1932

Abstract

This review presents a critical appraisal of high-quality studies in the field of developmental cognitive neuroscience, focusing on design issues that are critical for establishing effective educational neuroscience. I argue that cognitive neuroscience studies of cognitive development need to respect important experimental constraints. The use of longitudinal and intervention designs is key. The field needs to move beyond simply studying patterns of brain activation to studying brain mechanisms of information encoding and information processing. Indeed, studies at multiple levels of description are required, combining the assessment of individual differences in neural learning, sensory processing, cognitive processing, and children's behavior. Current evidence suggests that the child brain has essentially the same structures as the adult brain, carrying out essentially the same functions via the same mechanisms. This review demonstrates that neural systems that learn the patterns or regularities in environmental input (via statistical learning) can, in principle, acquire complex cognitive structures like language and conceptual knowledge.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-devpsych-042320-100040
2020-12-15
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/devpsych/2/1/annurev-devpsych-042320-100040.html?itemId=/content/journals/10.1146/annurev-devpsych-042320-100040&mimeType=html&fmt=ahah

Literature Cited

  1. Astle DE, Barnes JJ, Barker K, Colclough GL, Woolrich MW 2015. Cognitive training enhances intrinsic brain connectivity in childhood. J. Neurosci. 35:166277–83 https://doi.org/10.1523/JNEUROSCI.4517-14.2015
    [Crossref] [Google Scholar]
  2. Barnes J, Nobre AC, Woolrich MW, Baker K, Astle DE 2016. Training working memory in childhood enhances coupling between fronto-parietal control network and task-related regions. J. Neurosci. 36:349001–11 https://doi.org/10.1523/JNEUROSCI.0101-16.2016
    [Crossref] [Google Scholar]
  3. Bastos AM, Vezoli J, Fries P 2015. Communication through coherence with inter-areal delays. Curr. Opin. Neurobiol. 31:173–80 https://doi.org/10.1016/j.conb.2014.11.001
    [Crossref] [Google Scholar]
  4. Bathelt J, Gathercole SE, Johnson A, Astle DE 2017. Differences in brain morphology and working memory capacity across childhood. Dev. Sci. 21:3e12579 https://doi.org/10.1111/desc.12579
    [Crossref] [Google Scholar]
  5. Bhide A, Power AJ, Goswami U 2013. A rhythmic musical intervention for poor readers: a comparison of efficacy with a letter-based intervention. Mind Brain Educ 7:2113–23 https://doi.org/10.1111/mbe.12016
    [Crossref] [Google Scholar]
  6. Borst G, Cachia A, Vidal J, Simon G, Fischer C et al. 2014. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: a longitudinal study. Dev. Cogn. Neurosci. 9:126–35 https://doi.org/10.1016/j.dcn.2014.02.006
    [Crossref] [Google Scholar]
  7. Buzsáki G. 2006. Rhythms of the Brain Oxford, UK: Oxford Univ. Press https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
    [Crossref] [Google Scholar]
  8. Campanella J, Rovee‐Collier C. 2005. Latent learning and deferred imitation at 3 months. Infancy 7:3243–62 https://doi.org/10.1207/s15327078in0703_2
    [Crossref] [Google Scholar]
  9. Clark K, Helland T, Specht K, Narr K, Manis F et al. 2014. Neuroanatomical precursors of dyslexia identified from pre-reading through age 11. Brain 137:123136–46 https://doi.org/10.1093/brain/awu229
    [Crossref] [Google Scholar]
  10. Cohen L, Dehaene S. 2004. Specialization within the ventral stream: the case for the visual word form area. NeuroImage 22:466–76 https://doi.org/10.1016/j.neuroimage.2003.12.049
    [Crossref] [Google Scholar]
  11. Cornelisson P, Richardson A, Mason A, Fowler S, Stein J 1995. Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vis. Res. 35:1483–94 https://doi.org/10.1016/0042-6989(95)98728-R
    [Crossref] [Google Scholar]
