1932

Abstract

Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-042721-105528
2021-10-06
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-042721-105528.html?itemId=/content/journals/10.1146/annurev-cellbio-042721-105528&mimeType=html&fmt=ahah

Literature Cited

  1. Adelstein RS, Conti MA. 1975. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature 256:597–98
    [Google Scholar]
  2. Aguilar-Cuenca R, Llorente-González C, Chapman JR, Talayero VC, Garrido-Casado M et al. 2020. Tyrosine phosphorylation of the myosin regulatory light chain controls non-muscle myosin II assembly and function in migrating cells. Curr. Biol. 30:2446–58.e6
    [Google Scholar]
  3. Alcala DB, Haldeman BD, Brizendine RK, Krenc AK, Baker JE et al. 2016. Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates. Cell Biochem. Funct. 34:469–74
    [Google Scholar]
  4. Amano M, Chihara K, Nakamura N, Kaneko T, Matsuura Y, Kaibuchi K. 1999. The COOH terminus of Rho-kinase negatively regulates Rho-kinase activity. J. Biol. Chem. 274:32418–24
    [Google Scholar]
  5. Amano M, Ito M, Kimura K, Fukata Y, Chihara K et al. 1996. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271:20246–49
    [Google Scholar]
  6. Araki S, Ito M, Kureishi Y, Feng J, Machida H et al. 2001. Arachidonic acid-induced Ca2+ sensitization of smooth muscle contraction through activation of Rho-kinase. Pflugers Arch 441:596–603
    [Google Scholar]
  7. Asano S, Hamao K, Hosoya H. 2009. Direct evidence for roles of phosphorylated regulatory light chain of myosin II in furrow ingression during cytokinesis in HeLa cells. Genes Cells 14:555–68
    [Google Scholar]
  8. Asensio-Juárez G, Llorente-González C, Vicente-Manzanares M 2020. Linking the landscape of MYH9-related diseases to the molecular mechanisms that control non-muscle myosin II-A function in cells. Cells 9:1458 https://doi.org/10.3390/cells9061458
    [Crossref] [Google Scholar]
  9. Asokan SB, Johnson HE, Rahman A, King SJ, Rotty JD et al. 2014. Mesenchymal chemotaxis requires selective inactivation of myosin II at the leading edge via a noncanonical PLCγ/PKCα pathway. Dev. Cell 31:747–60
    [Google Scholar]
  10. Bao J, Jana SS, Adelstein RS. 2005. Vertebrate nonmuscle myosin II isoforms rescue small interfering RNA-induced defects in COS-7 cell cytokinesis. J. Biol. Chem. 280:19594–99
    [Google Scholar]
  11. Barbier L, Saez PJ, Attia R, Lennon-Dumenil AM, Lavi I et al. 2019. Myosin II activity is selectively needed for migration in highly confined microenvironments in mature dendritic cells. Front. Immunol 10:747
    [Google Scholar]
  12. Bassi ZI, Audusseau M, Riparbelli MG, Callaini G, D'Avino PP 2013. Citron kinase controls a molecular network required for midbody formation in cytokinesis. PNAS 110:9782–87
    [Google Scholar]
  13. Bassi ZI, Verbrugghe KJ, Capalbo L, Gregory S, Montembault E et al. 2011. Sticky/Citron kinase maintains proper RhoA localization at the cleavage site during cytokinesis. J. Cell Biol. 195:595–603
    [Google Scholar]
  14. Beach JR, Hussey GS, Miller TE, Chaudhury A, Patel P et al. 2011. Myosin II isoform switching mediates invasiveness after TGF-β–induced epithelial–mesenchymal transition. PNAS 108:17991–96
    [Google Scholar]
  15. Beningo KA, Hamao K, Dembo M, Wang YL, Hosoya H. 2006. Traction forces of fibroblasts are regulated by the Rho-dependent kinase but not by the myosin light chain kinase. Arch. Biochem. Biophys. 456:224–31
    [Google Scholar]
  16. Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC et al. 2015. Force transmission during adhesion-independent migration. Nat. Cell Biol. 17:524–29
    [Google Scholar]
  17. Billington N, Beach JR, Heissler SM, Remmert K, Guzik-Lendrum S et al. 2015. Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments. Curr. Biol. 25:942–48
    [Google Scholar]
  18. Booth AJR, Yue Z, Eykelenboom JK, Stiff T, Luxton GWG et al. 2019. Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis. eLife 8:e46902
    [Google Scholar]
  19. Charras G, Paluch E. 2008. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9:730–36
