1932

Abstract

Memory and metamemory processes are essential to retrieve detailed memories and appreciate the phenomenological experience of recollection. Developmental cognitive neuroscience has made strides in revealing the neural changes associated with improvements in memory and metamemory during childhood and adolescence. We argue that hippocampal changes, in concert with surrounding cortical regions, support developmental improvements in the precision, complexity, and flexibility of memory representations. In contrast, changes in frontoparietal regions promote efficient encoding and retrieval strategies. A smaller body of literature on the neural substrates of metamemory development suggests that error monitoring processes implemented in the anterior insula and dorsal anterior cingulate cortex trigger, and perhaps support the development of, metacognitive evaluationsin the prefrontal cortex, while developmental changes in the parietal cortex support changes in the phenomenological experience of episodic retrieval. Our conclusions highlight the necessity of integrating these lines of research into a comprehensive model on the neurocognitive development of episodic recollection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-devpsych-060320-085634
2020-12-15
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/devpsych/2/1/annurev-devpsych-060320-085634.html?itemId=/content/journals/10.1146/annurev-devpsych-060320-085634&mimeType=html&fmt=ahah

Literature Cited

  1. Amaral DG, Insausti R. 1990. The hippocampal formation. The Human Nervous System G Paxinos 711–55 San Diego, CA: Academic
    [Google Scholar]
  2. Amlien IK, Sneve MH, Vidal-Piñeiro D, Walhovd KB, Fjell AM 2018. The lifespan trajectory of the encoding-retrieval flip: a multimodal examination of medial parietal cortex contributions to episodic memory. J. Neurosci. 38:408666–79 https://doi.org/10.1523/jneurosci.1702-17.2018
    [Crossref] [Google Scholar]
  3. Badre D, Wagner AD. 2007. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45:132883–901 https://doi.org/10.1016/j.neuropsychologia.2007.06.015
    [Crossref] [Google Scholar]
  4. Baird B, Smallwood J, Gorgolewski KJ, Margulies DS 2013. Medial and lateral networks in anterior prefrontal cortex support metacognitive ability for memory and perception. J. Neurosci. 33:4216657–65 https://doi.org/10.1523/jneurosci.0786-13.2013
    [Crossref] [Google Scholar]
  5. Bang D, Fleming SM. 2018. Distinct encoding of decision confidence in human medial prefrontal cortex. PNAS 115:236082–87 https://doi.org/10.1073/pnas.1800795115
    [Crossref] [Google Scholar]
  6. Bauer PJ. 2007. Recall in infancy: a neurodevelopmental account. Curr. Dir. Psychol. Sci. 16:3142–46 https://doi.org/10.1111/j.1467-8721.2007.00492.x
    [Crossref] [Google Scholar]
  7. Bauer PJ, Wenner JA, Dropik PL, Wewerka SS 2000. Parameters of remembering and forgetting in the transition from infancy to early childhood. Monogr. Soc. Res. Child Dev. 65:41–204
    [Google Scholar]
  8. Berryhill ME, Phuong L, Picasso L, Cabeza R, Olson IR 2007. Parietal lobe and episodic memory: Bilateral damage causes impaired free recall of autobiographical memory. J. Neurosci. 27:5214415–23 https://doi.org/10.1523/jneurosci.4163-07.2007
    [Crossref] [Google Scholar]
  9. Bjorklund DF, Dukes C, Brown RD 2009. The development of memory strategies. The Development of Memory in Infancy and Childhood ML Courage, N Cowan 145–75 New York: Psychology
    [Google Scholar]
  10. Blumenfeld RS, Ranganath C. 2007. Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13:3280–91 https://doi.org/10.1177/1073858407299290
    [Crossref] [Google Scholar]
  11. Boldt A, Yeung N. 2015. Shared neural markers of decision confidence and error detection. J. Neurosci. 35:83478–84 https://doi.org/10.1523/jneurosci.0797-14.2015
    [Crossref] [Google Scholar]
  12. Bonnici HM, Richter FR, Yazar Y, Simons JS 2016. Multimodal feature integration in the angular gyrus during episodic and semantic retrieval. J. Neurosci. 36:205462–71 https://doi.org/10.1523/jneurosci.4310-15.2016
    [Crossref] [Google Scholar]
  13. Brod G, Lindenberger U, Shing YL 2017. Neural activation patterns during retrieval of schema-related memories: differences and commonalities between children and adults. Dev. Sci. 20:6e12485 https://doi.org/10.1111/desc.12475