  12. Csibra G, Gergely G. 2006. Social learning and social cognition: the case for pedagogy. Processes of Change in Brain and Cognitive Development: Attention and Performance XXI Y Munakata, MH Johnson 249–74 London: Oxford Univ. Press
    [Google Scholar]
  13. Csibra G, Gergely G. 2009. Natural pedagogy. Trends Cogn. Sci. 13:4148–53 https://doi.org/10.1016/j.tics.2009.01.005
    [Crossref] [Google Scholar]
  14. Cutini S, Szűcs D, Mead N, Huss M, Goswami U 2016. Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. NeuroImage 143:40–49 https://doi.org/10.1016/j.neuroimage.2016.08.012
    [Crossref] [Google Scholar]
  15. Danelli L, Berlingeri M, Bottini G, Borghese NA, Lucchese M et al. 2017. How many deficits in the same dyslexic brains? A behavioural and fMRI assessment of comorbidity in adult dyslexics. Cortex 97:125–42 https://doi.org/10.1016/j.cortex.2017.08.038
    [Crossref] [Google Scholar]
  16. Degé F, Schwarzer G. 2011. The effect of a music program on phonological awareness in preschoolers. Front. Psychol. 2:124 https://doi.org/10.3389/fpsyg.2011.00124
    [Crossref] [Google Scholar]
  17. Dehaene S, Le Clec'H G, Poline J-B, Le Bihan D, Cohen L 2002. The visual word form area: a prelexical representation of visual words in the fusiform gyrus. NeuroReport 13:3321–25 https://doi.org/10.1097/00001756-200203040-00015
    [Crossref] [Google Scholar]
  18. Eden G, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro T 1996. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382:658666–69 https://doi.org/10.1038/382066a0
    [Crossref] [Google Scholar]
  19. Facoetti A, Trussardi AN, Ruffino M, Lorusso ML, Cattaneo C et al. 2010. Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. J. Cogn. Neurosci. 22:51011–25 https://doi.org/10.1162/jocn.2009.21232
    [Crossref] [Google Scholar]
  20. Fandakova Y, Bunge SA, Wendelken C, Desautels P, Hunter L et al. 2018. The importance of knowing when you don't remember: Neural signaling of retrieval failure predicts memory improvement over time. Cereb. Cortex 28:190–102 https://doi.org/10.1093/cercor/bhw352
    [Crossref] [Google Scholar]
  21. Fekete T, Edelman S. 2011. Towards a computational theory of experience. Conscious. Cogn. 20:3807–27 https://doi.org/10.1016/j.concog.2011.02.010
    [Crossref] [Google Scholar]
  22. Fiser J, Berkes P, Orbán G, Lengyel M 2010. Statistically optimal perception and learning: from behaviour to neural representations. Trends Cogn. Sci. 14:3119–30 https://doi.org/10.1016/j.tics.2010.01.003
    [Crossref] [Google Scholar]
  23. Flaugnacco E, Lopez L, Terribili C, Zoia S, Schon D 2015. Music training increases phonological awareness and reading skills in developmental dyslexia: an RCT. PLOS ONE 10:90138715 https://doi.org/10.1371/journal.pone.0138715
    [Crossref] [Google Scholar]
  24. Giraud A-L, Poeppel D. 2012. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15:511–17 http://dx.doi.org/10.1038/nn.3063
    [Crossref] [Google Scholar]
  25. Goswami U. 2011. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 15:3–10 https://doi.org/10.1016/j.tics.2010.10.001
    [Crossref] [Google Scholar]
  26. Goswami U. 2015. Sensory theories of developmental dyslexia: three challenges for research. Nat. Rev. Neurosci. 16:43–54 http://dx.doi.org/10.1038/nrn3836
    [Crossref] [Google Scholar]
  27. Goswami U. 2016. Educational neuroscience: neural structure-mapping and the promise of oscillations. Curr. Opin. Behav. Sci. 10:89–96 https://doi.org/10.1016/j.cobeha.2016.05.011
    [Crossref] [Google Scholar]
  28. Goswami U. 2019a. Cognitive Development and Cognitive Neuroscience: The Learning Brain London: Routledge
    [Google Scholar]
  29. Goswami U. 2019b. Speech rhythm and language acquisition: an amplitude modulation phase hierarchy perspective. Ann. N. Y. Acad. Sci. 1453:167–78 https://doi.org/10.1111/nyas.14137
    [Crossref] [Google Scholar]