    [Google Scholar]
  20. Chen TL, Kowalczyk PA, Ho G, Chisholm RL. 1995. Targeted disruption of the Dictyostelium myosin essential light chain gene produces cells defective in cytokinesis and morphogenesis. J. Cell Sci. 108:Part 103207–18
    [Google Scholar]
  21. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. 2008. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10:1039–50
    [Google Scholar]
  22. Choi SH, Czifra G, Kedei N, Lewin NE, Lazar J et al. 2008. Characterization of the interaction of phorbol esters with the C1 domain of MRCK (myotonic dystrophy kinase-related Cdc42 binding kinase) α/β. J. Biol. Chem. 283:10543–49
    [Google Scholar]
  23. Clark K, Middelbeek J, Dorovkov MV, Figdor CG, Ryazanov AG et al. 2008. The α-kinases TRPM6 and TRPM7, but not eEF-2 kinase, phosphorylate the assembly domain of myosin IIA, IIB and IIC. FEBS Lett 582:2993–97
    [Google Scholar]
  24. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. 2001. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 3:339–45
    [Google Scholar]
  25. Conti MA, Adelstein RS. 2008. Nonmuscle myosin II moves in new directions. J. Cell Sci. 121:11–18
    [Google Scholar]
  26. Conti MA, Kawamoto S, Adelstein RS 2007. Non-muscle myosin II. Myosins: A Superfamily of Molecular Motors LM Coluccio 223–64 Watertown, MA: Springer
    [Google Scholar]
  27. Craig R, Smith R, Kendrick-Jones J. 1983. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302:436–39
    [Google Scholar]
  28. Cremo CR, Hartshorne DJ 2007. Smooth-muscle myosin II. Myosins: A Superfamily of Molecular Motors LM Coluccio 171–222 Watertown, MA: Springer
    [Google Scholar]
  29. Croft DR, Coleman ML, Li S, Robertson D, Sullivan T et al. 2005. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J. Cell Biol. 168:245–55
    [Google Scholar]
  30. D'Avino PP. 2017. Citron kinase – renaissance of a neglected mitotic kinase. J. Cell Sci. 130:1701–8
    [Google Scholar]
  31. Dao VT, Dupuy AG, Gavet O, Caron E, de Gunzburg J 2009. Dynamic changes in Rap1 activity are required for cell retraction and spreading during mitosis. J. Cell Sci. 122:2996–3004
    [Google Scholar]
  32. Dasbiswas K, Hu S, Schnorrer F, Safran SA, Bershadsky AD. 2018. Ordering of myosin II filaments driven by mechanical forces: experiments and theory. Philos. Trans. R. Soc. B Biol. Sci 373:20170114
    [Google Scholar]
  33. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M et al. 2016. Nuclear envelope rupture and repair during cancer cell migration. Science 352:35358
    [Google Scholar]
  34. Deng JT, Bhaidani S, Sutherland C, MacDonald JA, Walsh MP. 2019. Rho-associated kinase and zipper-interacting protein kinase, but not myosin light chain kinase, are involved in the regulation of myosin phosphorylation in serum-stimulated human arterial smooth muscle cells. PLOS ONE 14:e0226406
    [Google Scholar]
  35. Di Cunto F, Calautti E, Hsiao J, Ong L, Topley G et al. 1998. Citron Rho-interacting kinase, a novel tissue-specific Ser/Thr kinase encompassing the Rho-Rac-binding protein Citron. J. Biol. Chem. 273:29706–11
    [Google Scholar]
  36. Dix CL, Matthews HK, Uroz M, McLaren S, Wolf L et al. 2018. The role of mitotic cell-substrate adhesion re-modeling in animal cell division. Dev. Cell 45:132–45.e3
    [Google Scholar]
  37. Driska SP, Aksoy MO, Murphy RA. 1981. Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am. J. Physiol 240:C222–33
    [Google Scholar]
  38. Duda M, Kirkland NJ, Khalilgharibi N, Tozluoglu M, Yuen AC et al. 2019. Polarization of myosin II refines tissue material properties to buffer mechanical stress. Dev. Cell 48:245–60. e7
    [Google Scholar]
  39. Dulyaninova NG, Malashkevich VN, Almo SC, Bresnick AR. 2005. Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry 44:6867–76
    [Google Scholar]
  40. Eda M, Yonemura S, Kato T, Watanabe N, Ishizaki T et al. 2001. Rho-dependent transfer of Citron-kinase to the cleavage furrow of dividing cells. J. Cell Sci. 114:3273–84
    [Google Scholar]
