1932

Abstract

Neonates show broad-based, universal speech perception abilities, allowing them to acquire any language. Moreover, an increasing body of research shows that prenatal experience with speech, which is a low-pass signal mainly preserving prosody, already shapes those abilities. In this review, we first provide a summary of the empirical evidence available today on newborns’ universal and experience-modulated speech perception abilities. We then interpret these findings in a new framework, focusing on the role of the prenatal prosodic experience in speech perception development. We argue that the chronological sequence of infants’ experience with speech, starting before birth with a low-pass filtered signal and continuing with the full-band signal after birth, sets up the prosodic hierarchy and a cascade of embedded neural oscillations as its brain correlate, laying the foundations for language acquisition. Prosody, constituting infants’ very first experience with language, may thus play a fundamental role in speech perception and language development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-devpsych-050620-025732
2021-12-09
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/devpsych/3/1/annurev-devpsych-050620-025732.html?itemId=/content/journals/10.1146/annurev-devpsych-050620-025732&mimeType=html&fmt=ahah

Literature Cited

  1. Abboub N, Nazzi T, Gervain J. 2016. Prosodic grouping at birth. Brain Lang 162:46–59
    [Google Scholar]
  2. Abrams RM, Gerhardt KJ. 2000. The acoustic environment and physiological responses of the fetus. J. Perinatol. 20:S31–36
    [Google Scholar]
  3. Bartha-Doering L, Alexopoulos J, Giordano V, Stelzer L, Kainz T et al. 2019. Absence of neural speech discrimination in preterm infants at term-equivalent age. Dev. Cogn. Neurosci. 39:100679
    [Google Scholar]
  4. Benavides-Varela S, Gervain J. 2017. Learning word order at birth: a NIRS study. Dev. Cogn. Neurosci. 25:198–208
    [Google Scholar]
  5. Bijeljac-Babic R, Bertoncini J, Mehler J. 1993. How do 4-day-old infants categorize multisyllabic utterances?. Dev. Psychol. 29:4711–21
    [Google Scholar]
  6. Busnel M-C, Granier-Deferre C 1983. And what of fetal audition?. The Behavior of Human Infants A Oliverio, M Zappella 93–126 Boston, MA: Springer
    [Google Scholar]
  7. Buzsáki G. 2006. Rhythms of the Brain New York: Oxford Univ. Press
  8. Byers-Heinlein K, Burns TC, Werker JF. 2010. The roots of bilingualism in newborns. Psychol. Sci. 21:3343–48
    [Google Scholar]
  9. Cabrera L, Gervain J. 2020. Speech perception at birth: The brain encodes fast and slow temporal information. Sci. Adv. 6:30eaba7830
    [Google Scholar]
  10. Cheour M, Martynova O, Näätänen R, Erkkola R, Sillanpää M et al. 2002. Speech sounds learned by sleeping newborns. Nature 415:6872599–600
    [Google Scholar]
  11. Choi D, Black AK, Werker JF. 2018. Cascading and multisensory influences on speech perception development. Mind Brain Educ 12:4212–23
    [Google Scholar]
  12. Chomsky N. 1959. A review of B. F. Skinner's Verbal Behavior. Language 35:126–58
    [Google Scholar]
  13. Christophe A, Dupoux E, Bertoncini J, Mehler J. 1994. Do infants perceive word boundaries? An empirical study of the bootstrapping of lexical acquisition. J. Acoust. Soc. Am. 95:31570–80
    [Google Scholar]