  30. Goswami U. 2019c. A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia. Lang. Linguist. Compass 13:5e12328 https://doi.org/10.1111/lnc3.12328
    [Crossref] [Google Scholar]
  31. Hart BH, Risley TR. 1995. Meaningful Differences in the Everyday Experience of Young American Children Baltimore, MD: Brookes
    [Google Scholar]
  32. Heim S, Pape-Neumann J, van Ermingen-Marbach M, Brinkhaus M, Grande M 2015. Shared vs. specific brain activation changes in dyslexia after training of phonology, attention, or reading. Brain Struct. Funct. 220:42191–207 https://doi.org/10.1007/s00429-014-0784-y
    [Crossref] [Google Scholar]
  33. Hickok G. 2014. The architecture of speech production and the role of the phoneme in speech processing. Lang. Cogn. Neurosci. 29:2–20 https://doi.org/10.1080/01690965.2013.834370
    [Crossref] [Google Scholar]
  34. Hobson HM, Bishop DVM. 2017. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future. R. Soc. Open Sci. 4:3160662 https://doi.org/10.1098/rsos.160662
    [Crossref] [Google Scholar]
  35. Hochstein S, Pavlovskaya M, Bonneh YS, Soroker N 2015. Global statistics are not neglected. J. Vis. 15:47 https://doi.org/10.1167/15.4.7
    [Crossref] [Google Scholar]
  36. Hoeft F, Hernandez A, McMillon G, Taylor-Hill H, Martindale JL et al. 2006. Neural basis of dyslexia: a comparison between dyslexic and nondyslexic children equated for reading ability. J. Neurosci. 26:4210700–8 https://doi.org/10.1523/JNEUROSCI.4931-05.2006
    [Crossref] [Google Scholar]
  37. Kalashnikova M, Goswami U, Burnham D 2018. Mothers speak differently to infants at-risk for dyslexia. Dev. Sci. 21:1e12487 https://doi.org/10.1111/desc.12487
    [Crossref] [Google Scholar]
  38. Kaufman J, Csibra G, Johnson MH 2003. Representing occluded objects in the human infant brain. Proc. R. Soc. B 270:S140–43 https://doi.org/10.1098/rsbl.2003.0067
    [Crossref] [Google Scholar]
  39. Kirkham NZ, Slemmer JA, Johnson SP 2002. Visual statistical learning in infancy: evidence of a domain general learning mechanism. Cognition 83:235–42 https://doi.org/10.1016/s0010-0277(02)00004-5
    [Crossref] [Google Scholar]
  40. Kopera-Frye K, Dehaene S, Streissguth AP 1996. Impairments of number processing induced by prenatal alcohol exposure. Neuropsychologia 34:1187–96 https://doi.org/10.1016/0028-3932(96)00043-7
    [Crossref] [Google Scholar]
  41. Langer N, Benjamin C, Minas J, Gaab N 2015. The neural correlates of reading fluency deficits in children. Cereb. Cortex 25:61441–53 https://doi.org/10.1093/cercor/bht330
    [Crossref] [Google Scholar]
  42. Langer N, Peysakhovich B, Zuk J, Drottar M, Sliva DD et al. 2017. White matter alterations in infants at risk for developmental dyslexia. Cereb. Cortex 27:21027–36 https://doi.org/10.1093/cercor/bhv281
    [Crossref] [Google Scholar]
  43. LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:7553436–44 https://doi.org/10.1038/nature14539
    [Crossref] [Google Scholar]
  44. Leong V, Goswami U. 2015. Acoustic-emergent phonology in the amplitude envelope of child-directed speech. PLOS ONE 10:120144411 https://doi.org/10.1371/journal.pone.0144411
    [Crossref] [Google Scholar]
  45. Leslie AM, Keeble S. 1987. Do six-month-old infants perceive causality. ? Cognition 25:3265–88 https://doi.org/10.1016/S0010-0277(87)80006-9
    [Crossref] [Google Scholar]
  46. Long C, Benischek A, Dewey D, Lebel C 2017. Age-related functional brain changes in young children. NeuroImage 155:322–30 https://doi.org/10.1016/j.neuroimage.2017.04.059
    [Crossref] [Google Scholar]
  47. Mandler JM, McDonough L. 1995. Long-term recall of event sequences in infancy. J. Exp. Child Psychol. 59:3457–74 https://doi.org/10.1006/jecp.1995.1021
    [Crossref] [Google Scholar]
  48. Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T 2009. To see or not to see: Prestimulus phase predicts visual awareness. J. Neurosci. 29:92725–32 https://doi.org/10.1523/JNEUROSCI.3963-08.2009
    [Crossref] [Google Scholar]