  41. Endo A, Surks HK, Mochizuki S, Mochizuki N, Mendelsohn ME. 2004. Identification and characterization of zipper-interacting protein kinase as the unique vascular smooth muscle myosin phosphatase-associated kinase. J. Biol. Chem. 279:42055–61
    [Google Scholar]
  42. Even-Faitelson L, Ravid S. 2006. PAK1 and aPKCζ regulate myosin II-B phosphorylation: a novel signaling pathway regulating filament assembly. Mol. Biol. Cell 17:2869–81
    [Google Scholar]
  43. Friedl P, Wolf K. 2010. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188:11–19
    [Google Scholar]
  44. Friedland JC, Lee MH, Boettiger D. 2009. Mechanically activated integrin switch controls α5β1 function. Science 323:642–44
    [Google Scholar]
  45. Fu Y, Huang J, Wang KS, Zhang X, Han ZG. 2011. RNA interference targeting CITRON can significantly inhibit the proliferation of hepatocellular carcinoma cells. Mol. Biol. Rep 38:693–702
    [Google Scholar]
  46. Gardel ML, Sabass B, Ji L, Danuser G, Schwarz US, Waterman CM 2008. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183:999–1005
    [Google Scholar]
  47. Giannone G, Dubin-Thaler BJ, Dobereiner HG, Kieffer N, Bresnick AR, Sheetz MP. 2004. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116:431–43
    [Google Scholar]
  48. Giannone G, Dubin-Thaler BJ, Rossier O, Cai Y, Chaga O et al. 2007. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–75
    [Google Scholar]
  49. Guzik-Lendrum S, Heissler SM, Billington N, Takagi Y, Yang Y et al. 2013. Mammalian myosin-18A, a highly divergent myosin. J. Biol. Chem. 288:9532–48
    [Google Scholar]
  50. Hamao K, Ono T, Matsushita M, Hosoya H. 2020. ZIP kinase phosphorylated and activated by Rho kinase/ROCK contributes to cytokinesis in mammalian cultured cells. Exp. Cell Res. 386:111707
    [Google Scholar]
  51. Haystead TA. 2005. ZIP kinase, a key regulator of myosin protein phosphatase 1. Cell. Signal. 17:1313–22
    [Google Scholar]
  52. Heissler SM, Chinthalapudi K, Sellers JR. 2015. Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster. FASEB J 29:1456–66
    [Google Scholar]
  53. Heissler SM, Manstein DJ. 2013. Nonmuscle myosin-2: mix and match. Cell. Mol. Life Sci. 70:1–21
    [Google Scholar]
  54. Holmes KC 2007. Myosin structure. Myosins: A Superfamily of Molecular Motors LM Coluccio 35–54 Watertown, MA: Springer
    [Google Scholar]
  55. Hong F, Brizendine RK, Carter MS, Alcala DB, Brown AE et al. 2015. Diffusion of myosin light chain kinase on actin: a mechanism to enhance myosin phosphorylation rates in smooth muscle. J. Gen. Physiol 146:267–80
    [Google Scholar]
  56. Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR. 2011. Biochemistry of smooth muscle myosin light chain kinase. Arch. Biochem. Biophys. 510:135–46
    [Google Scholar]
  57. Hosoba K, Komatsu S, Ikebe M, Kotani M, Wenqin X et al. 2015. Phosphorylation of myosin II regulatory light chain by ZIP kinase is responsible for cleavage furrow ingression during cell division in mammalian cultured cells. Biochem. Biophys. Res. Commun. 459:686–91
    [Google Scholar]
  58. Huang L, Dai F, Tang L, Bao X, Liu Z et al. 2018. Distinct roles for ROCK1 and ROCK2 in the regulation of Oxldl-mediated endothelial dysfunction. Cell. Physiol. Biochem 49:565–77
    [Google Scholar]
  59. Ikebe M, Hartshorne DJ, Elzinga M. 1986. Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J. Biol. Chem. 261:36–39
    [Google Scholar]
  60. Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N et al. 1997. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404:118–24
    [Google Scholar]
  61. Jacobelli J, Chmura SA, Buxton DB, Davis MM, Krummel MF. 2004. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat. Immunol. 5:531–38
    [Google Scholar]
  62. Juanes-Garcia A, Chapman JR, Aguilar-Cuenca R, Delgado-Arevalo C, Hodges J et al. 2015. A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front-back polarity. J. Cell Biol. 209:23–32
    [Google Scholar]
  63. Juanes-Garcia A, Llorente-Gonzalez C, Vicente-Manzanares M 2017. Non muscle myosin II. Encyclopedia of Signaling Molecules S Choi 3541–53 New York: Springer
    [Google Scholar]
