1932

Abstract

Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence–based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-102622-084607
2023-05-09
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-102622-084607.html?itemId=/content/journals/10.1146/annurev-biophys-102622-084607&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akdel M, Pires DEV, Porta Pardo E, Jänes J, Zalevsky AO et al. 2021. A structural biology community assessment of AlphaFold 2 applications. bioRxiv 2021.09.26.461876. https://doi.org/10.1101/2021.09.26.461876
  2. 2.
    Alford RF, Leaver-Fay A, Jeliazkov JR, O'Meara MJ, DiMaio FP et al. 2017. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13:3031–48
    [Google Scholar]
  3. 3.
    Aloy P, Ceulemans H, Stark A, Russell RB. 2003. The relationship between sequence and interaction divergence in proteins. J. Mol. Biol. 332:989–98
    [Google Scholar]
  4. 4.
    Andrusier N, Mashiach E, Nussinov R, Wolfson HJ. 2008. Principles of flexible protein-protein docking. Proteins 73:271–89
    [Google Scholar]
  5. 5.
    Baek M, Baker D. 2022. Deep learning and protein structure modeling. Nat. Methods 19:13–14
    [Google Scholar]
  6. 6.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–76
    [Google Scholar]
  7. 7.
    Basu S, Wallner B. 2016. DockQ: a quality measure for protein-protein docking models. PLOS ONE 11:e0161879
    [Google Scholar]
  8. 8.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al. 2000. The Protein Data Bank. Nucleic Acids Res. 28:235–42
    [Google Scholar]
  9. 9.
    Blom NS, Sygusch J. 1997. High resolution fast quantitative docking using Fourier domain correlation techniques. Proteins 27:493–506
    [Google Scholar]
  10. 10.
    Bonvin AM. 2006. Flexible protein-protein docking. Curr. Opin. Struct. Biol. 16:194–200
    [Google Scholar]
  11. 11.
    Brooks BR, Brooks CL III, Mackerell AD Jr., Nilsson L, Petrella RJ et al. 2009. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30:1545–614
    [Google Scholar]
  12. 12.
    Bryant AS, Goddard CA, Huguenard JR, Knudsen EI. 2015. Cholinergic control of gamma power in the midbrain spatial attention network. J. Neurosci. 35:761–75
    [Google Scholar]
  13. 13.
    Bryant P, Pozzati G, Elofsson A. 2022. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13:1265
    [Google Scholar]
  14. 14.
    Buel GR, Walters KJ. 2022. Can AlphaFold2 predict the impact of missense mutations on structure?. Nat. Struct. Mol. Biol. 29:1–2
    [Google Scholar]
  15. 15.
    Burke DF, Bryant P, Barrio-Hernandez I, Memon D, Pozzati G et al. 2021. Towards a structurally resolved human protein interaction network. bioRxiv 2021.11.08.467664. https://doi.org/10.1101/2021.11.08.467664
  16. 16.
    Callaway E. 2020.. “ It will change everything”: DeepMind's AI makes gigantic leap in solving protein structures. Nature 588:203–4
    [Google Scholar]
  17. 17.
    Cao Y, Shen Y. 2020. Energy-based graph convolutional networks for scoring protein docking models. Proteins 88:1091–99
    [Google Scholar]
  18. 18.
    Chandonia JM, Brenner SE. 2006. The impact of structural genomics: expectations and outcomes. Science 311:347–51
    [Google Scholar]
  19. 19.
    Chen R, Li L, Weng Z. 2003. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87
    [Google Scholar]
  20. 20.
    Chothia C. 1974. Hydrophobic bonding and accessible surface area in proteins. Nature 248:338–39
    [Google Scholar]
  21. 21.
    Chothia C, Janin J. 1975. Principles of protein-protein recognition. Nature 256:705–8
    [Google Scholar]
  22. 22.
    Chothia C, Lesk AM. 1986. The relation between the divergence of sequence and structure in proteins. EMBO J. 5:823–26
    [Google Scholar]
  23. 23.
