1932

Abstract

Fertilization is a multistep process that culminates in the fusion of sperm and egg, thus marking the beginning of a new organism in sexually reproducing species. Despite its importance for reproduction, the molecular mechanisms that regulate this singular event, particularly sperm–egg fusion, have remained mysterious for many decades. Here, we summarize our current molecular understanding of sperm–egg interaction, focusing mainly on mammalian fertilization. Given the fundamental importance of sperm–egg fusion yet the lack of knowledge of this process in vertebrates, we discuss hallmarks and emerging themes of cell fusion by drawing from well-studied examples such as viral entry, placenta formation, and muscle development. We conclude by identifying open questions and exciting avenues for future studies in gamete fusion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120219-021751
2021-10-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120219-021751.html?itemId=/content/journals/10.1146/annurev-cellbio-120219-021751&mimeType=html&fmt=ahah

Literature Cited

  1. Avella MA, Baibakov B, Dean J. 2014. A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. J. Cell Biol. 205:801–9
    [Google Scholar]
  2. Avidor-Reiss T, Mazur M, Fishman EL, Sindhwani P. 2019. The role of sperm centrioles in human reproduction – the known and the unknown. Front. Cell Dev. Biol. 7:188
    [Google Scholar]
  3. Avinoam O, Fridman K, Valansi C, Abutbul I, Zeev-Ben-Mordehai T et al. 2011. Conserved eukaryotic fusogens can fuse viral envelopes to cells. Science 332:589–92
    [Google Scholar]
  4. Aydin H, Sultana A, Li S, Thavalingam A, Lee JE. 2016. Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature 534:562–65
    [Google Scholar]
  5. Barbaux S, Ialy-Radio C, Chalbi M, Dybal E, Homps-Legrand M et al. 2020. Sperm SPACA6 protein is required for mammalian sperm-egg adhesion/fusion. Sci. Rep 10:5335
    [Google Scholar]
  6. Barresi MJF, Gilbert SF. 2020. Developmental Biology New York: Sinauer Assoc, 12th ed..
  7. Barry M. 1843. IV. Spermatozoa observed within the mammiferous ovum. Philos. Trans. R. Soc. 133:33
    [Google Scholar]
  8. Benammar A, Ziyyat A, Lefevre B, Wolf JP. 2017. Tetraspanins and mouse oocyte microvilli related to fertilizing ability. Reprod. Sci. 24:1062–69
    [Google Scholar]
  9. Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR et al. 2017. Control of muscle formation by the fusogenic micropeptide myomixer. Science 356:323–27
    [Google Scholar]
  10. Bianchi E, Doe B, Goulding D, Wright GJ. 2014. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–87
    [Google Scholar]
  11. Bianchi E, Wright GJ. 2016. Sperm meets egg: the genetics of mammalian fertilization. Annu. Rev. Genet. 50:93–111
    [Google Scholar]
  12. Bianchi E, Wright GJ. 2020. Find and fuse: unsolved mysteries in sperm-egg recognition. PLOS Biol 18:e3000953
    [Google Scholar]
  13. Blond JL, Beseme F, Duret L, Bouton O, Bedin F et al. 1999. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73:1175–85
    [Google Scholar]
  14. Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G et al. 2000. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74:3321–29
    [Google Scholar]
  15. Blumenthal R, Durell S, Viard M. 2012. HIV entry and envelope glycoprotein-mediated fusion. J. Biol. Chem. 287:40841–49
    [Google Scholar]
  16. Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. 2019. How cells fuse. J. Cell Biol. 218:1436–51
    [Google Scholar]
  17. Burkart AD, Xiong B, Baibakov B, Jimenez-Movilla M, Dean J. 2012. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 197:37–44
    [Google Scholar]
  18. Chalbi M, Barraud-Lange V, Ravaux B, Howan K, Rodriguez N et al. 2014. Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development 141:3732–39
    [Google Scholar]
  19. Chernomordik LV, Kozlov MM. 2005. Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–82
    [Google Scholar]
  20. Clark NL, Gasper J, Sekino M, Springer SA, Aquadro CF, Swanson WJ. 2009. Coevolution of interacting fertilization proteins. PLOS Genet 5:e1000570