  14. de Haan M 2013. Infant EEG and Event-Related Potentials London: Psychol. Press
  15. DeCasper AJ, Fifer WP. 1980. Of human bonding: Newborns prefer their mothers’ voices. Science 208:44481174–76
    [Google Scholar]
  16. DeCasper AJ, Lecanuet J-P, Busnel MC, Granier-Deferre C. 1994. Fetal reactions to recurrent maternal speech. Infant Behav. Dev. 17:2159–64
    [Google Scholar]
  17. DeCasper AJ, Sigafoos AD. 1983. The intrauterine heartbeat: a potent reinforcer for newborns. Infant Behav. Dev. 6:119–25
    [Google Scholar]
  18. DeCasper AJ, Spence MJ. 1986. Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behav. Dev. 9:2133–50
    [Google Scholar]
  19. Dehaene-Lambertz G, Baillet S. 1998. A phonological representation in the infant brain. NeuroReport 9:81885–88
    [Google Scholar]
  20. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L 2002. Functional neuroimaging of speech perception in infants. Science 298:56002013–15
    [Google Scholar]
  21. Dehaene-Lambertz G, Pena M. 2001. Electrophysiological evidence for automatic phonetic processing in neonates. NeuroReport 12:143155–58
    [Google Scholar]
  22. Della Longa L, Carnevali L, Patron E, Dragovic D, Farroni T 2021. Psychophysiological and visual behavioral responses to faces associated with affective and non-affective touch in four-month-old infants. Neuroscience 464:67–78
    [Google Scholar]
  23. Dellwo V 2006. Rhythm and speech rate: a variation coefficient for ΔC. Language and Language Processing P Karnowski, I Szigeti 231–41 Frankfurt, Germ: Peter Lang
    [Google Scholar]
  24. Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. 2014. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71
    [Google Scholar]
  25. Eggermont JJ, Moore JK 2012. Morphological and functional development of the auditory nervous system. Human Auditory Development L Werner, RR Fay, AN Popper 61–105 New York: Springer
    [Google Scholar]
  26. Eimas PD, Siqueland ER, Jusczyk PW, Vigorito J. 1971. Speech perception in infants. Science 171:968303–6
    [Google Scholar]
  27. Elman J, Bates E, Johnson M, Karmiloff-Smith A, Parisi D, Plunkett K. 1997. Rethinking Innateness: A Connectionist Perspective on Development Boston: MIT Press
  28. Floccia C, Christophe A, Bertoncini J 1997. High-amplitude sucking and newborns: the quest for underlying mechanisms. J. Exp. Child Psychol. 64:175–98
    [Google Scholar]
  29. Fontolan L, Morillon B, Liegeois-Chauvel C et al. 2014. The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex. Nat. Commun. 5:4694
    [Google Scholar]
  30. Friederici AD. 2012. The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn. Sci. 16:262–68
    [Google Scholar]
  31. Gerhardt KJ, Otto R, Abrams RM, Colle JJ, Burchfield DJ, Peters AJM. 1992. Cochlear microphonics recorded from fetal and newborn sheep. Am. J. Otolaryngol. 13:4226–33
    [Google Scholar]
  32. Gervain J. 2015. Plasticity in early language acquisition: the effects of prenatal and early childhood experience. Curr. Opin. Neurobiol. 35:13–20
    [Google Scholar]
  33. Gervain J 2018. Gateway to language: the perception of prosody at birth. Boundaries Crossed, at the Interfaces of Morphosyntax, Phonology, Pragmatics and Semantics H Bartos, M den Dikken, Z Bánréti, T Váradi 373–84 Cham, Switz: Springer
    [Google Scholar]