    Dapkunas J, Timinskas A, Olechnovic K, Margelevicius M, Diciunas R, Venclovas C. 2017. The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures. Bioinformatics 33:935–37
    [Google Scholar]
  24. 24.
    de Vries SJ, van Dijk M, Bonvin AM. 2010. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5:883–97
    [Google Scholar]
  25. 25.
    Degiacomi MT. 2019. Coupling molecular dynamics and deep learning to mine protein conformational space. Structure 27:1034–40.e3
    [Google Scholar]
  26. 26.
    Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. 2020. Performance and its limits in rigid body protein-protein docking. Structure 28:1071–81.e3
    [Google Scholar]
  27. 27.
    Dobbins SE, Lesk VI, Sternberg MJ. 2008. Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. PNAS 105:10390–95
    [Google Scholar]
  28. 28.
    Dominguez C, Boelens R, Bonvin AM. 2003. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125:1731–37
    [Google Scholar]
  29. 29.
    Dunbrack RL Jr., Gerloff DL, Bower M, Chen X, Lichtarge O, Cohen FE. 1997. Meeting review: the Second Meeting on the Critical Assessment of Techniques for Protein Structure Prediction (CASP2), Asilomar, California, December 13–16, 1996. Fold Des. 2:R27–42
    [Google Scholar]
  30. 30.
    Eisenberg D, McLachlan AD. 1986. Solvation energy in protein folding and binding. Nature 319:199–203
    [Google Scholar]
  31. 31.
    Evans R, O'Neill M, Pritzel A, Antropova N, Senior AW et al. 2021. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021.10.04.463034. https://doi.org/10.1101/2021.10.04.463034
  32. 32.
    Fiser A, Sali A. 2003. ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–1
    [Google Scholar]
  33. 33.
    Fleishman SJ, Horovitz A. 2021. Extending the new generation of structure predictors to account for dynamics and allostery. J. Mol. Biol. 433:167007
    [Google Scholar]
  34. 34.
    Fleishman SJ, Whitehead TA, Strauch EM, Corn JE, Qin S et al. 2011. Community-wide assessment of protein-interface modeling suggests improvements to design methodology. J. Mol. Biol. 414:289–302
    [Google Scholar]
  35. 35.
    Gabb HA, Jackson RM, Sternberg MJ. 1997. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272:106–20
    [Google Scholar]
  36. 36.
    Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M et al. 2020. Protein sequence analysis using the MPI Bioinformatics Toolkit. Curr. Protoc. Bioinform. 72:e108
    [Google Scholar]
  37. 37.
    Ghani U, Desta I, Jindal A, Khan O, Jones G et al. 2021. Improved docking of protein models by a combination of Alphafold2 and ClusPro. bioRxiv 2021.09.07.459290. https://doi.org/10.1101/2021.09.07.459290
  38. 38.
    Gilson MK, Sharp KA, Honig BH. 1988. Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comp. Chem. 9:337–35
    [Google Scholar]
  39. 39.
    Gobel U, Sander C, Schneider R, Valencia A. 1994. Correlated mutations and residue contacts in proteins. Proteins 18:309–17
    [Google Scholar]
  40. 40.
    Guest JD, Vreven T, Zhou J, Moal I, Jeliazkov JR et al. 2021. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants. Structure 29:606–21.e5
    [Google Scholar]
  41. 41.
    Haas J, Roth S, Arnold K, Kiefer F, Schmidt T et al. 2013. The Protein Model Portal—a comprehensive resource for protein structure and model information. Database 2013:bat031
    [Google Scholar]
  42. 42.
    Hagler AT, Huler E, Lifson S. 1974. Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 96:5319–27
    [Google Scholar]
  43. 43.
    Hagler AT, Lifson S. 1974. Energy functions for peptides and proteins. II. The amide hydrogen bond and calculation of amide crystal properties. J. Am. Chem. Soc. 96:5327–35
    [Google Scholar]
  44. 44.