    [Google Scholar]
  21. Clift D, Schuh M. 2013. Restarting life: fertilization and the transition from meiosis to mitosis. Nat. Rev. Mol. Cell Biol. 14:549–62
    [Google Scholar]
  22. Cobb M. 2007. The Egg and Sperm Race London/New York: Pocket Books
  23. Cook SP, Brokaw CJ, Muller CH, Babcock DF. 1994. Sperm chemotaxis: egg peptides control cytosolic calcium to regulate flagellar responses. Dev. Biol. 165:10–19
    [Google Scholar]
  24. Coy P, García-Vázquez FA, Visconti PE, Avilés M. 2012. Roles of the oviduct in mammalian fertilization. Reproduction 144:649–60
    [Google Scholar]
  25. Das M, Xu B, Lin L, Chakrabarti S, Shivaswamy V, Rote NS. 2004. Phosphatidylserine efflux and intercellular fusion in a BeWo model of human villous cytotrophoblast. Placenta 25:396–407
    [Google Scholar]
  26. de Vries KJ, Wiedmer T, Sims PJ, Gadella BM. 2003. Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biol. Reprod. 68:2122–34
    [Google Scholar]
  27. Dresselhaus T, Sprunck S, Wessel GM. 2016. Fertilization mechanisms in flowering plants. Curr. Biol. 26:R125–39
    [Google Scholar]
  28. Duncan R. 2019. Fusogenic reoviruses and their fusion-associated small transmembrane (FAST) proteins. Annu. Rev. Virol. 6:341–63
    [Google Scholar]
  29. Dupressoir A, Lavialle C, Heidmann T. 2012. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–71
    [Google Scholar]
  30. Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G et al. 2009. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. PNAS 106:12127–32
    [Google Scholar]
  31. Dupressoir A, Vernochet C, Harper F, Guégan J, Dessen P et al. 2011. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. PNAS 108:E1164–73
    [Google Scholar]
  32. Ellis DJ, Shadan S, James PS, Henderson RM, Edwardson JM et al. 2002. Post-testicular development of a novel membrane substructure within the equatorial segment of ram, bull, boar, and goat spermatozoa as viewed by atomic force microscopy. J. Struc. Biol. 138:187–98
    [Google Scholar]
  33. Fitch KR, Wakimoto BT. 1998. The paternal effect gene ms(3)sneaky is required for sperm activation and the initiation of embryogenesis in Drosophila melanogaster. Dev. Biol. 197:270–82
    [Google Scholar]
  34. Florman HM, Fissore RA. 2015. Fertilization in mammals. Knobil and Neill's Physiology of Reproduction TM Plant, AJ Zeleznik 149–96 Amsterdam: Academic Press, 4th ed..
    [Google Scholar]
  35. Fol H. 1879. Recherches sur la Fécondation et le Commencement de l'hénogénie chez divers Animaux [Research on Fertilization and the Onset of Henogeny in Various Animals] Geneva:: H. Georg
    [Google Scholar]
  36. Fujihara Y, Lu Y, Noda T, Oji A, Larasati T et al. 2020. Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice. PNAS 117:9393–400
    [Google Scholar]
  37. Fujihara Y, Okabe M, Ikawa M. 2014. GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol. Reprod. 90:60
    [Google Scholar]
  38. Garcia-España A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R. 2008. Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91:326–34
    [Google Scholar]
  39. Gavrilets S. 2014. Is sexual conflict an “engine of speciation”?. Cold Spring Harb. Perspect. Biol. 6:a017723
    [Google Scholar]
  40. Gert KR, Pauli A. 2020. Species-specific mechanisms during fertilization. Curr. Top. Dev. Biol. 140:121–44
    [Google Scholar]
  41. Golani G, Leikina E, Melikov K, Whitlock JM, Gamage DG et al. 2021. Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm. Nat. Commun. 12:495
    [Google Scholar]
  42. Grayson P. 2015. Izumo1 and Juno: the evolutionary origins and coevolution of essential sperm-egg binding partners. R. Soc. Open. Sci. 2:150296
    [Google Scholar]
  43. Hansbrough JR, Garbers DL. 1981. Speract. Purification and characterization of a peptide associated with eggs that activates spermatozoa. J. Biol. Chem. 256:1447–52
    [Google Scholar]
  44. Hayashi K. 2019. In vitro reconstitution of germ cell development. Biol. Reprod. 101:567–78