  64. Julian L, Olson MF. 2014. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 5:e29846
    [Google Scholar]
  65. Jung HS, Komatsu S, Ikebe M, Craig R 2008. Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol. Biol. Cell 19:3234–42
    [Google Scholar]
  66. Kawai T, Akira S, Reed JC. 2003. ZIP kinase triggers apoptosis from nuclear PML oncogenic domains. Mol. Cell. Biol. 23:6174–86
    [Google Scholar]
  67. Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T et al. 1999. Phosphorylation of myosin-binding subunit (Mbs) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 147:1023–38
    [Google Scholar]
  68. Kazakova OA, Khapchaev AY, Shirinsky VP. 2020. MLCK and ROCK mutualism in endothelial barrier dysfunction. Biochimie 168:83–91
    [Google Scholar]
  69. Kim KY, Kovacs M, Kawamoto S, Sellers JR, Adelstein RS. 2005. Disease-associated mutations and alternative splicing alter the enzymatic and motile activity of nonmuscle myosins II-B and II-C. J. Biol. Chem. 280:22769–75
    [Google Scholar]
  70. Kimura K, Ito M, Amano M, Chihara K, Fukata Y et al. 1996. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–48
    [Google Scholar]
  71. Knipe RS, Probst CK, Lagares D, Franklin A, Spinney JJ et al. 2018. The Rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol 58:471–81
    [Google Scholar]
  72. Kohama K, Ye LH, Hayakawa K, Okagaki T. 1996. Myosin light chain kinase: an actin-binding protein that regulates an ATP-dependent interaction with myosin. Trends Pharmacol. Sci. 17:284–87
    [Google Scholar]
  73. Komatsu S, Ikebe M. 2004. ZIP kinase is responsible for the phosphorylation of myosin II and necessary for cell motility in mammalian fibroblasts. J. Cell Biol. 165:243–54
    [Google Scholar]
  74. Komatsu S, Ikebe M. 2007. The phosphorylation of myosin II at the Ser1 and Ser2 is critical for normal platelet-derived growth factor induced reorganization of myosin filaments. Mol. Biol. Cell 18:5081–90
    [Google Scholar]
  75. Kosako H, Goto H, Yanagida M, Matsuzawa K, Fujita M et al. 1999. Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow-specific phosphorylation of intermediate filaments. Oncogene 18:2783–88
    [Google Scholar]
  76. Kosako H, Yoshida T, Matsumura F, Ishizaki T, Narumiya S, Inagaki M. 2000. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19:6059–64
    [Google Scholar]
  77. Krenn V, Musacchio A. 2015. The aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front. Oncol 5:225
    [Google Scholar]
  78. Kubow KE, Conrad SK, Horwitz AR. 2013. Matrix microarchitecture and myosin II determine adhesion in 3D matrices. Curr. Biol. 23:1607–19
    [Google Scholar]
  79. Kühne W. 1864. Untersuchungen über das Protoplasma und die Contractilität [Investigations into the protoplasm and contractility]. W Engelmann Leipzig, Ger: Norderstedt Hansebooks
  80. Lai SL, Chang CN, Wang PJ, Lee SJ. 2005. Rho mediates cytokinesis and epiboly via ROCK in zebrafish. Mol. Reprod. Dev 71:186–96
    [Google Scholar]
  81. Lam MSY, Lisica A, Ramkumar N, Hunter G, Mao Y et al. 2020. Isotropic myosin-generated tissue tension is required for the dynamic orientation of the mitotic spindle. Mol. Biol. Cell 31:1370–79
    [Google Scholar]
  82. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55
    [Google Scholar]
  83. Lazar V, Garcia JG. 1999. A single human myosin light chain kinase gene (MLCK; MYLK) transcribes multiple nonmuscle isoforms. Genomics 57:256–67
    [Google Scholar]
  84. Lee IC, Leung T, Tan I. 2014. Adaptor protein LRAP25 mediates myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) regulation of LIMK1 protein in lamellipodial F-actin dynamics. J. Biol. Chem. 289:26989–7003
    [Google Scholar]
  85. Lee JH, Koh H, Kim M, Kim Y, Lee SY et al. 2007. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447:1017–20
    [Google Scholar]
  86. Leung T, Chen XQ, Manser E, Lim L. 1996. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16:5313–27
    [Google Scholar]
  87. Leung T, Chen XQ, Tan I, Manser E, Lim L. 1998. Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol. Cell. Biol. 18:130–40
    [Google Scholar]