    [Crossref] [Google Scholar]
  14. Brunec IK, Bellana B, Ozubko JD, Man V, Robin J et al. 2018. Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr. Biol. 28:132129–2135.E6. https://doi.org/10.1016/j.cub.2018.05.016
    [Crossref] [Google Scholar]
  15. Cabeza R, Ciaramelli E, Olson IR, Moscovitch M 2008. The parietal cortex and episodic memory: an attentional account. Nat. Rev. Neurosci. 9:8613–25 https://doi.org/10.1038/nrn2459
    [Crossref] [Google Scholar]
  16. Calabro FJ, Murty VP, Jalbrzikowski M, Tervo-Clemmens B, Luna B 2019. Development of hippocampal-prefrontal cortex interactions through adolescence. Cereb. Cortex 30:31548–58 https://doi.org/10.1093/cercor/bhz186
    [Crossref] [Google Scholar]
  17. Canada KL, Ngo CT, Newcombe NS, Geng F, Riggins T 2018. It's all in the details: relations between young children's developing pattern separation abilities and hippocampal subfield volumes. Cereb. Cortex 29:83427–33 https://doi.org/10.1093/cercor/bhy211
    [Crossref] [Google Scholar]
  18. Carpenter J, Sherman MT, Kievit RA, Seth AK, Lau H, Fleming SM 2019. Domain-general enhancements of metacognitive ability through adaptive training. J. Exp. Psychol. Gen. 148:151–64 https://doi.org/10.1037/xge0000505
    [Crossref] [Google Scholar]
  19. Chadwick MJ, Hassabis D, Weiskopf N, Maguire EA 2010. Decoding individual episodic memory traces in the human hippocampus. Curr. Biol. 20:6544–47 https://doi.org/10.1016/j.cub.2010.01.053
    [Crossref] [Google Scholar]
  20. Chua EF, Schacter DL, Rand-Giovannetti E, Sperling RA 2006. Understanding metamemory: neural correlates of the cognitive process and subjective level of confidence in recognition memory. NeuroImage 29:41150–60 https://doi.org/10.1016/j.neuroimage.2005.09.058
    [Crossref] [Google Scholar]
  21. Chua EF, Schacter DL, Rand-Giovannetti E, Sperling RA 2007. Evidence for a specific role of the anterior hippocampal region in successful associative encoding. Hippocampus 17:111071–80 https://doi.org/10.1002/hipo.20340
    [Crossref] [Google Scholar]
  22. Chua EF, Schacter DL, Sperling RA 2009. Neural correlates of metamemory: a comparison of feeling-of-knowing and retrospective confidence judgments. J. Cogn. Neurosci. 21:91751–65 https://doi.org/10.1162/jocn.2009.21123
    [Crossref] [Google Scholar]
  23. Crone EA, Wendelken C, Donohue S, Leijenhorst LV, Bunge SA 2006. Neurocognitive development of the ability to manipulate information in working memory. PNAS 103:249315–20 https://doi.org/10.1073/pnas.0510088103
    [Crossref] [Google Scholar]
  24. Daugherty AM, Flinn R, Ofen N 2017. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood. NeuroImage 153:75–85 https://doi.org/10.1016/j.neuroimage.2017.03.047
    [Crossref] [Google Scholar]
  25. Davachi L, Mitchell JP, Wagner AD 2003. Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. PNAS 100:42157–62 https://doi.org/10.1073/pnas.0337195100
    [Crossref] [Google Scholar]
  26. Davidow JY, Foerde K, Galván A, Shohamy D 2016. An upside to reward sensitivity: The hippocampus supports enhanced reinforcement learning in adolescence. Neuron 92:193–99 https://doi.org/10.1016/j.neuron.2016.08.031
    [Crossref] [Google Scholar]
  27. DeMaster D, Coughlin C, Ghetti S 2016. Retrieval flexibility and reinstatement in the developing hippocampus. Hippocampus 26:4492–501 https://doi.org/10.1002/hipo.22538
    [Crossref] [Google Scholar]
  28. DeMaster D, Ghetti S. 2013. Developmental differences in hippocampal and cortical contributions to episodic retrieval. Cortex 49:61482–93 https://doi.org/10.1016/j.cortex.2012.08.004
    [Crossref] [Google Scholar]
  29. DeMaster D, Pathman T, Lee JK, Ghetti S 2014. Structural development of the hippocampus and episodic memory: developmental differences along the anterior/posterior axis. Cereb. Cortex 24:113036–45 https://doi.org/10.1093/cercor/bht160
    [Crossref] [Google Scholar]
  30. Diana RA, Yonelinas AP, Ranganath C 2007. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn. Sci. 11:9379–86 https://doi.org/10.1016/j.tics.2007.08.001
    [Crossref] [Google Scholar]
  31. Dobbins IG, Foley H, Schacter DL, Wagner AD 2002. Executive control during episodic retrieval. Neuron 35:5989–96 https://doi.org/10.1016/s0896-6273(02)00858-9
    [Crossref] [Google Scholar]