  34. Gervain J, Berent I, Werker JF. 2012. Binding at birth: The newborn brain detects identity relations and sequential position in speech. J. Cogn. Neurosci. 24:3564–74
    [Google Scholar]
  35. Gervain J, Macagno F, Cogoi S, Peña M, Mehler J 2008. The neonate brain detects speech structure. PNAS 105:3714222–27
    [Google Scholar]
  36. Gervain J, Mehler J. 2010. Speech perception and language acquisition in the first year of life. Annu. Rev. Psychol. 61:191–218
    [Google Scholar]
  37. Gervain J, Mehler J, Werker JF, Nelson CA, Csibra G et al. 2011. Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Dev. Cogn. Neurosci. 1:122–46
    [Google Scholar]
  38. Gervain J, Werker JF. 2013. Prosody cues word order in 7-month-old bilingual infants. Nat. Commun. 4:11490
    [Google Scholar]
  39. Ghitza O. 2011. Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm. Front. Psychol. 2:130
    [Google Scholar]
  40. Giraud A-L, Poeppel D. 2012. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15:4511–17
    [Google Scholar]
  41. Gómez MD, Berent I, Benavides-Varela S, Bion RAH, Cattarossi L et al. 2014. Language universals at birth. PNAS 111:165837–41
    [Google Scholar]
  42. Gonzalez-Gomez N, Nazzi T. 2012. Phonotactic acquisition in healthy preterm infants. Dev. Sci. 15:6885–94
    [Google Scholar]
  43. Goswami U. 2020. Toward realizing the promise of educational neuroscience: improving experimental design in developmental cognitive neuroscience studies. Annu. Rev. Dev. Psychol. 2:133–55
    [Google Scholar]
  44. Grabe E, Low EL 2002. Durational variability in speech and the rhythm class hypothesis. Laboratory Phonology 7 C Gussenhoven, N Warner 515–46 Berlin: de Gruyter Mouton
    [Google Scholar]
  45. Granier-Deferre C, Bassereau S, Ribeiro A, Jacquet A-Y, DeCasper AJ. 2011. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLOS ONE 6:2e17304
    [Google Scholar]
  46. Griffiths SK, Brown WSK, Gerhardt J, Abrams RM, Morris RJ 1994. The perception of speech sounds recorded within the uterus of a pregnant sheep. J. Acoust. Soc. Am. 96:42055–63
    [Google Scholar]
  47. Gustafson GE, Sanborn SM, Lin H-C, Green JA. 2017. Newborns’ cries are unique to individuals (but not to language environment). Infancy 22:736–47
    [Google Scholar]
  48. Hovsepyan S, Olasagasti I, Giraud AL 2020. Combining predictive coding and neural oscillations enables online syllable recognition in natural speech. Nat. Commun. 11:3117
    [Google Scholar]
  49. Huotilainen M, Kujala A, Hotakainen M, Parkkonen L, Taulu S et al. 2005. Short-term memory functions of the human fetus recorded with magnetoencephalography. NeuroReport 16:181–84
    [Google Scholar]
  50. Izard V, Sann C, Spelke ES, Streri A. 2009. Newborn infants perceive abstract numbers. PNAS 106:2510382–85
    [Google Scholar]
  51. Jardri R, Pins D, Houfflin-Debarge V, Chaffiotte C, Rocourt N et al. 2008. Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. NeuroImage 42:110–18
    [Google Scholar]
  52. Johnson MH, Dziurawiec S, Ellis H, Morton J 1991. Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition 40:11–19
    [Google Scholar]
  53. Jusczyk PW 2001. Bootstrapping from the signal: some further directions. Language Acquisition and Language Disorders J Weissenborn, B Höhle 3–23 Amsterdam: John Benjamins
    [Google Scholar]