  88. Li ZH, Spektor A, Varlamova O, Bresnick AR. 2003. Mts1 regulates the assembly of nonmuscle myosin-IIA. Biochemistry 42:14258–66
    [Google Scholar]
  89. Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A et al. 2015. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160:659–72
    [Google Scholar]
  90. Lobert VH, Stenmark H. 2012. The ESCRT machinery mediates polarization of fibroblasts through regulation of myosin light chain. J. Cell Sci. 125:29–36
    [Google Scholar]
  91. Lomakin AJ, Cattin CJ, Cuvelier D, Alraies Z, Molina M et al. 2020. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 370:eaba2894
    [Google Scholar]
  92. Lowery DM, Clauser KR, Hjerrild M, Lim D, Alexander J et al. 2007. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26:2262–73
    [Google Scholar]
  93. Lu W, Wen J, Chen Z 2020. Distinct roles of ROCK1 and ROCK2 on the cerebral ischemia injury and subsequently neurodegenerative changes. Pharmacology 105:3–8
    [Google Scholar]
  94. Ludowyke RI, Elgundi Z, Kranenburg T, Stehn JR, Schmitz-Peiffer C et al. 2006. Phosphorylation of nonmuscle myosin heavy chain IIA on Ser1917 is mediated by protein kinase CβII and coincides with the onset of stimulated degranulation of RBL-2H3 mast cells. J. Immunol. 177:1492–99
    [Google Scholar]
  95. Ma X, Jana SS, Conti MA, Kawamoto S, Claycomb WC, Adelstein RS. 2010. Ablation of nonmuscle myosin II-B and II-C reveals a role for nonmuscle myosin II in cardiac myocyte karyokinesis. Mol. Biol. Cell 21:3952–62
    [Google Scholar]
  96. Madaule P, Eda M, Watanabe N, Fujisawa K, Matsuoka T et al. 1998. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394:491–94
    [Google Scholar]
  97. Madaule P, Furuyashiki T, Reid T, Ishizaki T, Watanabe G et al. 1995. A novel partner for the GTP-bound forms of rho and rac. FEBS Lett 377:243–48
    [Google Scholar]
  98. Matsumura F, Yamakita Y, Yamashiro S. 2011. Myosin light chain kinases and phosphatase in mitosis and cytokinesis. Arch. Biochem. Biophys. 510:76–82
    [Google Scholar]
  99. Maupin P, Phillips CL, Adelstein RS, Pollard TD. 1994. Differential localization of myosin-II isozymes in human cultured cells and blood cells. J. Cell Sci. 107:Part 113077–90
    [Google Scholar]
  100. McKenzie C, Bassi ZI, Debski J, Gottardo M, Callaini G et al. 2016. Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis. Open Biol 6:160019
    [Google Scholar]
  101. Meng D, Yu Q, Feng L, Luo M, Shao S et al. 2019. Citron kinase (CIT-K) promotes aggressiveness and tumorigenesis of breast cancer cells in vitro and in vivo: preliminary study of the underlying mechanism. Clin. Transl. Oncol 21:910–23
    [Google Scholar]
  102. Meshel AS, Wei Q, Adestein RS, Sheetz MP. 2005. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat. Cell Biol. 7:157–64
    [Google Scholar]
  103. Miihkinen M, Grönloh MLB, Vihinen H, Jokitalo E, Goult BT et al. 2020. Myosin-X and talin modulate integrin activity at filopodia tips. bioRxiv 078733. https://doi.org/10.1101/2020.05.05.078733
    [Crossref]
  104. Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Lakins JN et al. 2016. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18:1336–45
    [Google Scholar]
  105. Murányi A, Zhang R, Liu F, Hirano K, Ito M et al. 2001. Myotonic dystrophy protein kinase phosphorylates the myosin phosphatase targeting subunit and inhibits myosin phosphatase activity. FEBS Lett 493:80–84
    [Google Scholar]
  106. Narumiya S, Yasuda S. 2006. Rho GTPases in animal cell mitosis. Curr. Opin. Cell Biol. 18:199–205
    [Google Scholar]
  107. Naumanen P, Lappalainen P, Hotulainen P. 2008. Mechanisms of actin stress fibre assembly. J. Microsc. 231:446–54
    [Google Scholar]
  108. Nehru V, Almeida FN, Aspenström P. 2013. Interaction of RhoD and ZIP kinase modulates actin filament assembly and focal adhesion dynamics. Biochem. Biophys. Res. Commun. 433:163–69
    [Google Scholar]
  109. Newell-Litwa KA, Badoual M, Asmussen H, Patel H, Whitmore L, Horwitz AR. 2015. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity. J. Cell Biol. 210:225–42