  32. Eichenbaum H, Cohen NJ. 2001. From Conditioning to Conscious Recollection: Memory Systems of the Brain Oxford, UK: Oxford Univ. Press
  33. Eichenbaum H, Yonelinas AP, Ranganath C 2007. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30:1123–52 https://doi.org/10.1146/annurev.neuro.30.051606.094328
    [Crossref] [Google Scholar]
  34. Fandakova Y, Bunge SA, Wendelken C, Desautels P, Hunter L et al. 2018. The importance of knowing when you don't remember: Neural signaling of retrieval failure predicts memory improvement over time. Cereb. Cortex 28:190–102 https://doi.org/10.1093/cercor/bhw352
    [Crossref] [Google Scholar]
  35. Fandakova Y, Gruber M. 2019. Curiosity and surprise enhance memory differently in adolescents than in children. PsyArXiv https://doi.org/10.31234/osf.io/s36e5
    [Crossref] [Google Scholar]
  36. Fandakova Y, Leckey S, Driver CC, Bunge SA, Ghetti S 2019. Neural specificity of scene representations is related to memory performance in childhood. NeuroImage 199:105–13 https://doi.org/10.1016/j.neuroimage.2019.05.050
    [Crossref] [Google Scholar]
  37. Fandakova Y, Selmeczy D, Leckey S, Grimm KJ, Wendelken C et al. 2017. Changes in ventromedial prefrontal and insular cortex support the development of metamemory from childhood into adolescence. PNAS 114:297582–87 https://doi.org/10.1073/pnas.1703079114
    [Crossref] [Google Scholar]
  38. Fandakova Y, Shing YL, Lindenberger U 2013. Differences in binding and monitoring mechanisms contribute to lifespan age differences in false memory. Dev. Psychol. 49:101822–32 https://doi.org/10.1037/a0031361
    [Crossref] [Google Scholar]
  39. Filevich E, Forlim CG, Fehrman C, Forster C, Paulus M et al. 2020. I know that I know nothing: cortical thickness and functional connectivity underlying meta-ignorance ability in pre-schoolers. Dev. Cogn. Neurosci. 41:100738 https://doi.org/10.1016/j.dcn.2019.100738
    [Crossref] [Google Scholar]
  40. Fleck MS, Daselaar SM, Dobbins IG, Cabeza R 2006. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb. Cortex 16:111623–30 https://doi.org/10.1093/cercor/bhj097
    [Crossref] [Google Scholar]
  41. Fleming SM, Weil RS, Nagy Z, Dolan RJ, Rees G 2010. Relating introspective accuracy to individual differences in brain structure. Science 329:59981541–43 https://doi.org/10.1126/science.1191883
    [Crossref] [Google Scholar]
  42. Fynes-Clinton S, Marstaller L, Burianová H 2019. Differentiation of functional networks during long-term memory retrieval in children and adolescents. NeuroImage 191:93–103 https://doi.org/10.1016/j.neuroimage.2019.01.065
    [Crossref] [Google Scholar]
  43. Ghetti S, Alexander KW. 2004. “If it happened, I would remember it”: strategic use of event memorability in the rejection of false autobiographical events. Child Dev 75:2542–61 https://doi.org/10.1111/j.1467-8624.2004.00692.x
    [Crossref] [Google Scholar]
  44. Ghetti S, Angelini L. 2008. The development of recollection and familiarity in childhood and adolescence: evidence from the dual-process signal detection model. Child Dev 79:2339–58 https://doi.org/10.1111/j.1467-8624.2007.01129.x
    [Crossref] [Google Scholar]
  45. Ghetti S, Castelli P, Lyons KE 2010a. Knowing about not remembering: developmental dissociations in lack-of-memory monitoring. Dev. Sci. 13:4611–21 https://doi.org/10.1111/j.1467-7687.2009.009008.x
    [Crossref] [Google Scholar]
  46. Ghetti S, Coughlin C. 2018. Stuck in the present? Constraints on children's episodic prospection. Trends Cogn. Sci. 22:10846–50 https://doi.org/10.1016/j.tics.2018.07.013
    [Crossref] [Google Scholar]
  47. Ghetti S, DeMaster D, Yonelinas A, Bunge S 2010b. Developmental differences in medial temporal lobe function during memory encoding. J. Neurosci. 30:289548–56 https://doi.org/10.1523/jneurosci.3500-09.2010
    [Crossref] [Google Scholar]
  48. Ghetti S, Lyons KE, Lazzarin F, Cornoldi C 2008. The development of metamemory monitoring during retrieval: the case of memory strength and memory absence. J. Exp. Child Psychol. 99:3157–81 https://doi.org/10.1016/j.jecp.2007.11.001
    [Crossref] [Google Scholar]
  49. Ghetti S, Mirandola C, Angelini L, Cornoldi C, Ciaramelli E 2011. Development of subjective recollection: understanding of and introspection on memory states. Child Dev 82:61954–69 https://doi.org/10.1111/j.1467-8624.2011.01645.x
