar]
  254. 254.
    Wu FG, Sun HY, Zhou Y, Deng G, Yu ZW. 2015.. Molecular-level pictures of the phase transitions of saturated and unsaturated phospholipid binary mixtures. . RSC Adv. 5::72633
    [Crossref] [Google Scholar]
  255. 255.
    Wu HM, Lin YH, Yen TC, Hsieh CL. 2016.. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. . Sci. Rep. 6::20542
    [Crossref] [Google Scholar]
  256. 256.
    Xu W, Zhang C, Derreumaux P, Gräslund A, Morozova-Roche L, Mu Y. 2011.. Intrinsic determinants of A β12–34 pH-dependent self-assembly revealed by combined computational and experimental studies. . PLOS ONE 6:(9):e24329
    [Crossref] [Google Scholar]
  257. 257.
    Yan J, Xu Y, Zhu C, Zhang L, Wu A, et al. 2011.. Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses. . PLOS ONE 6::e20945
    [Crossref] [Google Scholar]
  258. 258.
    Yan Y, Xu TH, Harikumar KG, Miller LJ, Melcher K, Xu HE. 2017.. Dimerization of the transmembrane domain of amyloid precursor protein is determined by residues around the γ-secretase cleavage sites. . J. Biol. Chem. 292::1582637
    [Crossref] [Google Scholar]
  259. 259.
    Zhang X, Song W. 2013.. The role of APP and BACE1 trafficking in APP processing and amyloid-β generation. . Alzheimer's Res. Ther. 5::46
    [Crossref] [Google Scholar]
  260. 260.
    Zhang Z, Lee CH, Mandiyan V, Borg JP, Margolis B, et al. 1997.. Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. . EMBO J. 16::614150
    [Crossref] [Google Scholar]
  261. 261.
    Zhao J, Wu J, Heberle FA, Mills TT, Klawitter P, et al. 2007.. Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. . Biochim. Biophys. Acta Biomembr. 1768::276476
    [Crossref] [Google Scholar]
  262. 262.
    Zheng L, Cedazo-Minguez A, Hallbeck M, Jerhammar F, Marcusson J, Terman A. 2012.. Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. . Transl. Neurodegenerat. 1::19
    [Crossref] [Google Scholar]
  263. 263.
    Zhou R, Yang G, Guo X, Zhou Q, Lei J, Shi Y. 2019.. Recognition of the amyloid precursor protein by human β-secretase. . Science 363:(6428):eaaw0930
    [Crossref] [Google Scholar]
  264. 264.
    Ziblat R, Leiserowitz L, Addadi L. 2010.. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC bilayers. . J. Am. Chem. Soc. 132::992027
    [Crossref] [Google Scholar]
  265. 265.
    Ziblat R, Leiserowitz L, Addadi L. 2011.. Crystalline lipid domains: characterization by X-ray diffraction and their relation to biology. . Angew. Chem. Int. Ed. 50::362029
    [Crossref] [Google Scholar]
  266. 266.
    Zinser EG, Hartmann T, Grimm MO. 2007.. Amyloid beta-protein and lipid metabolism. . Biochim. Biophys. Acta Biomembr. 1768::19912001
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-062823-023436
Loading
/content/journals/10.1146/annurev-biophys-062823-023436
Loading

Data & Media loading...

  • Article Type: Review Article