    [Google Scholar]
  45. Hemberger M, Hanna CW, Dean W. 2020. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 21:27–43
    [Google Scholar]
  46. Herberg S, Fujihara Y, Blaha A, Panser K, Kobayashi K et al. 2021. The sperm protein SPACA4 is required for efficient fertilization in mice. bioRxiv 442348. https://doi.org/10.1101/2021.05.02.442348
    [Crossref]
  47. Herberg S, Gert KR, Schleiffer A, Pauli A. 2018. The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization. Science 361:1029–33
    [Google Scholar]
  48. Hernandez JM, Podbilewicz B. 2017. The hallmarks of cell-cell fusion. Development 144:4481–95
    [Google Scholar]
  49. Hertwig O. 1875. Beiträge zur Kenntniss der Bildung, Befruchtung und Theilung des thierischen Eies [Contribution to the Knowledge of the Formation, Fertilization and Division of the Animal Egg] Leipzig, Ger: W. Engelmann
    [Google Scholar]
  50. Hino T, Yanagimachi R. 2019. Active peristaltic movements and fluid production of the mouse oviduct: their roles in fluid and sperm transport and fertilization. Biol. Reprod. 101:40–49
    [Google Scholar]
  51. Hirai M, Arai M, Mori T, Miyagishima SY, Kawai S et al. 2008. Male fertility of malaria parasites is determined by GCS1, a plant-type reproduction factor. Curr. Biol. 18:607–13
    [Google Scholar]
  52. Hirohashi N, Yanagimachi R. 2018. Sperm acrosome reaction: its site and role in fertilization. Biol. Reprod. 99:127–33
    [Google Scholar]
  53. Horner VL, Wolfner MF. 2008. Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev. Dyn. 237:527–44
    [Google Scholar]
  54. Inoue N, Hagihara Y, Wada I 2021. Evolutionarily conserved sperm factors, DCST1 and DCST2, are required for gamete fusion. eLife 10:e66313
    [Google Scholar]
  55. Inoue N, Hagihara Y, Wright D, Suzuki T, Wada I. 2015. Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. Nat. Commun. 6:8858
    [Google Scholar]
  56. Inoue N, Ikawa M, Isotani A, Okabe M. 2005. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–38
    [Google Scholar]
  57. Inoue N, Nishikawa T, Ikawa M, Okabe M. 2012. Tetraspanin-interacting protein IGSF8 is dispensable for mouse fertility. Fertil. Steril. 98:465–70
    [Google Scholar]
  58. Inoue N, Saito T, Wada I. 2020. Unveiling a novel function of CD9 in surface compartmentalization of oocytes. Development 147:dev189985
    [Google Scholar]
  59. Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R 2011. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. PNAS 108:20008–11
    [Google Scholar]
  60. Jean C, Haghighirad F, Zhu Y, Chalbi M, Ziyyat A et al. 2019. JUNO, the receptor of sperm IZUMO1, is expressed by the human oocyte and is essential for human fertilisation. Hum. Reprod. 34:118–26
    [Google Scholar]
  61. Jeong J, Conboy IM. 2011. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochem. Biophys. Res. Commun. 414:9–13
    [Google Scholar]
  62. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y et al. 2011. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. PNAS 108:4892–96
    [Google Scholar]
  63. Johnson MA, von Besser K, Zhou Q, Smith E, Aux G et al. 2004. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–82
    [Google Scholar]
  64. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y et al. 2000. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24:279–82
    [Google Scholar]
  65. Kato K, Satouh Y, Nishimasu H, Kurabayashi A, Morita J et al. 2016. Structural and functional insights into IZUMO1 recognition by JUNO in mammalian fertilization. Nat. Commun. 7:12198
    [Google Scholar]
  66. Kemble GW, Danieli T, White JM. 1994. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76:383–91
    [Google Scholar]
  67. Koster DV, Mayor S 2016. Cortical actin and the plasma membrane: inextricably intertwined. Curr. Opin. Cell Biol. 38:81–89
    [Google Scholar]
  68. Kozlov MM, Markin VS. 1983. [Possible mechanism of membrane fusion]. Biofizika 28:242–47 (In Russian)
    [Google Scholar]