    [Google Scholar]
  110. Nishikawa M, Sellers JR, Adelstein RS, Hidaka H. 1984. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J. Biol. Chem. 259:8808–14
    [Google Scholar]
  111. Noma K, Rikitake Y, Oyama N, Yan G, Alcaide P et al. 2008. ROCK1 mediates leukocyte recruitment and neointima formation following vascular injury. J. Clin. Invest. 118:1632–44
    [Google Scholar]
  112. Pallavicini G, Sgro F, Garello F, Falcone M, Bitonto V et al. 2018. Inactivation of Citron kinase inhibits medulloblastoma progression by inducing apoptosis and cell senescence. Cancer Res 78:4599–612
    [Google Scholar]
  113. Park I, Han C, Jin S, Lee B, Choi H et al. 2011. Myosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity. Biochem. J. 434:171–80
    [Google Scholar]
  114. Petrie RJ, Harlin HM, Korsak LI, Yamada KM. 2016. Activating the nuclear piston mechanism of 3D migration in tumor cells. J. Cell Biol. 216:93–100
    [Google Scholar]
  115. Petrie RJ, Koo H, Yamada KM 2014. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345:1062–65
    [Google Scholar]
  116. Piekny A, Werner M, Glotzer M. 2005. Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15:651–58
    [Google Scholar]
  117. Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G. 2004. Two distinct actin networks drive the protrusion of migrating cells. Science 305:1782–86
    [Google Scholar]
  118. Raab M, Gentili M, de Belly H, Thiam H-R, Vargas P et al. 2016. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:359–62
    [Google Scholar]
  119. Raab M, Swift J, Dingal PC, Shah P, Shin JW, Discher DE. 2012. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol. 199:669–83
    [Google Scholar]
  120. Ramanathan SP, Helenius J, Stewart MP, Cattin CJ, Hyman AA, Muller DJ. 2015. Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement. Nat. Cell Biol. 17:148–59
    [Google Scholar]
  121. Reggiani C, Bottinelli R 2007. Myosin Ii: sarcomeric myosins, the motors of contraction in cardiac and skeletal muscles. Myosins: A Superfamily of Molecular Motors, Proteins and Cell Regulation, Vol. 7 LM Coluccio 125–69 Dordrecht, Neth: Springer
    [Google Scholar]
  122. Ricketson D, Johnston CA, Prehoda KE 2010. Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments. PNAS 107:20964–69
    [Google Scholar]
  123. Riento K, Ridley AJ. 2003. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4:446–56
    [Google Scholar]
  124. Rosenblatt J, Cramer LP, Baum B, McGee KM. 2004. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117:361–72
    [Google Scholar]
  125. Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H et al. 2015. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160:673–85
    [Google Scholar]
  126. Sandquist JC, Kita AM, Bement WM. 2011. And the dead shall rise: actin and myosin return to the spindle. Dev. Cell 21:410–19
    [Google Scholar]
  127. Sato N, Kawai T, Sugiyama K, Muromoto R, Imoto S et al. 2005. Physical and functional interactions between STAT3 and ZIP kinase. Int. Immunol 17:1543–52
    [Google Scholar]
  128. Scarf CA, Carrington G, Casas-Mao D, Chalovich JM, Knight PJ et al. 2020. Structure of the shutdown state of myosin-2. Nature 588:515–20
    [Google Scholar]
  129. Schmidt S, Weigelin B, Riet J, Boekhorst V, Lindert M et al. 2020. Glycocalyx-mediated cell adhesion and migration. bioRxiv 149096. https://doi.org/10.1101/2020.06.12.149096
    [Crossref]
  130. Schurpf T, Springer TA. 2011. Regulation of integrin affinity on cell surfaces. EMBO J 30:4712–27
    [Google Scholar]
  131. Sebbagh M, Hamelin J, Bertoglio J, Solary E, Breard J. 2005. Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J. Exp. Med. 201:465–71
    [Google Scholar]
  132. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J. 2001. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell Biol. 3:346–52
    [Google Scholar]
  133. Sellers JR, Heissler SM. 2019. Nonmuscle myosin-2 isoforms. Curr. Biol. 29:R275–78
    [Google Scholar]
  134. Shani G, Marash L, Gozuacik D, Bialik S, Teitelbaum L et al. 2004. Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol. Cell. Biol. 24:8611–26