    [Crossref] [Google Scholar]
  50. Ghetti S, Qin J, Goodman GS 2002. False memories in children and adults: age, distinctiveness, and subjective experience. Dev. Psychol. 38:5705–18 https://doi.org/10.1037/0012-1649.38.5.705
    [Crossref] [Google Scholar]
  51. Giedd JN. 2004. Structural magnetic resonance imaging of the adolescent brain. Ann. N.Y. Acad. Sci. 1021:177–85 https://doi.org/10.1196/annals.1308.009
    [Crossref] [Google Scholar]
  52. Gilmore JH, Shi F, Woolson SL, Knickmeyer RC, Short SJ et al. 2011. Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb. Cortex 22:112478–85 https://doi.org/10.1093/cercor/bhr327
    [Crossref] [Google Scholar]
  53. Giovanello KS, Schnyer D, Verfaellie M 2009. Distinct hippocampal regions make unique contributions to relational memory. Hippocampus 19:2111–17 https://doi.org/10.1002/hipo.20491
    [Crossref] [Google Scholar]
  54. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D et al. 2004. Dynamic mapping of human cortical development during childhood through early adulthood. PNAS 101:218174–79 https://doi.org/10.1073/pnas.0402680101
    [Crossref] [Google Scholar]
  55. Gogtay N, Nugent TF, Herman DH, Ordonez A, Greenstein D et al. 2006. Dynamic mapping of normal human hippocampal development. Hippocampus 16:8664–72 http://doi.org/10.1002/hipo.20193
    [Crossref] [Google Scholar]
  56. Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL et al. 2007. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat. Neurosci. 10:4512–22 https://doi.org/10.1038/nn1865
    [Crossref] [Google Scholar]
  57. Gómez RL, Edgin JO. 2016. The extended trajectory of hippocampal development: implications for early memory development and disorder. Dev. Cogn. Neurosci. 18:57–69 https://doi.org/10.1016/j.dcn.2015.08.009
    [Crossref] [Google Scholar]
  58. Goupil L, Kouider S. 2016. Behavioral and neural indices of metacognitive sensitivity in preverbal infants. Curr. Biol. 26:223038–45 https://doi.org/10.1016/j.cub.2016.09.004
    [Crossref] [Google Scholar]
  59. Grimaldi P, Lau H, Basso MA 2015. There are things that we know that we know, and there are things that we do not know we do not know: confidence in decision-making. Neurosci. Biobehav. Rev. 55:88–97 https://doi.org/10.1016/j.neubiorev.2015.04.006
    [Crossref] [Google Scholar]
  60. Guillery-Girard B, Martins S, Deshayes S, Hertz-Pannier L, Chiron C et al. 2013. Developmental trajectories of associative memory from childhood to adulthood: a behavioral and neuroimaging study. Front. Behav. Neurosci. 7:126 https://doi.org/10.3389/fnbeh.2013.00126
    [Crossref] [Google Scholar]
  61. Harris PL. 1995. The rise of introspection. Monogr. Soc. Res. Child Dev. 60:197–103 https://doi.org/10.1111/j.1540-5834.1995.tb00196.x
    [Crossref] [Google Scholar]
  62. Hembacher E, Ghetti S. 2013. How to bet on a memory: developmental linkages between subjective recollection and decision making. J. Exp. Child Psychol. 115:3436–52 https://doi.org/10.1016/j.jecp.2013.03.010
    [Crossref] [Google Scholar]
  63. Hembacher E, Ghetti S. 2014. Don't look at my answer: Subjective uncertainty underlies preschoolers’ exclusion of their least accurate memories. Psychol. Sci. 25:91768–76 https://doi.org/10.1177/0956797614542273
    [Crossref] [Google Scholar]
  64. Horner AJ, Burgess N. 2013. The associative structure of memory for multi-element events. J. Exp. Psychol. Gen. 142:41370–83 https://doi.org/10.1037/a0033626
    [Crossref] [Google Scholar]
  65. Insausti R, Cebada-Sánchez S, Marcos P 2010. Advances in Anatomy, Embryology and Cell Biology: Postnatal Development of the Human Hippocampal Formation Berlin: Springer
  66. Keresztes A, Bender AR, Bodammer NC, Lindenberger U, Shing YL, Werkle-Bergner M 2017. Hippocampal maturity promotes memory distinctiveness in childhood and adolescence. PNAS 114:349212–17 https://doi.org/10.1073/pnas.1710654114
    [Crossref] [Google Scholar]
  67. Keresztes A, Ngo CT, Lindenberger U, Werkle-Bergner M, Newcombe NS 2018. Hippocampal maturation drives memory from generalization to specificity. Trends Cogn. Sci. 22:8676–86 https://doi.org/10.1016/j.tics.2018.05.004
    [Crossref] [Google Scholar]