    Harmalkar A, Gray JJ. 2021. Advances to tackle backbone flexibility in protein docking. Curr. Opin. Struct. Biol. 67:178–86
    [Google Scholar]
  45. 45.
    Ho BK, Dill KA. 2006. Folding very short peptides using molecular dynamics. PLOS Comput. Biol. 2:e27
    [Google Scholar]
  46. 46.
    Huang SY, Zou X. 2008. An iterative knowledge-based scoring function for protein-protein recognition. Proteins 72:557–79
    [Google Scholar]
  47. 47.
    Huang SY, Zou X. 2010. MDockPP: a hierarchical approach for protein-protein docking and its application to CAPRI rounds 15–19. Proteins 78:3096–103
    [Google Scholar]
  48. 48.
    Huang SY, Zou X. 2011. Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures. Proteins 79:2648–61
    [Google Scholar]
  49. 49.
    Humphreys IR, Pei J, Baek M, Krishnakumar A, Anishchenko I et al. 2021. Computed structures of core eukaryotic protein complexes. Science 374:eabm4805
    [Google Scholar]
  50. 50.
    Isogai Y, Nemethy G, Scheraga HA. 1977. Enkephalin: conformational analysis by means of empirical energy calculations. PNAS 74:414–18
    [Google Scholar]
  51. 51.
    Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ et al. 2003. CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52:2–9
    [Google Scholar]
  52. 52.
    Jernigan RL, Bahar I. 1996. Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 6:195–209
    [Google Scholar]
  53. 53.
    Deleted in proof.
  54. 54.
    Johnson S, Furlong EJ, Deme JC, Nord AL, Caesar JJE et al. 2021. Molecular structure of the intact bacterial flagellar basal body. Nat. Microbiol. 6:712–21
    [Google Scholar]
  55. 55.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Applying and improving AlphaFold at CASP14. Proteins 89:1711–21
    [Google Scholar]
  56. 56.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  57. 57.
    Jumper J, Hassabis D. 2022. Protein structure predictions to atomic accuracy with AlphaFold. Nat. Methods 19:11–12
    [Google Scholar]
  58. 58.
    Kamisetty H, Ovchinnikov S, Baker D. 2013. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. PNAS 110:15674–79
    [Google Scholar]
  59. 59.
    Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. 1992. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. PNAS 89:2195–99
    [Google Scholar]
  60. 60.
    Knyazev B, Taylor GW, Amer M. 2019. Understanding attention and generalization in graph neural networks. NIPS’19: Proceedings of the 33rd International Conference on Neural Information Processing Systems4202–12. New York: ACM
    [Google Scholar]
  61. 61.
    Ko J, Park H, Heo L, Seok C. 2012. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 40:W294–97
    [Google Scholar]
  62. 62.
    Kozakov D, Brenke R, Comeau SR, Vajda S. 2006. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406
    [Google Scholar]
  63. 63.
    Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR et al. 2010. Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins 78:3124–30
    [Google Scholar]
  64. 64.
    Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D et al. 2017. The ClusPro web server for protein-protein docking. Nat. Protoc. 12:255–78
    [Google Scholar]
  65. 65.
    Kryshtafovych A, Monastyrskyy B, Fidelis K. 2016. CASP11 statistics and the prediction center evaluation system. Proteins 84:Suppl. 115–19
    [Google Scholar]
  66. 66.
    Kryshtafovych A, Moult J, Albrecht R, Chang GA, Chao K et al. 2021. Computational models in the service of X-ray and cryo-electron microscopy structure determination. Proteins 89:1633–46
    [Google Scholar]
  67. 67.
    Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. 2021. Critical assessment of methods of protein structure prediction (CASP): Round XIV. Proteins 89:1607–17
    [Google Scholar]
  68. 68.
    Kuhlman B, Bradley P. 2019. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20:681–97
    [Google Scholar]
  69. 69.
    Kulkarni P, Uversky VN. 2018. Intrinsically disordered proteins: the dark horse of the dark proteome. Proteomics 18:e1800061
    [Google Scholar]
  70. 70.
