1932

Abstract

Morphogenesis is one of the most remarkable examples of biological pattern formation. Despite substantial progress in the field, we still do not understand the organizational principles responsible for the robust convergence of the morphogenesis process across scales to form viable organisms under variable conditions. Achieving large-scale coordination requires feedback between mechanical and biochemical processes, spanning all levels of organization and relating the emerging patterns with the mechanisms driving their formation. In this review, we highlight the role of mechanics in the patterning process, emphasizing the active and synergistic manner in which mechanical processes participate in developmental patterning rather than merely following a program set by biochemical signals. We discuss the value of applying a coarse-grained approach that considers the large-scale dynamics and feedback and complements the reductionist approach focused on molecular detail. A central challenge in this approach is identifying relevant coarse-grained variables and developing effective theories that can serve as a basis for an integrated framework toward understanding this remarkable pattern-formation process.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120319-030931
2021-10-06
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120319-030931.html?itemId=/content/journals/10.1146/annurev-cellbio-120319-030931&mimeType=html&fmt=ahah

Literature Cited

  1. Alsous JI, Romeo N, Jackson JA, Mason F, Dunkel J, Martin AC. 2020. Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis. bioRxiv 155606. https://doi.org/10.1101/2020.06.16.155606
    [Crossref] [Google Scholar]
  2. Bailles A, Collinet C, Philippe J-M, Lenne P-F, Munro E, Lecuit T. 2019. Genetic induction and mechanochemical propagation of a morphogenetic wave. Nature 572:7770467–73
    [Google Scholar]
  3. Baker PC, Schroeder TE. 1967. Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube. Dev. Biol. 15:5432–50
    [Google Scholar]
  4. Barriga EH, Franze K, Charras G, Mayor R 2018. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554:7693523–27
    [Google Scholar]
  5. Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F et al. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science 338:6104257–60
    [Google Scholar]
  6. Ben Amar M, Qiuyang-Qu P, Vuong-Brender TTK, Labouesse M 2018. Assessing the contribution of active and passive stresses in C. elegans elongation. Phys. Rev. Lett. 121:268102
    [Google Scholar]
  7. Bi D, Lopez JH, Schwarz JM, Manning ML. 2015. A density-independent rigidity transition in biological tissues. Nat. Phys. 11:121074–79
    [Google Scholar]
  8. Braun E, Keren K 2018. Hydra regeneration: closing the loop with mechanical processes in morphogenesis. BioEssays 40:71700204
    [Google Scholar]
  9. Brinkmann F, Mercker M, Richter T, Marciniak-Czochra A. 2018. Post-Turing tissue pattern formation: advent of mechanochemistry. PLOS Comput. Biol. 14:7e1006259
    [Google Scholar]
  10. Browne EN. 1909. The production of new hydranths in Hydra by the insertion of small grafts. J. Exp. Zool. 7:11–23
    [Google Scholar]
  11. Campàs O. 2016. A toolbox to explore the mechanics of living embryonic tissues. Sem. Cell Dev. Biol. 55:119–30
    [Google Scholar]
  12. Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-P. 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15:121405–14
    [Google Scholar]
  13. Carroll SB, Grenier JK, Weatherbee SD. 2013. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design New York: John Wiley & Sons
    [Google Scholar]
  14. Cetera M, Ramirez-San Juan GR, Oakes PW, Lewellyn L, Fairchild MJ et al. 2014. Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat. Commun. 5:5511
    [Google Scholar]
  15. Chan CJ, Costanzo M, Ruiz-Herrero T, Mönke G, Petrie RJ et al. 2019. Hydraulic control of mammalian embryo size and cell fate. Nature 571:7763112–16
    [Google Scholar]
  16. Chan CJ, Hiiragi T. 2020. Integration of luminal pressure and signalling in tissue self-organization. Development 147:5dev181297
    [Google Scholar]