    [Google Scholar]
  135. Shimizu T, Ihara K, Maesaki R, Amano M, Kaibuchi K, Hakoshima T. 2003. Parallel coiled-coil association of the RhoA-binding domain in Rho-kinase. J. Biol. Chem. 278:46046–51
    [Google Scholar]
  136. Shin JW, Buxboim A, Spinler KR, Swift J, Christian DA et al. 2014. Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell 14:81–93
    [Google Scholar]
  137. Shou J, Yu C, Zhang D, Zhang Q. 2020. Overexpression of Citron Rho-interacting serine/threonine kinase associated with poor outcome in bladder cancer. J. Cancer 11:4173–80
    [Google Scholar]
  138. Shutova MS, Asokan SB, Talwar S, Assoian RK, Bear JE, Svitkina TM. 2017. Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. J. Cell Biol. 216:2877–89
    [Google Scholar]
  139. Smith L, Stull JT. 2000. Myosin light chain kinase binding to actin filaments. FEBS Lett 480:298–300
    [Google Scholar]
  140. Sommi P, Cheerambathur D, Brust-Mascher I, Mogilner A. 2011. Actomyosin-dependent cortical dynamics contributes to the prophase force-balance in the early Drosophila embryo. PLOS ONE 6:e18366
    [Google Scholar]
  141. Spira F, Cuylen-Haering S, Mehta S, Samwer M, Reversat A et al. 2017. Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments. eLife 6:e30867
    [Google Scholar]
  142. Su KC, Takaki T, Petronczki M. 2011. Targeting of the RhoGEF Ect2 to the equatorial membrane controls cleavage furrow formation during cytokinesis. Dev. Cell 21:1104–15
    [Google Scholar]
  143. Sunamura S, Satoh K, Kurosawa R, Ohtsuki T, Kikuchi N et al. 2018. Different roles of myocardial ROCK1 and ROCK2 in cardiac dysfunction and postcapillary pulmonary hypertension in mice. PNAS 115:E7129–38
    [Google Scholar]
  144. Suzuki H, Stafford WF 3rd, Slayter HS, Seidel JC 1985. A conformational transition in gizzard heavy meromyosin involving the head-tail junction, resulting in changes in sedimentation coefficient, ATPase activity, and orientation of heads. J. Biol. Chem. 260:14810–17
    [Google Scholar]
  145. Tan CH, Gasic I, Huber-Reggi SP, Dudka D, Barisic M et al. 2015. The equatorial position of the metaphase plate ensures symmetric cell divisions. eLife 4:e05124
    [Google Scholar]
  146. Tan I, Lai J, Yong J, Li SF, Leung T. 2011. Chelerythrine perturbs lamellar actomyosin filaments by selective inhibition of myotonic dystrophy kinase-related Cdc42-binding kinase. FEBS Lett 585:1260–68
    [Google Scholar]
  147. Tan I, Seow KT, Lim L, Leung T. 2001. Intermolecular and intramolecular interactions regulate catalytic activity of myotonic dystrophy kinase-related Cdc42-binding kinase α. Mol. Cell. Biol. 21:2767–78
    [Google Scholar]
  148. Tan I, Yong J, Dong JM, Lim L, Leung T. 2008. A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell 135:123–36
    [Google Scholar]
  149. Thomas DG, Yenepalli A, Denais CM, Rape A, Beach JR et al. 2015. Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. J. Cell Biol. 210:583–94
    [Google Scholar]
  150. Totsukawa G, Wu Y, Sasaki Y, Hartshorne DJ, Yamakita Y et al. 2004. Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J. Cell Biol. 164:427–39
    [Google Scholar]
  151. Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F. 2000. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol. 150:797–806
    [Google Scholar]
  152. Totsukawa G, Yamakita Y, Yamashiro S, Hosoya H, Hartshorne DJ, Matsumura F. 1999. Activation of myosin phosphatase targeting subunit by mitosis-specific phosphorylation. J. Cell Biol. 144:735–44
    [Google Scholar]
  153. Trybus KM, Lowey S. 1984. Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength. J. Biol. Chem. 259:8564–71
    [Google Scholar]
  154. Trybus KM, Lowey S. 1988. The regulatory light chain is required for folding of smooth muscle myosin. J. Biol. Chem. 263:16485–92
    [Google Scholar]
  155. Tu D, Li Y, Song HK, Toms AV, Gould CJ et al. 2011. Crystal structure of a coiled-coil domain from human ROCK I. PLOS ONE 6:e18080
    [Google Scholar]
  156. Unbekandt M, Croft DR, Crighton D, Mezna M, McArthur D et al. 2014. A novel small-molecule MRCK inhibitor blocks cancer cell invasion. Cell. Commun. Signal. 12:54