    Kundrotas PJ, Anishchenko I, Dauzhenka T, Kotthoff I, Mnevets D et al. 2018. Dockground: a comprehensive data resource for modeling of protein complexes. Protein Sci. 27:172–81
    [Google Scholar]
  71. 71.
    Kundrotas PJ, Zhu Z, Janin J, Vakser IA. 2012. Templates are available to model nearly all complexes of structurally characterized proteins. PNAS 109:9438–41
    [Google Scholar]
  72. 72.
    Kuroda D, Gray JJ. 2016. Pushing the backbone in protein-protein docking. Structure 24:1821–29
    [Google Scholar]
  73. 73.
    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–44
    [Google Scholar]
  74. 74.
    Lee H, Seok C. 2017. Template-based prediction of protein-peptide interactions by using GalaxyPepDock. Methods Mol. Biol. 1561:37–47
    [Google Scholar]
  75. 75.
    Lensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S et al. 2021. Prediction of protein assemblies, the next frontier: the CASP14-CAPRI experiment. Proteins 89:1800–23
    [Google Scholar]
  76. 76.
    Lensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG et al. 2019. Blind prediction of homo- and hetero-protein complexes: the CASP13-CAPRI experiment. Proteins 87:1200–21
    [Google Scholar]
  77. 77.
    Lensink MF, Mendez R, Wodak SJ. 2007. Docking and scoring protein complexes: CAPRI 3rd edition. Proteins 69:704–18
    [Google Scholar]
  78. 78.
    Lensink MF, Moal IH, Bates PA, Kastritis PL, Melquiond AS et al. 2014. Blind prediction of interfacial water positions in CAPRI. Proteins 82:620–32
    [Google Scholar]
  79. 79.
    Lensink MF, Nadzirin N, Velankar S, Wodak SJ. 2020. Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition. Proteins 88:916–38
    [Google Scholar]
  80. 80.
    Lensink MF, Velankar S, Baek M, Heo L, Seok C, Wodak SJ. 2018. The challenge of modeling protein assemblies: the CASP12-CAPRI experiment. Proteins 86:Suppl. 1257–73
    [Google Scholar]
  81. 81.
    Lensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D et al. 2016. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins 84:Suppl. 1323–48
    [Google Scholar]
  82. 82.
    Lensink MF, Velankar S, Wodak SJ. 2017. Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 85:359–77
    [Google Scholar]
  83. 83.
    Lensink MF, Wodak SJ. 2013. Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–95
    [Google Scholar]
  84. 84.
    Lensink MF, Wodak SJ. 2014. Score_set: a CAPRI benchmark for scoring protein complexes. Proteins 82:3163–69
    [Google Scholar]
  85. 85.
    Levinthal C, Wodak SJ, Kahn P, Dadivanian AK. 1975. Hemoglobin interaction in sickle cell fibers. I. Theoretical approaches to the molecular contacts. PNAS 72:1330–34
    [Google Scholar]
  86. 86.
    Levitt M. 1976. A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104:59–107
    [Google Scholar]
  87. 87.
    Lin Z, Akin H, Rao R, Hie B, Zhu Z et al. 2022. Evolutionary-scale prediction of atomic level protein structure with a language model. bioRxiv 2022.07.20.500902. https://doi.org/10.1101/2022.07.20.500902
  88. 88.
    Liu J, Wu T, Guo Z, Hou J, Cheng J. 2022. Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14. Proteins 90:58–72
    [Google Scholar]
  89. 89.
    McCoy AJ, Sammito MD, Read RJ. 2022. Implications of AlphaFold2 for crystallographic phasing by molecular replacement. Acta Crystallogr. D 78:1–13
    [Google Scholar]
  90. 90.
    Mirdita M, Ovchinnikov S, Steinegger M. 2021. ColabFold: making protein folding accessible to all. Nat. Methods 19:679–82
    [Google Scholar]
  91. 91.