  17. Chartier NT, Mukherjee A, Pfanzelter J, Fürthauer S, Larson BT et al. 2020. A hydraulic instability drives the cell death decision in the nematode germline. bioRxiv 124864. https://doi.org/10.1101/2020.05.30.125864
    [Crossref]
  18. Cohen R, Amir-Zilberstein L, Hersch M, Woland S, Loza O et al. 2020. Mechanical forces drive ordered patterning of hair cells in the mammalian inner ear. Nat. Commun. 11:15137
    [Google Scholar]
  19. Collinet C, Lecuit T. 2021. Programmed and self-organized flow of information during morphogenesis. Nat. Rev. Mol. Cell Biol. 2021. https://doi.org/10.1038/s41580-020-00318-6
    [Crossref] [Google Scholar]
  20. Crest J, Diz-Muñoz A, Chen D-Y, Fletcher DA, Bilder D 2017. Organ sculpting by patterned extracellular matrix stiffness. eLife 6:e24958
    [Google Scholar]
  21. Davì V, Minc N. 2015. Mechanics and morphogenesis of fission yeast cells. Curr. Opin. Microbiol. 28:36–45
    [Google Scholar]
  22. Davidson EH. 2010. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution Amsterdam: Elsevier/Academic Press
    [Google Scholar]
  23. Deneke VE, Puliafito A, Krueger D, Narla AV, De Simone A et al. 2019. Self-organized nuclear positioning synchronizes the cell cycle in Drosophila embryos. Cell 177:4925–41.e17
    [Google Scholar]
  24. Duda M, Kirkland NJ, Khalilgharibi N, Tozluoglu M, Yuen AC et al. 2019. Polarization of myosin II refines tissue material properties to buffer mechanical stress. Dev. Cell 48:2245–60.e7
    [Google Scholar]
  25. Dumortier JG, Verge-Serandour ML, Tortorelli AF, Mielke A, de Plater L et al. 2019. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365:6452465–68
    [Google Scholar]
  26. Dye NA, Popovic M, Iyer KV, Eaton S, Julicher F. 2020. Self-organized patterning of cell morphology via mechanosensitive feedback. bioRxiv 044883. https://doi.org/10.1101/2020.04.16.044883
    [Crossref]
  27. Dzamba BJ, DeSimone DW 2018. Extracellular matrix (ECM) and the sculpting of embryonic tissues. Current Topics in Developmental Biology, Vol. 130: ES Litscher, PM Wassarman 245–74 Amsterdam: Elsevier
    [Google Scholar]
  28. Engler AJ, Sen S, Sweeney HL, Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:4677–89
    [Google Scholar]
  29. Etoc F, Metzger J, Ruzo A, Kirst C, Yoney A et al. 2016. A balance between secreted inhibitors and edge sensing controls gastruloid self-organization. Dev. Cell 39:3302–15
    [Google Scholar]
  30. Etournay R, Popović M, Merkel M, Nandi A, Blasse C et al. 2015. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife 4:e07090
    [Google Scholar]
  31. Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA 2006. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. PNAS 103:61762–67
    [Google Scholar]
  32. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA. 2004. Elastic behavior of cross-linked and bundled actin networks. Science 304:56751301–5
    [Google Scholar]
  33. Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12:130–39
    [Google Scholar]
  34. Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM et al. 2011. Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334:60591137–41
    [Google Scholar]
  35. Gross P, Kumar KV, Goehring NW, Bois JS, Hoege C et al. 2019. Guiding self-organized pattern formation in cell polarity establishment. Nat. Phys. 15:3293–300
    [Google Scholar]
  36. Guirao B, Rigaud SU, Bosveld F, Bailles A, López-Gay J et al. 2015. Unified quantitative characterization of epithelial tissue development. eLife 4:e08519
    [Google Scholar]
  37. Hamant O, Saunders TE. 2020. Shaping organs: shared structural principles across kingdoms. Annu. Rev. Cell Dev. Biol. 36:385–410
    [Google Scholar]
  38. Hampoelz B, Azou-Gros Y, Fabre R, Markova O, Puech P-H, Lecuit T. 2011. Microtubule-induced nuclear envelope fluctuations control chromatin dynamics in Drosophila embryos. Development 138:163377–86
    [Google Scholar]
  39. Hannezo E, Heisenberg C-P. 2019. Mechanochemical feedback loops in development and disease. Cell 178:112–25
    [Google Scholar]
  40. Heckel E, Boselli F, Roth S, Krudewig A, Belting H-G et al. 2015. Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr. Biol. 25:101354–61
    [Google Scholar]