  49. Molinaro N, Lizarazu M, Lallier M, Bourguignon M, Carreiras M 2016. Out-of-synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 37:82767–83 https://doi.org/10.1002/hbm.23206
    [Crossref] [Google Scholar]
  50. Moors P, Wagemans J, de-Wit L 2017. Causal events enter awareness faster than non-causal events. PeerJ 5:12932 https://doi.org/10.7717%2Fpeerj.2932
    [Crossref] [Google Scholar]
  51. Moritz C, Yampolsky S, Papadelis G, Thomson J, Wolf M 2013. Links between early rhythm skills, musical training, and phonological awareness. Read. Writ. 26:5739–69 https://doi.org/10.1007/s11145-012-9389-0
    [Crossref] [Google Scholar]
  52. Moulton E, Bouhali F, Monzalvo K, Poupon C, Dehaene S et al. 2019. Connectivity between the visual word form area and the parietal lobe improves after the first year of reading instruction: a longitudinal MRI study in children. Brain Struct. Funct. 224:41519–36 https://doi.org/10.1007/s00429-019-01855-3
    [Crossref] [Google Scholar]
  53. Olulade OA, Napoliello EM, Eden GF 2013. Abnormal visual motion processing is not a cause of dyslexia. Neuron 79:180–90 https://doi.org/10.1016/j.neuron.2013.05.002
    [Crossref] [Google Scholar]
  54. Paulus M, Hunnis S, van Elk M, Bekkering H 2012. How learning to shake a rattle affects 8-month-old infants’ perception of the rattle's sound: electrophysiological evidence for action-effect binding in infancy. Dev. Cogn. Neurosci. 2:90–96 https://doi.org/10.1016/j.dcn.2011.05.006
    [Crossref] [Google Scholar]
  55. Perone S, Palanisamy J, Carlson SM 2018. Age‐related change in brain rhythms from early to middle childhood: links to executive function. Dev. Sci. 21:6e12691 https://doi.org/10.1111/desc.12691
    [Crossref] [Google Scholar]
  56. Poeppel D. 2014. The neuroanatomic and neurophysiological infrastructure for speech and language. Curr. Opin. Neurobiol. 28:C142–49 https://doi.org/10.1016/j.conb.2014.07.005
    [Crossref] [Google Scholar]
  57. Power AJ, Colling LC, Mead N, Barnes L, Goswami U 2016. Neural encoding of the speech envelope by children with developmental dyslexia. Brain Lang 160:1–10 https://doi.org/10.1016/j.bandl.2016.06.006
    [Crossref] [Google Scholar]
  58. Power AJ, Mead N, Barnes L, Goswami U 2013. Neural entrainment to rhythmic speech in children with developmental dyslexia. Front. Hum. Neurosci. 7:777 https://doi.org/10.3389/fnhum.2013.00777
    [Crossref] [Google Scholar]
  59. Pugh KR, Frost SJ, Rothman DL, Hoeft F, del Tufo SN et al. 2014. Glutamate and choline levels predict individual differences in reading ability in emergent readers. J. Neurosci. 34:114082–89 https://doi.org/10.1523/JNEUROSCI.3907-13.2014
    [Crossref] [Google Scholar]
  60. Ramírez-Esparza N, García-Sierra A, Kuhl PK 2014. Look who's talking: Speech style and social context in language input to infants are linked to concurrent and future speech development. Dev. Sci. 17:880–91 https://doi.org/10.1111/desc.12172
    [Crossref] [Google Scholar]
  61. Richlan F, Kronbichler M, Wimmer H 2011. Meta-analyzing brain dysfunctions in dyslexic children and adults. NeuroImage 56:31735–42 https://doi.org/10.1016/j.neuroimage.2011.02.040
    [Crossref] [Google Scholar]
  62. Riggins T, Geng F, Blankenship SL, Redcay E 2016. Hippocampal functional connectivity and episodic memory in early childhood. Dev. Cogn. Neurosci. 19:C58–69 https://doi.org/10.1016/j.dcn.2016.02.002
    [Crossref] [Google Scholar]
  63. Rovee-Collier C. 1993. The capacity for long-term memory in infancy. Curr. Dir. Psychol. Sci. 2:4130–35 https://doi.org/10.1111/1467-8721.ep10772618
    [Crossref] [Google Scholar]
  64. Saffran JR. 2001. Words in a sea of sounds: the output of infant statistical learning. Cognition 81:2149–69 https://doi.org/10.1016/s0010-0277(01)00132-9
    [Crossref] [Google Scholar]
  65. Sastre M III, Wendelken C, Lee JK, Bunge SA, Ghetti S 2016. Age- and performance-related differences in hippocampal contributions to episodic retrieval. Dev. Cogn. Neurosci. 19:42–50 https://doi.org/10.1016/j.dcn.2016.01.003