  69. Krauchunas AR, Marcello MR, Singson A. 2016. The molecular complexity of fertilization: introducing the concept of a fertilization synapse. Mol. Reprod. Dev. 83:376–86
    [Google Scholar]
  70. Kumakiri J, Oda S, Kinoshita K, Miyazaki S. 2003. Involvement of Rho family G protein in the cell signaling for sperm incorporation during fertilization of mouse eggs: inhibition by Clostridium difficile toxin B. Dev. Biol. 260:522–35
    [Google Scholar]
  71. Lamas-Toranzo I, Hamze JG, Bianchi E, Fernández-Fuertes B, Pérez-Cerezales S et al. 2020. TMEM95 is a sperm membrane protein essential for mammalian fertilization. eLife 9:e53913
    [Google Scholar]
  72. Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS 2019. Gametogenesis: a journey from inception to conception. Current Topics in Developmental Biology DM Wellik 257–310 Cambridge, MA: Academic Press
    [Google Scholar]
  73. Larson SM, Lee HJ, Hung PH, Matthews LM, Robinson DN, Evans JP. 2010. Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. Mol. Biol. Cell 21:3182–92
    [Google Scholar]
  74. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C 2000. Severely reduced female fertility in CD9-deficient mice. Science 287:319–21
    [Google Scholar]
  75. Lee DM, Chen EH. 2019. Drosophila myoblast fusion: invasion and resistance for the ultimate union. Annu. Rev. Genet. 53:67–91
    [Google Scholar]
  76. Leikin SL, Kozlov MM, Chernomordik LV, Markin VS, Chizmadzhev YA. 1987. Membrane fusion: overcoming of the hydration barrier and local restructuring. J. Theor. Biol. 129:411–25
    [Google Scholar]
  77. Leikina E, Gamage DG, Prasad V, Goykhberg J, Crowe M et al. 2018. Myomaker and Myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion. Dev. Cell 46:767–80.e7
    [Google Scholar]
  78. Leikina E, Melikov K, Sanyal S, Verma SK, Eun B et al. 2013. Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. J. Cell Biol. 200:109–23
    [Google Scholar]
  79. Levental I, Levental KR, Heberle FA. 2020. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol 30:341–53
    [Google Scholar]
  80. Lewis CA, Talbot CF, Vacquier VD. 1982. A protein from abalone sperm dissolves the egg vitelline layer by a nonenzymatic mechanism. Dev. Biol. 92:227–39
    [Google Scholar]
  81. Lifson JD, Feinberg MB, Reyes GR, Rabin L, Banapour B et al. 1986. Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323:725–28
    [Google Scholar]
  82. Lindemann CB, Lesich KA. 2016. Functional anatomy of the mammalian sperm flagellum. Cytoskeleton 73:652–69
    [Google Scholar]
  83. Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S et al. 2008. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 22:1051–68
    [Google Scholar]
  84. Loppin B, Dubruille R, Horard B. 2015. The intimate genetics of Drosophila fertilization. Open Biol 5:150076
    [Google Scholar]
  85. Loughner CL, Bruford EA, McAndrews MS, Delp EE, Swamynathan S, Swamynathan SK. 2016. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum. Genom. 10:10
    [Google Scholar]
  86. Lu Y, Oura S, Matsumura T, Oji A, Sakurai N et al. 2019. CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in mice. Biol. Reprod. 101:501–11
    [Google Scholar]
  87. Melikyan GB, White JM, Cohen FS. 1995. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J. Cell Biol. 131:679–91
    [Google Scholar]
  88. Merlini L, Dudin O, Martin SG. 2013. Mate and fuse: how yeast cells do it. Open Biol 3:130008
    [Google Scholar]
  89. Mi S, Lee X, Li X, Veldman GM, Finnerty H et al. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–89
    [Google Scholar]
  90. Miao YL, Williams CJ. 2012. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol. Reprod. Dev. 79:742–56
    [Google Scholar]
  91. Millay DP, Gamage DG, Quinn ME, Min YL, Mitani Y et al. 2016. Structure–function analysis of myomaker domains required for myoblast fusion. PNAS 113:2116–21
    [Google Scholar]
  92. Millay DP, O'Rourke JR, Sutherland LB, Bezprozvannaya S, Shelton JM et al. 2013. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499:301–5
    [Google Scholar]