  41. Hilbrant M, Horn T, Koelzer S, Panfilio KA 2016. The beetle amnion and serosa functionally interact as apposed epithelia. eLife 5:e13834
    [Google Scholar]
  42. Huycke TR, Miller BM, Gill HK, Nerurkar NL, Sprinzak D et al. 2019. Genetic and mechanical regulation of intestinal smooth muscle development. Cell 179:190–105.e21
    [Google Scholar]
  43. Iyer KV, Piscitello-Gómez R, Paijmans J, Jülicher F, Eaton S. 2019. Epithelial viscoelasticity is regulated by mechanosensitive E-cadherin turnover. Curr. Biol. 29:4578–91.e5
    [Google Scholar]
  44. Jacinto A, Wood W, Woolner S, Hiley C, Turner L et al. 2002. Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr. Biol. 12:141245–50
    [Google Scholar]
  45. Jain A, Ulman V, Mukherjee A, Prakash M, Cuenca MB et al. 2020. Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation. Nat. Commun. 11:15604
    [Google Scholar]
  46. Kim HY, Varner VD, Nelson CM. 2013. Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development 140:153146–55
    [Google Scholar]
  47. Kindberg A, Hu JK, Bush JO. 2020. Forced to communicate: integration of mechanical and biochemical signaling in morphogenesis. Curr. Opin. Cell Biol. 66:59–68
    [Google Scholar]
  48. Kumar JP. 2012. Building an ommatidium one cell at a time. Dev. Dyn. 241:1136–49
    [Google Scholar]
  49. Lamiré L-A, Milani P, Runel G, Kiss A, Arias L et al. 2020. Gradient in cytoplasmic pressure in germline cells controls overlying epithelial cell morphogenesis. PLOS Biol 18:11e3000940
    [Google Scholar]
  50. Lardennois A, Pásti G, Ferraro T, Llense F, Mahou P et al. 2019. An actin-based viscoplastic lock ensures progressive body-axis elongation. Nature 573:7773266–70
    [Google Scholar]
  51. Lee J-Y, Goldstein B. 2003. Mechanisms of cell positioning during C. elegans gastrulation. Development 130:2307–20
    [Google Scholar]
  52. LeGoff L, Rouault H, Lecuit T. 2013. A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Development 140:194051–59
    [Google Scholar]
  53. Li J, Wang Z, Chu Q, Jiang K, Li J, Tang N 2018. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev. Cell 44:3297–312.e5
    [Google Scholar]
  54. Livshits A, Garion L, Maroudas-Sacks Y, Shani-Zerbib L, Keren K, Braun E 2021. Plasticity of body axis polarity in Hydra regeneration under constraints. bioRxiv 429818. https://doi.org/10.1101/2021.02.04.429818
    [Crossref]
  55. Livshits A, Shani-Zerbib L, Maroudas-Sacks Y, Braun E, Keren K. 2017. Structural inheritance of the actin cytoskeletal organization determines the body axis in regenerating Hydra. Cell Rep 18:61410–21
    [Google Scholar]
  56. MacKintosh FC, Käs J, Janmey PA. 1995. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75:244425–28
    [Google Scholar]
  57. Maître J-L, Berthoumieux H, Krens SFG, Salbreux G, Jülicher F et al. 2012. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338:6104253–56
    [Google Scholar]
  58. Maître J-L, Turlier H, Illukkumbura R, Eismann B, Niwayama R et al. 2016. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:7616344–48
    [Google Scholar]
  59. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:31143–89
    [Google Scholar]
  60. Maroudas-Sacks Y, Garion L, Shani-Zerbib L, Livshits A, Braun E, Keren K 2021. Topological defects in the nematic order of actin fibres as organization centres of Hydra morphogenesis. Nat. Phys. 17:251–59
    [Google Scholar]
  61. Martin AC, Goldstein B. 2014. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141:101987–98
    [Google Scholar]
  62. Martin AC, Kaschube M, Wieschaus EF. 2009. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:7228495–99
    [Google Scholar]
  63. Meinhardt H, Gierer A. 2000. Pattern formation by local self-activation and lateral inhibition. BioEssays 22:8753–60
    [Google Scholar]
  64. Menshykau D, Michos O, Lang C, Conrad L, McMahon AP, Iber D. 2019. Image-based modeling of kidney branching morphogenesis reveals GDNF-RET based Turing-type mechanism and pattern-modulating WNT11 feedback. Nat. Commun. 10:1239
    [Google Scholar]
  65. Miller KE, Brownlee C, Heald R. 2020. The power of amphibians to elucidate mechanisms of size control and scaling. Exp. Cell Res. 392:1112036