    Moal IH, Chaleil RAG, Bates PA. 2018. Flexible protein-protein docking with SwarmDock. Methods Mol. Biol. 1764:413–28
    [Google Scholar]
  92. 92.
    Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS et al. 2011. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. PNAS 108:E1293–301
    [Google Scholar]
  93. 93.
    Mosalaganti S, Obarska-Kosinska A, Siggel M, Taniguchi R, Turonova B et al. 2022. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 376:eabm9506
    [Google Scholar]
  94. 94.
    Mosca R, Ceol A, Aloy P. 2013. Interactome3D: adding structural details to protein networks. Nat. Methods 10:47–53
    [Google Scholar]
  95. 95.
    Motlagh HN, Wrabl JO, Li J, Hilser VJ. 2014. The ensemble nature of allostery. Nature 508:331–39
    [Google Scholar]
  96. 96.
    Moult J. 2005. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15:285–89
    [Google Scholar]
  97. 97.
    Moult J, Pedersen JT, Judson R, Fidelis K 1995. A large-scale experiment to assess protein structure prediction methods. Proteins 23:ii–v
    [Google Scholar]
  98. 98.
    Nadaradjane AA, Guerois R, Andreani J. 2018. Protein-protein docking using evolutionary information. Methods Mol. Biol. 1764:429–47
    [Google Scholar]
  99. 99.
    Novotny J, Bruccoleri R, Karplus M. 1984. An analysis of incorrectly folded protein models: implications for structure predictions. J. Mol. Biol. 177:787–818
    [Google Scholar]
  100. 100.
    Olechnovic K, Venclovas C. 2017. VoroMQA: assessment of protein structure quality using interatomic contact areas. Proteins 85:1131–45
    [Google Scholar]
  101. 101.
    Onufriev A, Case DA, Bashford D. 2002. Effective Born radii in the generalized Born approximation: the importance of being perfect. J. Comput. Chem. 23:1297–304
    [Google Scholar]
  102. 102.
    Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B et al. 2016. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. PNAS 113:E4286–93
    [Google Scholar]
  103. 103.
    Pak MA, Markhieva KA, Novikova MS, Petrov DS, Vorobyev IS et al. 2021. Using AlphaFold to predict the impact of single mutations on protein stability and function. bioRxiv 2021.09.19.460937. https://doi.org/10.1101/2021.09.19.460937
  104. 104.
    Pallara C, Jimenez-Garcia B, Romero M, Moal IH, Fernandez-Recio J. 2017. pyDock scoring for the new modeling challenges in docking: protein-peptide, homo-multimers, and domain-domain interactions. Proteins 85:487–96
    [Google Scholar]
  105. 105.
    Pearce R, Zhang Y. 2021. Deep learning techniques have significantly impacted protein structure prediction and protein design. Curr. Opin. Struct. Biol. 68:194–207
    [Google Scholar]
  106. 106.
    Pearce R, Zhang Y. 2021. Toward the solution of the protein structure prediction problem. J. Biol. Chem. 297:100870
    [Google Scholar]
  107. 107.
    Pei J, Zhang J, Cong Q. 2021. Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics 38:4301–11
    [Google Scholar]
  108. 108.
    Perrakis A, Sixma TK. 2021. AI revolutions in biology: the joys and perils of AlphaFold. EMBO Rep. 22:e54046
    [Google Scholar]
  109. 109.
    Porter KA, Desta I, Kozakov D, Vajda S. 2019. What method to use for protein-protein docking?. Curr. Opin. Struct. Biol. 55:1–7
    [Google Scholar]
  110. 110.
    Porter KA, Padhorny D, Desta I, Ignatov M, Beglov D et al. 2019. Template-based modeling by ClusPro in CASP13 and the potential for using co-evolutionary information in docking. Proteins 87:1241–48
    [Google Scholar]
  111. 111.
    Quignot C, Rey J, Yu J, Tuffery P, Guerois R, Andreani J. 2018. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs. Nucleic Acids Res. 46:W408–16
    [Google Scholar]
  112. 112.