  54. Kotilahti K, Nissilä I, Näsi T, Lipiäinen L, Noponen T et al. 2009. Hemodynamic responses to speech and music in newborn infants. Hum. Brain Mapp. 31:595–603
    [Google Scholar]
  55. Kuhl PK. 1981. Discrimination of speech by nonhuman animals: basic auditory sensitivities conducive to the perception of speech-sound categories. J. Acoust. Soc. Am 70:2340–49
    [Google Scholar]
  56. Kuhl PK. 1986. Theoretical contributions of tests on animals to the special-mechanisms debate in speech. Exp. Biol. 45:233–65
    [Google Scholar]
  57. Kuhl PK. 2004. Early language acquisition: cracking the speech code. Nat. Rev. Neurosci. 5:11831–43
    [Google Scholar]
  58. Ladányi E, Persici V, Fiveash A, Tillmann B, Gordon RL 2020. Is atypical rhythm a risk factor for developmental speech and language disorders?. WIREs Cogn. Sci. 11:5e1528
    [Google Scholar]
  59. Lecanuet J-P, Granier-Deferre C 1993. Speech stimuli in the fetal environment. Developmental Neurocognition: Speech and Face Processing in the First Year of Life B Boysson-Bardies, S de Schonen, P Jusczyk, P MacNeilage, J Morton 237–48 Dordrecht, Neth: Springer
    [Google Scholar]
  60. Lew S, Sliva DD, Choe M-S, Grant PE, Okada Y et al. 2013. Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model. NeuroImage 76:282–93
    [Google Scholar]
  61. Lloyd-Fox S, Blasi A, Elwell CE 2009. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 34:269–84
    [Google Scholar]
  62. Loukina A, Kochanski G, Rosner B, Keane E, Shih C 2011. Rhythm measures and dimensions of durational variation in speech. J. Acoust. Soc. Am. 129:53258–70
    [Google Scholar]
  63. Mahmoudzadeh M, Dehaene-Lambertz G, Fournier M, Kongolo G, Goudjil S et al. 2013. Syllabic discrimination in premature human infants prior to complete formation of cortical layers. PNAS 110:124846–51
    [Google Scholar]
  64. Mampe B, Friederici AD, Christophe A, Wermke K 2009. Newborns’ cry melody is shaped by their native language. Curr. Biol. 19:231994–97
    [Google Scholar]
  65. Manfredi C, Viellevoye R, Orlandi S, Torres-García A, Pieraccini G, Reyes-García CA. 2019. Automated analysis of newborn cry: relationships between melodic shapes and native language. Biomed. Signal Process. Control 53:101561
    [Google Scholar]
  66. Mastropieri D, Turkewitz G. 1999. Prenatal experience and neonatal responsiveness to vocal expressions of emotion. Dev. Psychobiol. 35:204–14
    [Google Scholar]
  67. May L, Byers-Heinlein K, Gervain J, Werker JF 2011. Language and the newborn brain: Does prenatal language experience shape the neonate neural response to speech?. Front. Lang. Sci. 2:222
    [Google Scholar]
  68. May L, Gervain J, Carreiras M, Werker JF 2018. The specificity of the neural response to speech at birth. Dev. Sci. 21:3e12564
    [Google Scholar]
  69. Mazuka R, Hasegawa M, Tsuji S. 2014. Development of non-native vowel discrimination: improvement without exposure. Dev. Psychobiol. 56:2192–209
    [Google Scholar]
  70. McCauley SM, Christiansen MH. 2019. Language learning as language use: a cross-linguistic model of child language development. Psychol. Rev. 126:11–51
    [Google Scholar]
  71. Mehler J, Dupoux E, Nazzi T, Dehaene-Lambertz G 1996. Coping with linguistic diversity: the infant's viewpoint. Signal to Syntax: Bootstrapping from Speech to Grammar in Early Acquisition JL Morgan, K Demuth 101–16 Mahwah, NJ: Lawrence Erlbaum Assoc.