  93. Milo R, Phillips R, Orme N. 2016. Cell Biology by the Numbers New York: Garland Sci.
  94. Mitani Y, Vagnozzi RJ, Millay DP. 2017. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. FASEB J 31:400–11
    [Google Scholar]
  95. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y et al. 2000. Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–24
    [Google Scholar]
  96. Miyata H, Castaneda JM, Fujihara Y, Yu Z, Archambeault DR et al. 2016. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice. PNAS 113:7704–10
    [Google Scholar]
  97. Mohler WA, Shemer G, del Campo JJ, Valansi C, Opoku-Serebuoh E et al. 2002. The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev. Cell 2:355–62
    [Google Scholar]
  98. Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. 2006. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8:64–71
    [Google Scholar]
  99. Mukai C, Travis AJ. 2012. What sperm can teach us about energy production. Reprod. Domest. Anim. 47:Suppl. 4164–69
    [Google Scholar]
  100. Nagaoka SI, Nakaki F, Miyauchi H, Nosaka Y, Ohta H et al. 2020. ZGLP1 is a determinant for the oogenic fate in mice. Science 367:eaaw4115
    [Google Scholar]
  101. Nagata S, Suzuki J, Segawa K, Fujii T. 2016. Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23:952–61
    [Google Scholar]
  102. Needham J. 1959. A History of Embryology London: Cambridge Univ. Press
  103. Newport G. 1851. IX. On the impregnation of the ovum in the amphibia. (First series.). Philos. Trans. R. Soc. 141:169–242
    [Google Scholar]
  104. Noda T, Blaha A, Fujihara Y, Gert KR, Emori C et al. 2021. Sperm membrane proteins DCST1 and DCST2 are required for the sperm-egg fusion process in mice and fish. bioRxiv 440256. https://doi.org/10.1101/2021.04.18.440256
    [Crossref]
  105. Noda T, Lu Y, Fujihara Y, Oura S, Koyano T et al. 2020. Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm-oocyte fusion in mice. PNAS 117:11493–502
    [Google Scholar]
  106. Ohto U, Ishida H, Krayukhina E, Uchiyama S, Inoue N, Shimizu T. 2016. Structure of IZUMO1-JUNO reveals sperm-oocyte recognition during mammalian fertilization. Nature 534:566–69
    [Google Scholar]
  107. Okabe M. 2015. Mechanisms of fertilization elucidated by gene-manipulated animals. Asian J. Androl. 17:646–52
    [Google Scholar]
  108. Okabe M. 2018a. Beware of memes in the interpretation of your results – lessons from gene-disrupted mice in fertilization research. FEBS Lett 592:2673–79
    [Google Scholar]
  109. Okabe M. 2018b. Sperm-egg interaction and fertilization: past, present, and future. Biol. Reprod. 99:134–46
    [Google Scholar]
  110. Okabe M, Yagasaki M, Oda H, Matzno S, Kohama Y, Mimura T. 1988. Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J. Reprod. Immunol. 13:211–19
    [Google Scholar]
  111. Palumbi SR. 2009. Speciation and the evolution of gamete recognition genes: pattern and process. Heredity 102:66–76
    [Google Scholar]
  112. Park S, Shimada K, Fujihara Y, Xu Z, Shimada K et al. 2020. CRISPR/Cas9-mediated genome-edited mice reveal 10 testis-enriched genes are dispensable for male fecundity. Biol. Reprod. 103:195–204
    [Google Scholar]
  113. Pincus G, Enzmann EV 1935. The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs. J. Exp. Med. 62:665–75
    [Google Scholar]
  114. Pinto-Correia C, Gould SJ. 1997. The Ovary of Eve: Egg and Sperm and Preformation Chicago: Univ. Chicago Press
  115. Podbilewicz B. 2014. Virus and cell fusion mechanisms. Annu. Rev. Cell Dev. Biol. 30:111–39
    [Google Scholar]
  116. Podbilewicz B, Leikina E, Sapir A, Valansi C, Suissa M et al. 2006. The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev. Cell 11:471–81
    [Google Scholar]
  117. Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ et al. 2017. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat. Commun. 8:15665
    [Google Scholar]
  118. Raj I, Sadat Al Hosseini H, Dioguardi E, Nishimura K, Han L et al. 2017. Structural basis of egg coat-sperm recognition at fertilization. Cell 169:1315–26.e17
    [Google Scholar]
  119. Ransom WH. 1856. I. On the impregnation of the ovum in the stickleback. Proc. R. Soc. 7:168–72