    Ramaswamy VK, Musson SC, Willcocks CG, Degiacomi MT. 2021. Deep learning protein conformational space with convolutions and latent interpolations. Phys. Rev. X 11:011052
    [Google Scholar]
  113. 113.
    Renaud N, Geng C, Georgievska S, Ambrosetti F, Ridder L et al. 2021. DeepRank: a deep learning framework for data mining 3D protein-protein interfaces. Nat. Commun. 12:7068
    [Google Scholar]
  114. 114.
    Ritchie DW, Kemp GJ. 2000. Protein docking using spherical polar Fourier correlations. Proteins 39:178–94
    [Google Scholar]
  115. 115.
    Robin X, Haas J, Gumienny R, Smolinski A, Tauriello G, Schwede T. 2021. Continuous Automated Model EvaluatiOn (CAMEO): perspectives on the future of fully automated evaluation of structure prediction methods. Proteins 89:1977–86
    [Google Scholar]
  116. 116.
    Roney JP, Ovchinnikov S. 2022. State-of-the-art estimation of protein model accuracy using AlphaFold. bioRxiv 2022.03.11.484043. https://doi.org/10.1101/2022.03.11.484043
  117. 117.
    Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Netw. 61:85–117
    [Google Scholar]
  118. 118.
    Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L et al. 2019. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins 87:1141–48
    [Google Scholar]
  119. 119.
    Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L et al. 2020. Improved protein structure prediction using potentials from deep learning. Nature 577:706–10
    [Google Scholar]
  120. 120.
    Shen MY, Sali A. 2006. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15:2507–24
    [Google Scholar]
  121. 121.
    Shkumatov AV, Aryanpour N, Oger CA, Goossens G, Hallet BF, Efremov RG. 2022. Metamorphism of catalytic domain controls transposition in Tn3 family transposases. bioRxiv 2022.02.23.481423. https://doi.org/10.1101/2022.02.23.481423
  122. 122.
    Silver D, Huang A, Maddison CJ, Guez A, Sifre L et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529:484–89
    [Google Scholar]
  123. 123.
    Simons KT, Kooperberg C, Huang E, Baker D. 1997. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268:209–25
    [Google Scholar]
  124. 124.
    Singh A, Dauzhenka T, Kundrotas PJ, Sternberg MJE, Vakser IA. 2020. Application of docking methodologies to modeled proteins. Proteins 88:1180–88
    [Google Scholar]
  125. 125.
    Smith GR, Sternberg MJ, Bates PA. 2005. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J. Mol. Biol. 347:1077–101
    [Google Scholar]
  126. 126.
    Suh D, Lee JW, Choi S, Lee Y. 2021. Recent applications of deep learning methods on evolution- and contact-based protein structure prediction. Int. J. Mol. Sci. 22:6032
    [Google Scholar]
  127. 127.
    Tanaka S, Scheraga HA. 1976. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9:945–50
    [Google Scholar]
  128. 128.
    Terwilliger TC, Liebschner D, Croll TI, Williams CJ, McCoy AJ et al. 2022. AlphaFold predictions: great hypotheses but no match for experiment. bioRxiv 2022.11.21.517405. https://doi.org/10.1101/2022.11.21.517405
  129. 129.
    Torrisi M, Pollastri G, Le Q 2020. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 18:1301–10
    [Google Scholar]
  130. 130.
    Tuting C, Kyrilis FL, Muller J, Sorokina M, Skalidis I et al. 2021. Cryo-EM snapshots of a native lysate provide structural insights into a metabolon-embedded transacetylase reaction. Nat. Commun. 12:6933
    [Google Scholar]
  131. 131.
    UniProt Consort. 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49:D480–89
    [Google Scholar]
  132. 132.
    Vakser IA, Aflalo C. 1994. Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins 20:320–29
    [Google Scholar]
  133. 133.
    Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M et al. 2014. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114:6733–78
    [Google Scholar]
  134. 134.