    [Google Scholar]
  157. Unbekandt M, Olson MF. 2014. The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. J. Mol. Med. 92:217–25
    [Google Scholar]
  158. Usui T, Okada M, Yamawaki H. 2014. Zipper interacting protein kinase (ZIPK): function and signaling. Apoptosis 19:387–91
    [Google Scholar]
  159. Vader G, Medema RH, Lens SM. 2006. The chromosomal passenger complex: guiding Aurora-B through mitosis. J. Cell Biol. 173:833–37
    [Google Scholar]
  160. Venturini V, Pezzano F, Catala Castro F, Hakkinen HM, Jimenez-Delgado S et al. 2020. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science 370:eaba2644
    [Google Scholar]
  161. Vicente-Manzanares M, Horwitz AR 2010. Myosin light chain mono- and di-phosphorylation differentially regulate adhesion and polarity in migrating cells. Biochem. Biophys. Res. Commun. 402:537–42
    [Google Scholar]
  162. Vicente-Manzanares M, Koach MA, Whitmore L, Lamers ML, Horwitz AF. 2008. Segregation and activation of myosin IIB creates a rear in migrating cells. J. Cell Biol. 183:543–54
    [Google Scholar]
  163. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. 2009. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10:778–90
    [Google Scholar]
  164. Vicente-Manzanares M, Newell-Litwa K, Bachir AI, Whitmore LA, Horwitz AR. 2011. Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells. J. Cell Biol. 193:381–96
    [Google Scholar]
  165. Vicente-Manzanares M, Sanchez-Madrid F. 2004. Role of the cytoskeleton during leukocyte responses. Nat. Rev. Immunol. 4:110–22
    [Google Scholar]
  166. Vicente-Manzanares M, Zareno J, Whitmore L, Choi CK, Horwitz AF. 2007. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176:573–80
    [Google Scholar]
  167. Wagner E, Glotzer M. 2016. Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage. J. Cell Biol. 213:641–49
    [Google Scholar]
  168. Walczak CE, Cai S, Khodjakov A. 2010. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11:91–102
    [Google Scholar]
  169. Wang K, Wloka C, Bi E 2019. Non-muscle myosin-II is required for the generation of a constriction site for subsequent abscission. iScience 13:69–81
    [Google Scholar]
  170. Wang L, Guo DC, Cao J, Gong L, Kamm KE et al. 2010. Mutations in myosin light chain kinase cause familial aortic dissections. Am. J. Hum. Genet. 87:701–7
    [Google Scholar]
  171. Yamashiro S, Totsukawa G, Yamakita Y, Sasaki Y, Madaule P et al. 2003. Citron kinase, a Rho-dependent kinase, induces di-phosphorylation of regulatory light chain of myosin II. Mol. Biol. Cell 14:1745–56
    [Google Scholar]
  172. Yamashiro S, Yamakita Y, Totsukawa G, Goto H, Kaibuchi K et al. 2008. Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing polo-like kinase 1. Dev. Cell 14:787–97
    [Google Scholar]
  173. Yang S, Lee KH, Woodhead JL, Sato O, Ikebe M, Craig R 2019. The central role of the tail in switching off 10S myosin II activity. J. Gen. Physiol 151:1081–93
    [Google Scholar]
  174. Yang S, Tiwari P, Lee KH, Sato O, Ikebe M et al. 2020. Cryo-EM structure of the inhibited (10S) form of myosin II. Nature 588:521–25
    [Google Scholar]
  175. Zhang W-C, Peng Y-J, Zhang G-S, He W-Q, Qiao Y-N et al. 2010. Myosin light chain kinase is necessary for tonic airway smooth muscle contraction. J. Biol. Chem. 285:5522–31
    [Google Scholar]
  176. Zhang Y, Zhang C, Zhang H, Zeng W, Li S et al. 2019. ZIPK mediates endothelial cell contraction through myosin light chain phosphorylation and is required for ischemic-reperfusion injury. FASEB J 33:9062–74
    [Google Scholar]
  177. Zhao Z, Manser E. 2015. Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases 6:81–88
    [Google Scholar]
  178. Zhu Y, Zhou Y, Shi J. 2014. Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target the microtubules or mitotic spindle. Cell Cycle 13:1756–64
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-042721-105528
Loading
/content/journals/10.1146/annurev-cellbio-042721-105528
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error