    [Google Scholar]
  120. Ravaux B, Favier S, Perez E, Gourier C. 2018. Egg CD9 protein tides correlated with sperm oscillations tune the gamete fusion ability in mammal. J. Mol. Cell Biol. 10:494–502
    [Google Scholar]
  121. Ravaux B, Garroum N, Perez E, Willaime H, Gourier C. 2016. A specific flagellum beating mode for inducing fusion in mammalian fertilization and kinetics of sperm internalization. Sci. Rep. 6:31886
    [Google Scholar]
  122. Rival CM, Xu W, Shankman LS, Morioka S, Arandjelovic S et al. 2019. Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat. Commun. 10:4456
    [Google Scholar]
  123. Roberts TM, Ward S. 1982. Centripetal flow of pseudopodial surface components could propel the amoeboid movement of Caenorhabditis elegans spermatozoa. J. Cell Biol. 92:132–38
    [Google Scholar]
  124. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP et al. 2006. Reduced fertility of female mice lacking CD81. Dev. Biol. 290:351–58
    [Google Scholar]
  125. Runge KE, Evans JE, He Z-Y, Gupta S, McDonald KL et al. 2007. Ooctye CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 304:317–25
    [Google Scholar]
  126. Sampath SC, Sampath SC, Millay DP. 2018. Myoblast fusion confusion: the resolution begins. Skelet. Muscle 8:3
    [Google Scholar]
  127. Santella L, Limatola N, Chun JT. 2020. Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. Zool. Lett. 6:5
    [Google Scholar]
  128. Satouh Y, Inoue N, Ikawa M, Okabe M. 2012. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J. Cell Sci. 125:4985–90
    [Google Scholar]
  129. Sens KL, Zhang S, Jin P, Duan R, Zhang G et al. 2010. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J. Cell Biol. 191:1013–27
    [Google Scholar]
  130. Shetty J, Wolkowicz MJ, Digilio LC, Klotz KL, Jayes FL et al. 2003. SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J. Biol. Chem. 278:30506–15
    [Google Scholar]
  131. Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T. 2012. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–97
    [Google Scholar]
  132. Stein P, Savy V, Williams AM, Williams CJ. 2020. Modulators of calcium signalling at fertilization. Open Biol 10:200118
    [Google Scholar]
  133. Stival C, Puga Molina LDC, Paudel B, Buffone MG, Visconti PE, Krapf D 2016. Sperm capacitation and acrosome reaction in mammalian sperm. Adv. Anat. Embryol. Cell Biol. 220:93–106
    [Google Scholar]
  134. Suarez SS. 2016. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res 363:185–94
    [Google Scholar]
  135. Suzuki N, Garbers DL. 1984. Stimulation of sperm respiration rates by speract and resact at alkaline extracellular pH. Biol. Reprod. 30:1167–74
    [Google Scholar]
  136. Swanson WJ, Vacquier VD 1997. The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule. PNAS 94:6724–29
    [Google Scholar]
  137. Swanson WJ, Vacquier VD. 2002. The rapid evolution of reproductive proteins. Nat. Rev. Genet. 3:137–44
    [Google Scholar]
  138. Toyoda Y, Yokoyama M, Hosi T. 1971. Studies on the fertilization of mouse eggs in vitro. II. Effects of in vitro pre-incubation of spermatozoa on time of sperm penetration of mouse eggs in vitro. Jpn. J. Anim. Reprod. 16:152–57
    [Google Scholar]
  139. Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K et al. 2020. Structural insights into tetraspanin CD9 function. Nat. Commun. 11:1606
    [Google Scholar]
  140. Vacquier VD. 1998. Evolution of gamete recognition proteins. Science 281:1995–98
    [Google Scholar]
  141. Vacquier VD, Moy GW 1977. Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. PNAS 74:2456–60
    [Google Scholar]
  142. Vacquier VD, Swanson WJ. 2011. Selection in the rapid evolution of gamete recognition proteins in marine invertebrates. Cold Spring Harb. Perspect. Biol. 3:a002931
    [Google Scholar]
  143. Valansi C, Moi D, Leikina E, Matveev E, Graña M et al. 2017. Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens. J. Cell Biol. 216:571–81
    [Google Scholar]
  144. Vance TDR, Lee JE. 2020. Virus and eukaryote fusogen superfamilies. Curr. Biol. 30:R750–54
    [Google Scholar]