    Vangone A, Bonvin AM 2015. Contacts-based prediction of binding affinity in protein-protein complexes. eLife 4:e07454
    [Google Scholar]
  135. 135.
    Varadi M, Anyango S, Deshpande M, Nair S, Natassia C et al. 2022. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50:D439–44
    [Google Scholar]
  136. 136.
    Velankar S, Burley SK, Kurisu G, Hoch JC, Markley JL. 2021. The Protein Data Bank Archive. Methods Mol. Biol. 2305:3–21
    [Google Scholar]
  137. 137.
    Vreven T, Schweppe DK, Chavez JD, Weisbrod CR, Shibata S et al. 2018. Integrating cross-linking experiments with ab initio protein-protein docking. J. Mol. Biol. 430:1814–28
    [Google Scholar]
  138. 137a.
    Wallner B 2022. AFsample: improving multimer prediction with AlphaFold using aggressive sampling. bioRxiv 2022.12.20.521205. https://doi.org/10.1101/2022.12.20.521205
    [Crossref] [Google Scholar]
  139. 138.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. 2004. Development and testing of a general amber force field. J. Comput. Chem. 25:1157–74
    [Google Scholar]
  140. 139.
    Wang S, Sun S, Li Z, Zhang R, Xu J. 2017. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLOS Comput. Biol. 13:e1005324
    [Google Scholar]
  141. 140.
    Wang X, Flannery ST, Kihara D. 2021. Protein docking model evaluation by graph neural networks. Front. Mol. Biosci. 8:647915
    [Google Scholar]
  142. 141.
    Wodak SJ, Janin J. 2002. Structural basis of macromolecular recognition. Adv. Protein Chem. 61:9–73
    [Google Scholar]
  143. 142.
    Wodak SJ, Mendez R. 2004. Prediction of protein-protein interactions: the CAPRI experiment, its evaluation and implications. Curr. Opin. Struct. Biol. 14:242–49
    [Google Scholar]
  144. 143.
    Wodak SJ, Paci E, Dokholyan NV, Berezovsky IN, Horovitz A et al. 2019. Allostery in its many disguises: from theory to applications. Structure 27:566–78
    [Google Scholar]
  145. 144.
    Wu R, Ding F, Wang R, Shen R, Zhang X et al. 2022. High-resolution de novo structure prediction from primary sequence. bioRxiv 2022.07.21.500909. https://doi.org/10.1101/2022.07.21.500999
  146. 145.
    Xia B, Vajda S, Kozakov D. 2016. Accounting for pairwise distance restraints in FFT-based protein-protein docking. Bioinformatics 32:3342–44
    [Google Scholar]
  147. 146.
    Yan Y, Wen Z, Wang X, Huang SY. 2017. Addressing recent docking challenges: a hybrid strategy to integrate template-based and free protein-protein docking. Proteins 85:497–512
    [Google Scholar]
  148. 147.
    Yan Y, Zhang D, Zhou P, Li B, Huang SY. 2017. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 45:W365–73
    [Google Scholar]
  149. 148.
    Zhang Z, Schindler CE, Lange OF, Zacharias M. 2015. Application of enhanced sampling Monte Carlo methods for high-resolution protein-protein docking in Rosetta. PLOS ONE 10:e0125941
    [Google Scholar]
  150. 149.
    Zheng W, Li Y, Zhang C, Zhou X, Pearce R et al. 2021. Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Proteins 89:1734–51
    [Google Scholar]
  151. 150.
    Zhong ED, Bepler T, Berger B, Davis JH. 2021. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18:176–85
    [Google Scholar]
  152. 151.
    Zhou H, Skolnick J. 2011. GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys. J. 101:2043–52
    [Google Scholar]
  153. 152.
    Zhou H, Zhou Y. 2002. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11:2714–26
    [Google Scholar]
  154. 153.
    Zhou R. 2003. Free energy landscape of protein folding in water: explicit vs. implicit solvent. Proteins 53:148–61
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-102622-084607
Loading
/content/journals/10.1146/annurev-biophys-102622-084607
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error