    [Google Scholar]
  72. Mehler J, Jusczyk PW, Lambertz G, Halsted N, Bertoncini J, Amiel-Tison C. 1988. A precursor of language acquisition in young infants. Cognition 29:143–78
    [Google Scholar]
  73. Moon C 2017. Prenatal experience with the maternal voice. Early Vocal Contact and Preterm Infant Brain Development M Filippa, P Kuhn, B Westrup 25–37 Cham, Switz: Springer
    [Google Scholar]
  74. Moon C, Cooper RP, Fifer WP 1993. Two-day-olds prefer their native language. Infant Behav. Dev. 16:4495–500
    [Google Scholar]
  75. Moon C, Lagercrantz H, Kuhl PK. 2013. Language experienced in utero affects vowel perception after birth: a two-country study. Acta Paediatr 102:2156–60
    [Google Scholar]
  76. Morgan JL, Demuth K. 1996. Signal to Syntax: Bootstrapping from Speech to Grammar in Early Acquisition Hillsdale, NJ: Lawrence Erlbaum
  77. Nagy E, Molnar P. 2004. Homo imitans or homo provocans? Human imprinting model of neonatal imitation. Infant Behav. Dev. 27:154–63
    [Google Scholar]
  78. Narayan CR, Werker JF, Beddor PS. 2010. The interaction between acoustic salience and language experience in developmental speech perception: evidence from nasal place discrimination. Dev. Sci. 13:3407–20
    [Google Scholar]
  79. Nazzi T, Bertoncini J, Mehler J. 1998. Language discrimination by newborns: toward an understanding of the role of rhythm. J. Exp. Psychol. Hum. Percept. Perform. 24:3756–66
    [Google Scholar]
  80. Nespor M, Shukla M, van de Vijver R, Avesani C, Schraudolf H, Donati C. 2008. Different phrasal prominence realization in VO and OV languages. Lingue Linguaggio 7:2139–68
    [Google Scholar]
  81. Nespor M, Vogel I. 1986. Prosodic Phonology 28: Dordrecht, Neth: Foris
  82. Ortiz Barajas MC, Guevara R, Gervain J 2021. The origins and development of speech envelope tracking during the first months of life. Dev. Cogn. Neurosci. 48:100915
    [Google Scholar]
  83. Panneton RK, DeCasper AJ. 1986. Newborns’ postnatal preference for a prenatally experienced melody Paper presented at the International Conference on Infant Studies Beverly Hills, CA:
  84. Peña M, Maki A, Kovacic D, Dehaene-Lambertz G, Koizumi H et al. 2003. Sounds and silence: an optical topography study of language recognition at birth. PNAS 100:2011702–5
    [Google Scholar]
  85. Peña M, Pittaluga E, Mehler J 2010. Language acquisition in premature and full-term infants. PNAS 107:83823–28
    [Google Scholar]
  86. Peña M, Werker JF, Dehaene-Lambertz G. 2012. Earlier speech exposure does not accelerate speech acquisition. J. Neurosci. 32:3311159–63
    [Google Scholar]
  87. Petitjean C. 1989. Une condition de l'audition fœtale: la conduction sonore osseuse. Conséquences cliniques et applications pratiques MD Diss., Univ. Franche-Comté Besançon, Fr.:
  88. Pierce LJ, Klein D, Chen J-K, Delcenserie A, Genesee F 2014. Mapping the unconscious maintenance of a lost first language. PNAS 111:4817314–19
    [Google Scholar]
  89. Querleu D, Renard X, Versyp F, Paris-Delrue L, Crèpin G. 1988. Fetal hearing. Eur. J. Obstet. Gynecol. Reprod. Biol. 28:3191–212
    [Google Scholar]
  90. Ramus F, Hauser MD, Miller C, Morris D, Mehler J 2000. Language discrimination by human newborns and by cotton-top tamarin monkeys. Science 288:5464349–51
    [Google Scholar]
  91. Ramus F, Nespor M, Mehler J. 1999. Correlates of linguistic rhythm in the speech signal. Cognition 73:3265–92
    [Google Scholar]
  92. Roche-Labarbe N, Aarabi A, Kongolo G, Gondry-Jouet C, Dümpelmann M et al. 2008. High-resolution electroencephalography and source localization in neonates. Hum. Brain Mapp. 29:2167–76
    [Google Scholar]