  68. Kim H, Cabeza R. 2009. Common and specific brain regions in high- versus low-confidence recognition memory. Brain Res 1282:103–13 https://doi.org/10.1016/j.brainres.2009.05.080
    [Crossref] [Google Scholar]
  69. Krogsrud SK, Fjell AM, Tamnes CK, Grydeland H, Mork L et al. 2016. Changes in white matter microstructure in the developing brain—a longitudinal diffusion tensor imaging study of children from 4 to 11 years of age. NeuroImage 124:473–86 https://doi.org/10.1016/j.neuroimage.2015.09.017
    [Crossref] [Google Scholar]
  70. Laube C, van den Bos W, Fandakova Y 2020. The relationship between pubertal hormones and brain plasticity: implications for cognitive training in adolescence. PsyArXiv https://doi.org/10.31234/osf.io/qrbcn
    [Crossref] [Google Scholar]
  71. Lavenex P, Banta Lavenex P 2013. Building hippocampal circuits to learn and remember: Insights into the development of human memory. Behav. Brain Res. 254:8–21 https://doi.org/10.1016/j.bbr.2013.02.007
    [Crossref] [Google Scholar]
  72. Lebel C, Beaulieu C. 2011. Longitudinal development of human brain wiring continues from childhood into adulthood. J. Neurosci. 31:3010937–47 https://doi.org/10.1523/jneurosci.5302-10.2011
    [Crossref] [Google Scholar]
  73. Lee JK, Ekstrom AD, Ghetti S 2014. Volume of hippocampal subfields and episodic memory in childhood and adolescence. NeuroImage 94:162–71 https://doi.org/10.1016/j.neuroimage.2014.03.019
    [Crossref] [Google Scholar]
  74. Lee JK, Fandakova Y, Johnson EG, Cohen N, Bunge S, Ghetti S 2020. Changes in anterior and posterior hippocampus differentially predict item-space, item-time, and item-item memory improvement. Dev. Cogn. Neurosci. 41:100741 https://doi.org/10.1016/j.dcn.2019.100741
    [Crossref] [Google Scholar]
  75. Lee JK, Johnson EG, Ghetti S 2017. Hippocampal development: structure, function and implications. The Hippocampus from Cells to Systems D Hannula, M Duff 141–66 Cham, Switz: Springer https://doi.org/10.1007/978-3-319-50406-3_6
    [Crossref] [Google Scholar]
  76. Lee JK, Wendelken C, Bunge SA, Ghetti S 2016. A time and place for everything: developmental differences in the building blocks of episodic memory. Child Dev 87:1194–210 https://doi.org/10.1111/cdev.12447
    [Crossref] [Google Scholar]
  77. Levy-Gigi E, Vakil E. 2010. Developmental differences in the impact of contextual factors on susceptibility to retroactive interference. J. Exp. Child Psychol. 105:1–251–62 https://doi.org/10.1016/j.jecp.2009.09.002
    [Crossref] [Google Scholar]
  78. Luna B, Marek S, Larsen B, Tervo-Clemmens B, Chahal R 2015. An integrative model of the maturation of cognitive control. Annu. Rev. Neurosci. 38:1151–70 https://doi.org/10.1146/annurev-neuro-071714-034054
    [Crossref] [Google Scholar]
  79. Lynch KM, Cabeen RP, Toga AW, Clark KA 2020. Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI. NeuroImage 212:116672 https://doi.org/10.1016/j.neuroimage.2020.116672
    [Crossref] [Google Scholar]
  80. Mabbott DJ, Rovet J, Noseworthy MD, Smith ML, Rockel C 2009. The relations between white matter and declarative memory in older children and adolescents. Brain Res 1294:80–90 https://doi.org/10.1016/j.brainres.2009.07.046
    [Crossref] [Google Scholar]
  81. Malykhin N, Lebel R, Coupland N, Wilman A, Carter R 2010. In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging. NeuroImage 49:21224–30 https://doi.org/10.1016/j.neuroimage.2009.09.042
    [Crossref] [Google Scholar]
  82. Maril A, Avital R, Reggev N, Zuckerman M, Sadeh T et al. 2011. Event congruency and episodic encoding: a developmental fMRI study. Neuropsychologia 49:113036–45 https://doi.org/10.1016/j.neuropsychologia.2011.07.004
    [Crossref] [Google Scholar]
  83. McCurdy LY, Maniscalco B, Metcalfe J, Liu KY, de Lange FP, Lau H 2013. Anatomical coupling between distinct metacognitive systems for memory and visual perception. J. Neurosci. 33:51897–906 https://doi.org/10.1523/jneurosci.1890-12.2013
    [Crossref] [Google Scholar]
  84. Morales J, Lau H, Fleming SM 2018. Domain-general and domain-specific patterns of activity supporting metacognition in human prefrontal cortex. J. Neurosci. 38:143534–46 https://doi.org/10.1523/jneurosci.2360-17.2018
    [Crossref] [Google Scholar]
  85. Moscovitch M, Cabeza R, Winocur G, Nadel L 2016. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67:1105–34 https://doi.org/10.1146/annurev-psych-113011-143733