  145. Vastenhouw NL, Cao WX, Lipshitz HD. 2019. The maternal-to-zygotic transition revisited. Development 146:dev161471
    [Google Scholar]
  146. Verma SK, Leikina E, Melikov K, Gebert C, Kram V et al. 2018. Cell-surface phosphatidylserine regulates osteoclast precursor fusion. J. Biol. Chem. 293:254–70
    [Google Scholar]
  147. von Besser K, Frank AC, Johnson MA, Preuss D. 2006. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–69
    [Google Scholar]
  148. Wang H, Hong X, Kinsey WH. 2021. Sperm–oocyte signaling: the role of IZUMO1R and CD9 in PTK2B activation and actin remodeling at the sperm binding site. Biol. Reprod 104:1291301
    [Google Scholar]
  149. Wang H, Luo J, Carlton C, McGinnis LK, Kinsey WH. 2017. Sperm-oocyte contact induces outside-in signaling via PYK2 activation. Dev. Biol. 428:52–62
    [Google Scholar]
  150. Ward GE, Brokaw CJ, Garbers DL, Vacquier VD. 1985. Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J. Cell Biol. 101:2324–29
    [Google Scholar]
  151. Ward S, Carrel JS. 1979. Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev. Biol. 73:304–21
    [Google Scholar]
  152. Wassarman PM, Litscher ES 2018. The mouse egg's zona pellucida. Current Topics in Developmental Biology ES Litscher, PM Wassarman 331–56 Cambridge, MA: Academic Press
    [Google Scholar]
  153. Wessel GM, Brooks JM, Green E, Haley S, Voronina E et al. 2001. The biology of cortical granules. Int. Rev. Cytol. 209:117–206
    [Google Scholar]
  154. Wilburn DB, Tuttle LM, Klevit RE, Swanson WJ 2019. Indirect sexual selection drives rapid sperm protein evolution in abalone. eLife 8:e52628
    [Google Scholar]
  155. Wilen CB, Tilton JC, Doms RW. 2012. HIV: cell binding and entry. Cold Spring Harb. Perspect. Med. 2:a006866
    [Google Scholar]
  156. Wilson KL, Fitch KR, Bafus BT, Wakimoto BT. 2006. Sperm plasma membrane breakdown during Drosophila fertilization requires Sneaky, an acrosomal membrane protein. Development 133:4871–79
    [Google Scholar]
  157. Wilson LD, Obakpolor OA, Jones AM, Richie AL, Mieczkowski BD et al. 2018. The Caenorhabditis elegans spe-49 gene is required for fertilization and encodes a sperm-specific transmembrane protein homologous to SPE-42. Mol. Reprod. Dev. 85:563–78
    [Google Scholar]
  158. Wilson LD, Sackett JM, Mieczkowski BD, Richie AL, Thoemke K et al. 2011. Fertilization in C. elegans requires an intact C-terminal RING finger in sperm protein SPE-42. BMC Dev. Biol. 11:10
    [Google Scholar]
  159. Wilson NF, Snell WJ. 1998. Microvilli and cell-cell fusion during fertilization. Trends Cell Biol 8:93–96
    [Google Scholar]
  160. Wolenski JS, Hart NH. 1988. Effects of cytochalasins B and D on the fertilization of zebrafish (Brachydanio) eggs. J. Exp. Zool. 246:202–15
    [Google Scholar]
  161. Yanagimachi R 1994. Mammalian fertilization. . In The Physiology of Reproduction E Knobil, JD Neill 189–317 New York: Raven Press
    [Google Scholar]
  162. Yanagimachi R, Chang MC. 1963. Fertilization of hamster eggs in vitro. Nature 200:281–82
    [Google Scholar]
  163. Yanagimachi R, Noda YD. 1970. Electron microscope studies of sperm incorporation into the golden hamster egg. Am. J. Anat. 128:429–62
    [Google Scholar]
  164. Yang ST, Kreutzberger AJB, Kiessling V, Ganser-Pornillos BK, White JM, Tamm LK. 2017. HIV virions sense plasma membrane heterogeneity for cell entry. Sci. Adv. 3:e1700338
    [Google Scholar]
  165. Zaitseva E, Zaitsev E, Melikov K, Arakelyan A, Marin M et al. 2017. Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe 22:99–110.e7
    [Google Scholar]
  166. Zhang Q, Vashisht AA, O'Rourke J, Corbel SY, Moran R et al. 2017. The microprotein Minion controls cell fusion and muscle formation. Nat. Commun. 8:15664
    [Google Scholar]
  167. Zhang Y, Le T, Grabau R, Mohseni Z, Kim H et al. 2020. TMEM16F phospholipid scramblase mediates trophoblast fusion and placental development. Sci. Adv. 6:eaba0310
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120219-021751
Loading
/content/journals/10.1146/annurev-cellbio-120219-021751
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error