    [Crossref] [Google Scholar]
  66. Scheier C, Lewkowicz DJ, Shimojo S 2003. Sound induces perceptual reorganization of an ambiguous motion display in human infants. Dev. Sci. 6:233–44 https://doi.org/10.1111/1467-7687.00276
    [Crossref] [Google Scholar]
  67. Schleussner E, Schneider U, Arnscheidt C, Kähler C, Haueisen J, Seewald H 2004. Prenatal evidence of left-right asymmetries in auditory evoked responses using fetal magnetoencephalography. Early Hum. Dev. 78:2133–36 https://doi.org/10.1016/j.earlhumdev.2004.03.005
    [Crossref] [Google Scholar]
  68. Southgate V, Vernetti A. 2014. Belief-based action prediction in preverbal infants. Cognition 130:11–10 https://doi.org/10.1016%2Fj.cognition.2013.08.008
    [Crossref] [Google Scholar]
  69. Stavans M, Baillargeon R. 2018. Four‐month‐old infants individuate and track simple tools following functional demonstrations. Dev. Sci. 21:1e12500 https://doi.org/10.1111/desc.12500
    [Crossref] [Google Scholar]
  70. Stein J, Walsh V. 1997. To see but not to read: the magnocellular theory of dyslexia. Trends Neurosci 20:147–52 https://doi.org/10.1016/s0166-2236(96)01005-3
    [Crossref] [Google Scholar]
  71. Stojanov S, Mishra S, Thai NA, Dhanda N, Humayun A et al. 2019. Incremental object learning from contiguous views. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition8777–86 Piscataway, NJ: IEEE
    [Google Scholar]
  72. Turkeltaub PE, Gareau L, Flowers DL, Zeffiro TA, Eden GF 2003. Development of neural mechanisms for reading. Nat. Neurosci. 6:7767–73 https://doi.org/10.1038/nn1065
    [Crossref] [Google Scholar]
  73. Van Hirtum T, Moncada-Torres A, Ghesquiere P, Wouters J 2019. Speech envelope enhancement instantaneously effaces atypical speech perception in dyslexia. Ear Hear 40:51242–52 https://doi.org/10.1097/AUD.0000000000000706
    [Crossref] [Google Scholar]
  74. Vidyasagar TR, Pammer K. 2010. Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn. Sci. 14:57–63 https://doi.org/10.1016/j.tics.2009.12.003
    [Crossref] [Google Scholar]
  75. Vygotsky L. 1978. Mind in Society: The Development of Higher Psychological Processes Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  76. Wang Y, Mauer MV, Raney T, Peysakhovich B, Becker BLC et al. 2017. Development of tract-specific white matter pathways during early reading development in at-risk children and typical controls. Cereb. Cortex 27:42469–85 https://doi.org/10.1093/cercor/bhw095
    [Crossref] [Google Scholar]
  77. Weisleder A, Fernald A. 2013. Talking to children matters: Early language experience strengthens processing and builds vocabulary. Psychol. Sci. 24:112143–52 https://doi.org/10.1177/0956797613488145
    [Crossref] [Google Scholar]
  78. Wendelken C, Ferrer E, Ghetti S, Bailey SK, Cutting L, Bunge SA 2017. Frontoparietal structural connectivity in childhood predicts development of functional connectivity and reasoning ability: a large-scale longitudinal investigation. J. Neurosci. 37:358549–58 https://doi.org/10.1523/JNEUROSCI.3726-16.2017
    [Crossref] [Google Scholar]
  79. Xie W, Mallin BM, Richards JE 2018. Development of infant sustained attention and its relation to EEG oscillations: an EEG and cortical source analysis study. Dev. Sci. 21:3e12562 https://doi.org/10.1111/desc.12562
    [Crossref] [Google Scholar]
  80. Younger B, Cohen L. 1983. Infant perception of correlations among attributes. Child Dev 54:4858–67 https://doi.org/10.2307/1129890
    [Crossref] [Google Scholar]
  81. Ziegler JC, Goswami U. 2005. Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychol. Bull. 131:13–29 https://doi.org/10.1037/0033-2909.131.1.3
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-devpsych-042320-100040
Loading
/content/journals/10.1146/annurev-devpsych-042320-100040
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error