    [Crossref] [Google Scholar]
  86. Mufson EJ, Pandya DN. 1984. Some observations on the course and composition of the cingulum bundle in the rhesus monkey. J. Comp. Neurol. 225:131–43 https://doi.org/10.1002/cne.902250105
    [Crossref] [Google Scholar]
  87. Murty VP, Calabro F, Luna B 2016. The role of experience in adolescent cognitive development: integration of executive, memory, and mesolimbic systems. Neurosci. Biobehav. Rev. 70:46–58 https://doi.org/10.1016/j.neubiorev.2016.07.034
    [Crossref] [Google Scholar]
  88. Newcombe NS, Lloyd ME, Ratliff KR 2007. Development of episodic and autobiographical memory: a cognitive neuroscience perspective. Adv. Child Dev. Behav. 35:37–85 https://doi.org/10.1016/b978-0-12-009735-7.50007-4
    [Crossref] [Google Scholar]
  89. Ngo CT, Alm KH, Metoki A, Hampton W, Riggins T et al. 2017. White matter structural connectivity and episodic memory in early childhood. Dev. Cogn. Neurosci. 28:41–53 https://doi.org/10.1016/j.dcn.2017.11.001
    [Crossref] [Google Scholar]
  90. Ngo CT, Horner AJ, Newcombe NS, Olson IR 2019a. Development of holistic episodic recollection. Psychol. Sci. 30:121696–706 https://doi.org/10.1177/0956797619879441
    [Crossref] [Google Scholar]
  91. Ngo CT, Lin YR, Newcombe NR, Olson IR 2019b. Building up and wearing down episodic memory: mnemonic discrimination and relational binding. J. Exp. Psychol. Gen. 148:91463–79 http://doi.org/10.31234/osf.io/dhnjy
    [Crossref] [Google Scholar]
  92. Ngo CT, Newcombe NS, Olson IR 2018. The ontogeny of relational memory and pattern separation. Dev. Sci. 21:2e12556 http://doi.org/10.1111/desc.12556
    [Crossref] [Google Scholar]
  93. Norman KA, O'Reilly RC. 2003. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev. 110:4611–46 https://doi.org/10.1037/0033-295x.110.4.611
    [Crossref] [Google Scholar]
  94. Nussenbaum K, Scerif G, Nobre AC 2019. Differential effects of salient visual events on memory-guided attention in adults and children. Child Dev 90:41369–88 https://doi.org/10.1111/cdev.13149
    [Crossref] [Google Scholar]
  95. Ofen N, Chai XJ, Schuil KDI, Whitfield-Gabrieli S, Gabrieli JDE 2012. The development of brain systems associated with successful memory retrieval of scenes. J. Neurosci. 32:2910012–20 https://doi.org/10.1523/jneurosci.1082-11.2012
    [Crossref] [Google Scholar]
  96. Ofen N, Kao Y, Sokol-Hessner P, Kim H, Whitfield-Gabrieli S, Gabrieli JDE 2007. Development of declarative memory system in the human brain. Nat. Neurosci. 10:1198–205 https://doi.org/10.1038/nn1950
    [Crossref] [Google Scholar]
  97. Ornstein PA, Haden CA, Elischberger HB 2006. Children's memory development: remembering the past and preparing for the future. Lifespan Cognition: Mechanisms of Change, ed. E Bialystok, FIM Craik 143–61 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  98. Østby Y, Tamnes CK, Fjell AM, Walhovd KB 2012. Dissociating memory processes in the developing brain: the role of hippocampal volume and cortical thickness in recall after minutes versus days. Cereb. Cortex 22:2381–90 https://doi.org/10.1093/cercor/bhr116
    [Crossref] [Google Scholar]
  99. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J et al. 1999. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:54091908–11 https://doi.org/10.1126/science.283.5409.1908
    [Crossref] [Google Scholar]
  100. Paz-Alonso PM, Bunge SA, Anderson MC, Ghetti S 2013. Strength of coupling within a mnemonic control network differentiates those who can and cannot suppress memory retrieval. J. Neurosci. 33:115017–26 https://doi.org/10.1523/jneurosci.3459-12.2013
    [Crossref] [Google Scholar]
  101. Paz-Alonso PM, Ghetti S, Matlen BJ, Anderson MC, Bunge SA 2009. Memory suppression is an active process that improves over childhood. Front. Hum. Neurosci. 3:24 http://doi.org/10.3389/neuro.09.024.2009
    [Crossref] [Google Scholar]
  102. Perner J, Kloo D, Stöttinger E 2007. Introspection & remembering. Synthese 159:2253–70 https://doi.org/10.1007/s11229-007-9207-4
    [Crossref] [Google Scholar]
  103. Perner J, Ruffman T. 1995. Episodic memory and autonoetic conciousness: developmental evidence and a theory of childhood amnesia. J. Exp. Child Psychol. 59:3516–48 https://doi.org/10.1006/jecp.1995.1024
    [Crossref] [Google Scholar]