  93. Sansavini A, Bertoncini J, Giovanelli G. 1997. Newborns discriminate the rhythm of multisyllabic stressed words. Dev. Psychol. 33:13–11
    [Google Scholar]
  94. Sato H, Hirabayashi Y, Tsubokura H, Kanai M, Ashida T et al. 2012. Cerebral hemodynamics in newborn infants exposed to speech sounds: a whole-head optical topography study. Hum. Brain Mapp. 33:92092–103
    [Google Scholar]
  95. Selkirk E. 1986. On derived domains in sentence phonology. Phonology 3:371–405
    [Google Scholar]
  96. Shi R, Werker JF, Morgan JL. 1999. Newborn infants’ sensitivity to perceptual cues to lexical and grammatical words. Cognition 72:2B11–21
    [Google Scholar]
  97. Shukla M, White KS, Aslin RN. 2011. Prosody guides the rapid mapping of auditory word forms onto visual objects in 6-mo-old infants. PNAS 108:156038–43
    [Google Scholar]
  98. Spence MJ, DeCasper AJ. 1987. Prenatal experience with low-frequency maternal-voice sounds influence neonatal perception of maternal voice samples. Infant Behav. Dev. 10:2133–42
    [Google Scholar]
  99. Swingley D 2021. Infants’ learning of speech sounds and word forms. Oxford Handbook of the Mental Lexicon LR Gleitman, A Papafragou, JC Trueswell Oxford: Oxford Univ. Press. In press
    [Google Scholar]
  100. Telkemeyer S, Rossi S, Koch SP, Nierhaus T, Steinbrink J et al. 2009. Sensitivity of newborn auditory cortex to the temporal structure of sounds. J. Neurosci. 29:4714726–33
    [Google Scholar]
  101. Tomasello M. 2000. Do young children have adult syntactic competence?. Cognition 74:3209–53
    [Google Scholar]
  102. Vannasing P, Florea O, González-Frankenberger B, Tremblay J, Paquette N et al. 2016. Distinct hemispheric specializations for native and non-native languages in one-day-old newborns identified by FNIRS. Neuropsychologia 84:63–69
    [Google Scholar]
  103. Ventureyra VAG, Pallier C, Yoo H-Y. 2004. The loss of first language phonetic perception in adopted Koreans. J. Neurolinguist. 17:179–91
    [Google Scholar]
  104. Vouloumanos A, Hauser MD, Werker JF, Martin A. 2010. The tuning of human neonates’ preference for speech. Child Dev 81:2517–27
    [Google Scholar]
  105. Vouloumanos A, Werker JF. 2004. Tuned to the signal: the privileged status of speech for young infants. Dev. Sci. 7:3270–76
    [Google Scholar]
  106. Wallois F, Mahmoudzadeh M, Patil A, Grebe R 2012. Usefulness of simultaneous EEG-NIRS recording in language studies. Brain Lang 121:2110–23
    [Google Scholar]
  107. Weikum WM, Oberlander TF, Hensch TK, Werker JF. 2012. Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. PNAS 109:Suppl. 217221–27
    [Google Scholar]
  108. Werker JF. 2018. Perceptual beginnings to language acquisition. Appl. Psycholinguist. 39:4703–28
    [Google Scholar]
  109. Werker JF, Curtin S. 2005. PRIMIR: a developmental model of speech processing. Lang. Learn. Dev. 1:2197–234
    [Google Scholar]
  110. Werker JF, Hensch TK. 2015. Critical periods in speech perception: new directions. Annu. Rev. Psychol. 66:173–96
    [Google Scholar]
  111. Werker JF, Tees RC. 1984. Cross-language speech perception: evidence for perceptual reorganization during the first year of life. Infant Behav. Dev. 7:149–63
    [Google Scholar]
  112. Werker JF, Tees RC. 2005. Speech perception as a window for understanding plasticity and commitment in language systems of the brain. Dev. Psychobiol. 46:3233–51
    [Google Scholar]
  113. Wiget L, White L, Schuppler B, Grenon I, Rauch O, Mattys SL 2010. How stable are acoustic metrics of contrastive speech rhythm?. J. Acoust. Soc. Am 127:31559–69
    [Google Scholar]
/content/journals/10.1146/annurev-devpsych-050620-025732
Loading
/content/journals/10.1146/annurev-devpsych-050620-025732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error