    [Google Scholar]
  66. Mongera A, Rowghanian P, Gustafson HJ, Shelton E, Kealhofer DA et al. 2018. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561:7723401
    [Google Scholar]
  67. Mosaliganti KR, Swinburne IA, Chan CU, Obholzer ND, Green AA et al. 2019. Size control of the inner ear via hydraulic feedback. eLife 8:e39596
    [Google Scholar]
  68. Munjal A, Hannezo E, Mitchison TJ, Megason SG. 2020. Extracellular hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis. bioRxiv 316042. https://doi.org/10.1101/2020.09.28.316042
    [Crossref]
  69. Munjal A, Lecuit T. 2014. Actomyosin networks and tissue morphogenesis. Development 141:91789–93
    [Google Scholar]
  70. Munjal A, Philippe J-M, Munro E, Lecuit T. 2015. A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature 524:7565351–55
    [Google Scholar]
  71. Münster S, Jain A, Mietke A, Pavlopoulos A, Grill SW, Tomancak P. 2019. Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature 568:7752395–99
    [Google Scholar]
  72. Nerurkar NL, Lee C, Mahadevan L, Tabin CJ. 2019. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature 565:7740480–84
    [Google Scholar]
  73. Petkova MD, Tkačik G, Bialek W, Wieschaus EF, Gregor T. 2019. Optimal decoding of cellular identities in a genetic network. Cell 176:4844–55.e15
    [Google Scholar]
  74. Petridou NI, Grigolon S, Salbreux G, Hannezo E, Heisenberg C-P. 2019. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nat. Cell Biol. 21:2169–78
    [Google Scholar]
  75. Petridou NI, Heisenberg C-P. 2019. Tissue rheology in embryonic organization. EMBO J 38:20e102497
    [Google Scholar]
  76. Petridou NI, Spiró Z, Heisenberg C-P. 2017. Multiscale force sensing in development. Nat. Cell Biol. 19:6581–88
    [Google Scholar]
  77. Prost J, Jülicher F, Joanny J-F. 2015. Active gel physics. Nat. Phys. 11:2111–17
    [Google Scholar]
  78. Rauzi M, Lenne P-F, Lecuit T. 2010. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468:73271110–14
    [Google Scholar]
  79. Recho P, Hallou A, Hannezo E 2019. Theory of mechanochemical patterning in biphasic biological tissues. PNAS 116:125344–49
    [Google Scholar]
  80. Revell C, Blumenfeld R, Chalut KJ. 2019. Force-based three-dimensional model predicts mechanical drivers of cell sorting. Proc. R. Soc. B 286: 1895.20182495
    [Google Scholar]
  81. Ryan AQ, Chan CJ, Graner F, Hiiragi T. 2019. Lumen expansion facilitates epiblast-primitive endoderm fate specification during mouse blastocyst formation. Dev. Cell 51:6684–97.e4
    [Google Scholar]
  82. Saadaoui M, Rocancourt D, Roussel J, Corson F, Gros J. 2020. A tensile ring drives tissue flows to shape the gastrulating amniote embryo. Science 367:6476453–58
    [Google Scholar]
  83. Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H et al. 2011. On the growth and form of the gut. Nature 476:735857–62
    [Google Scholar]
  84. Schliffka MF, Maître J-L. 2019. Stay hydrated: basolateral fluids shaping tissues. Curr. Opin. Genet. Dev. 57:70–77
    [Google Scholar]
  85. Shamipour S, Kardos R, Xue S-L, Hof B, Hannezo E, Heisenberg C-P. 2019. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell 177:61463–79.e18
    [Google Scholar]
  86. Shyer AE, Huycke TR, Lee C, Mahadevan L, Tabin CJ. 2015. Bending gradients: how the intestinal stem cell gets its home. Cell 161:3569–80
    [Google Scholar]
  87. Shyer AE, Rodrigues AR, Schroeder GG, Kassianidou E, Kumar S, Harland RM. 2017. Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science 357:6353811–15
    [Google Scholar]
  88. Shyer AE, Tallinen T, Nerurkar NL, Wei Z, Gil ES et al. 2013. Villification: how the gut gets its villi. Science 342:6155212–18
    [Google Scholar]
  89. Skokan TD, Vale RD, McKinley KL. 2020. Cell sorting in Hydra vulgaris arises from differing capacities for epithelialization between cell types. Curr. Biol. 30:193713–23.e3
    [Google Scholar]
  90. Solon J, Kaya-Çopur A, Colombelli J, Brunner D. 2009. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137:71331–42
    [Google Scholar]
  91. Spemann H, Mangold H. 1924. Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren [Induction of embryonic primordia by implantation of organizers from a different species. ]. Arch. Mikrosk. Anat. Entwicklungsmechanik 100:3599–638