  104. Persson J, Stening E, Nordin K, Söderlund H 2018. Predicting episodic and spatial memory performance from hippocampal resting-state functional connectivity: evidence for an anterior-posterior division of function. Hippocampus 28:153–66 https://doi.org/10.1002/hipo.22807
    [Crossref] [Google Scholar]
  105. Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HBM et al. 2011. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. PNAS 108:3213281–86 http://doi.org/10.1073/pnas.1105108108
    [Crossref] [Google Scholar]
  106. Peters S, Crone EA. 2017. Increased striatal activity in adolescence benefits learning. Nat. Commun. 8:1 1983. https://doi.org/10.1038/s41467-017-02174-z
    [Crossref] [Google Scholar]
  107. Petrides M, Pandya DN. 1988. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J. Comp. Neurol. 273:152–66 https://doi.org/10.1002/cne.902730106
    [Crossref] [Google Scholar]
  108. Picard L, Cousin S, Guillery-Girard B, Eustache F, Piolino P 2012. How do the different components of episodic memory develop? Role of executive functions and short-term feature-binding abilities. Child Dev 83:31037–50 https://doi.org/10.1111/j.1467-8624.2012.01736.x
    [Crossref] [Google Scholar]
  109. Piolino P, Hisland M, Ruffeveille I, Matuszewski V, Jambaqué I, Eustache F 2007. Do school-age children remember or know the personal past. ? Conscious. Cogn. 16:184–101 https://doi.org/10.1016/j.concog.2005.09.010
    [Crossref] [Google Scholar]
  110. Poppenk J, Evensmoen HR, Moscovitch M, Nadel L 2013. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17:5230–40 https://doi.org/10.1016/j.tics.2013.03.005
    [Crossref] [Google Scholar]
  111. Poppenk J, Moscovitch M. 2011. A hippocampal marker of recollection memory ability among healthy young adults: contributions of posterior and anterior segments. Neuron 72:6931–37 https://doi.org/10.1016/j.neuron.2011.10.014
    [Crossref] [Google Scholar]
  112. Prabhakar J, Johnson EG, Nordahl CW, Ghetti S 2018. Memory-related hippocampal activation in the sleeping toddler. PNAS 115:256500–5 https://doi.org/10.1073/pnas.1805572115
    [Crossref] [Google Scholar]
  113. Quas JA, Goodman GS, Bidrose S, Pipe M-E, Craw S, Ablin DS 1999. Emotion and memory: children's long-term remembering, forgetting, and suggestibility. J. Exp. Child Psychol. 72:4235–70 https://doi.org/10.1006/jecp.1999.2491
    [Crossref] [Google Scholar]
  114. Ranganath C. 2010. Binding items and contexts: the cognitive neuroscience of episodic memory. Curr. Dir. Psychol. Sci. 19:3131–37 https://doi.org/10.1177/0963721410368805
    [Crossref] [Google Scholar]
  115. Ranganath C, Ritchey M. 2012. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 13:10713–26 https://doi.org/10.1038/nrn3338
    [Crossref] [Google Scholar]
  116. Richter FR, Cooper RA, Bays PM, Simons JS 2016. Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. eLife 5:e18260 https://doi.org/10.7554/elife.18260
    [Crossref] [Google Scholar]
  117. Riggins T, Geng F, Blankenship SL, Redcay E 2016. Hippocampal functional connectivity and episodic memory in early childhood. Dev. Cogn. Neurosci. 19:58–69 https://doi.org/10.1016/j.dcn.2016.02.002
    [Crossref] [Google Scholar]
  118. Riggins T, Geng F, Botdorf M, Canada K, Cox L, Hancock GR 2018. Protracted hippocampal development is associated with age-related improvements in memory during early childhood. NeuroImage 174:127–37 https://doi.org/10.1016/j.neuroimage.2018.03.009
    [Crossref] [Google Scholar]
  119. Roebers CM, Gelhaar T, Schneider W 2004. “It's magic!” The effects of presentation modality on children's event memory, suggestibility, and confidence judgments. J. Exp. Child Psychol. 87:4320–35 https://doi.org/10.1016/j.jecp.2004.01.004
    [Crossref] [Google Scholar]
  120. Rosen ML, Sheridan MA, Sambrook KA, Peverill MR, Meltzoff AN, McLaughlin KA 2018. The role of visual association cortex in associative memory formation across development. J. Cogn. Neurosci. 30:3365–80 https://doi.org/10.1162/jocn_a_01202
    [Crossref] [Google Scholar]
  121. Sarkey S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D, Doncarlos LL 2008. Classical androgen receptors in non-classical sites in the brain. Horm. Behav. 53:5753–64 https://doi.org/10.1016/j.yhbeh.2008.02.015
    [Crossref] [Google Scholar]