    [Google Scholar]
  92. Steed E, Faggianelli N, Roth S, Ramspacher C, Concordet J-P, Vermot J. 2016. klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis. Nat. Commun. 7:111646
    [Google Scholar]
  93. Stenhammar J, Wittkowski R, Marenduzzo D, Cates ME. 2015. Activity-induced phase separation and self-assembly in mixtures of active and passive particles. Phys. Rev. Lett. 114:1018301
    [Google Scholar]
  94. Stooke-Vaughan GA, Campàs O 2018. Physical control of tissue morphogenesis across scales. Curr. Opin. Genet. Dev. 51:111–19
    [Google Scholar]
  95. Streichan SJ, Lefebvre MF, Noll N, Wieschaus EF, Shraiman BI 2018. Global morphogenetic flow is accurately predicted by the spatial distribution of myosin motors. eLife 7:e27454
    [Google Scholar]
  96. Sugimura K, Lenne P-F, Graner F. 2016. Measuring forces and stresses in situ in living tissues. Development 143:2186–96
    [Google Scholar]
  97. Sweeton D, Parks S, Costa M, Wieschaus E 1991. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112:3775–89
    [Google Scholar]
  98. Swinburne IA, Mosaliganti KR, Upadhyayula S, Liu T-L, Hildebrand DGC et al. 2018. Lamellar projections in the endolymphatic sac act as a relief valve to regulate inner ear pressure. eLife 7:e37131
    [Google Scholar]
  99. Takeda M, Sami MM, Wang Y-C. 2018. A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift. Nat. Cell Biol. 20:136–45
    [Google Scholar]
  100. Trushko A, Di Meglio I, Merzouki A, Blanch-Mercader C, Abuhattum S et al. 2020. Buckling of an epithelium growing under spherical confinement. Dev. Cell 54:5655–68.e6
    [Google Scholar]
  101. Turing A 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237:64137–72
    [Google Scholar]
  102. Umetsu D, Aigouy B, Aliee M, Sui L, Eaton S et al. 2014. Local increases in mechanical tension shape compartment boundaries by biasing cell intercalations. Curr. Biol. 24:151798–805
    [Google Scholar]
  103. Varner VD, Gleghorn JP, Miller E, Radisky DC, Nelson CM 2015. Mechanically patterning the embryonic airway epithelium. PNAS 112:309230–35
    [Google Scholar]
  104. Wan Y, McDole K, Keller PJ. 2019. Light-sheet microscopy and its potential for understanding developmental processes. Annu. Rev. Cell Dev. Biol. 35:655–81
    [Google Scholar]
  105. Wang X, Merkel M, Sutter LB, Erdemci-Tandogan G, Manning ML, Kasza KE 2020. Anisotropy links cell shapes to tissue flow during convergent extension. PNAS 117:2413541–51
    [Google Scholar]
  106. Watanabe M, Kondo S. 2015. Is pigment patterning in fish skin determined by the Turing mechanism?. Trends Genet 31:288–96
    [Google Scholar]
  107. Weber SC, Brangwynne CP. 2015. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 25:5641–46
    [Google Scholar]
  108. Wen Q, Janmey PA. 2011. Polymer physics of the cytoskeleton. Curr. Opin. Solid State Mater. Sci. 15:5177–82
    [Google Scholar]
  109. Wilkins AS. 2002. The Evolution of Developmental Pathways Sunderland, MA: Sinauer
    [Google Scholar]
  110. Wolpert L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25:11–47
    [Google Scholar]
  111. Xia P, Gütl D, Zheden V, Heisenberg C-P. 2019. Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity. Cell 176:61379–92.e14
    [Google Scholar]
  112. Yanagida A, Revell C, Stirparo GG, Corujo-Simon E, Aspalter IM et al. 2020. Cell surface fluctuations regulate early embryonic lineage sorting. bioRxiv 250084. https://doi.org/10.1101/2020.08.16.250084
    [Crossref]
  113. Yang Q, Xue S-L, Chan CJ, Rempfler M, Vischi D et al. 2020. Cell fate coordinates mechano-osmotic forces in intestinal crypt morphogenesis. bioRxiv 094359. https://doi.org/10.1101/2020.05.13.094359
    [Crossref]
  114. Zhang Z, Zwick S, Loew E, Grimley JS, Ramanathan S. 2019. Mouse embryo geometry drives formation of robust signaling gradients through receptor localization. Nat. Commun. 10:14516
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120319-030931
Loading
/content/journals/10.1146/annurev-cellbio-120319-030931
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error