  122. Sastre M, Wendelken C, Lee JK, Bunge SA, Ghetti S 2016. Age- and performance-related differences in hippocampal contributions to episodic retrieval. Dev. Cogn. Neurosci. 19:42–50 https://doi.org/10.1016/j.dcn.2016.01.003
    [Crossref] [Google Scholar]
  123. Schacter DL, Benoit RG, Szpunar KK 2017. Episodic future thinking: mechanisms and functions. Curr. Opin. Behav. Sci. 17:41–50 https://doi.org/10.1016/j.cobeha.2017.06.002
    [Crossref] [Google Scholar]
  124. Schlichting ML, Guarino KF, Schapiro AC, Turk-Browne NB, Preston AR 2017. Hippocampal structure predicts statistical learning and associative inference abilities during development. J. Cogn. Neurosci. 29:137–51 https://doi.org/10.1162/jocn_a_01028
    [Crossref] [Google Scholar]
  125. Schneider W, Knopf M, Stefanek J 2002. The development of verbal memory in childhood and adolescence: findings from the Munich Longitudinal Study. J. Educ. Psychol. 94:4751–61 https://doi.org/10.1037/0022-0663.94.4.751
    [Crossref] [Google Scholar]
  126. Schwenck C, Bjorklund DF, Schneider W 2007. Factors influencing the incidence of utilization deficiencies and other patterns of recall/strategy-use relations in a strategic memory task. Child Dev 78:61771–87 https://doi.org/10.1111/j.1467-8624.2007.01090.x
    [Crossref] [Google Scholar]
  127. Scimeca JM, Katzman PL, Badre D 2016. Striatal prediction errors support dynamic control of declarative memory decisions. Nat. Commun. 7:113061 https://doi.org/10.1038/ncomms13061
    [Crossref] [Google Scholar]
  128. Selmeczy D, Fandakova Y, Grimm KJ, Bunge SA, Ghetti S 2019. Longitudinal trajectories of hippocampal and prefrontal contributions to episodic retrieval: effects of age and puberty. Dev. Cogn. Neurosci. 36:100599 https://doi.org/10.1016/j.dcn.2018.10.003
    [Crossref] [Google Scholar]
  129. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R et al. 2008. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28:143586–94 https://doi.org/10.1523/jneurosci.5309-07.2008
    [Crossref] [Google Scholar]
  130. Sherman LE, Rudie JD, Pfeifer JH, Masten CL, McNealy K, Dapretto M 2014. Development of the default mode and central executive networks across early adolescence: a longitudinal study. Dev. Cogn. Neurosci. 10:148–59 https://doi.org/10.1016/j.dcn.2014.08.002
    [Crossref] [Google Scholar]
  131. Shing YL, Brehmer Y, Heekeren HR, Bäckman L, Lindenberger U 2016. Neural activation patterns of successful episodic encoding: reorganization during childhood, maintenance in old age. Dev. Cogn. Neurosci. 20:59–69 https://doi.org/10.1016/j.dcn.2016.06.003
    [Crossref] [Google Scholar]
  132. Shing YL, Werkle-Bergner M, Brehmer Y, Müller V, Li S-C, Lindenberger U 2010. Episodic memory across the lifespan: the contributions of associative and strategic components. Neurosci. Biobehav. Rev. 34:71080–91 https://doi.org/10.1016/j.neubiorev.2009.11.002
    [Crossref] [Google Scholar]
  133. Shing YL, Werkle-Bergner M, Li SC, Lindenberger U 2008. Associative and strategic components of episodic memory: a life-span dissociation. J. Exp. Psychol. Gen. 137:3495–513 https://doi.org/10.1037/0096-3445.137.3.495
    [Crossref] [Google Scholar]
  134. Shirtcliff EA, Dahl RE, Pollak SD 2009. Pubertal development: correspondence between hormonal and physical development. Child Dev 80:2327–37 https://doi.org/10.1111/j.1467-8624.2009.01263.x
    [Crossref] [Google Scholar]
  135. Simcock G, Hayne H. 2003. Age-related changes in verbal and nonverbal memory during early childhood. Dev. Psychol. 39:5805–14 https://doi.org/10.1037/0012-1649.39.5.805
    [Crossref] [Google Scholar]
  136. Simons JS, Peers PV, Mazuz YS, Berryhill ME, Olson IR 2010. Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cereb. Cortex 20:2479–85 https://doi.org/10.1093/cercor/bhp116
    [Crossref] [Google Scholar]
  137. Simons JS, Spiers HJ. 2003. Prefrontal and medial temporal lobe interactions in long-term memory. Nat. Rev. Neurosci. 4:8637–48 https://doi.org/10.1038/nrn1178
    [Crossref] [Google Scholar]
  138. Smith SM, Vela E. 2001. Environmental context-dependent memory: a review and meta-analysis. Psychon. Bull. Rev. 8:2203–20 https://doi.org/10.3758/bf03196157
    [Crossref] [Google Scholar]
  139. Sowell ER, Delis D, Stiles J, Jernigan TL 2001. Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. J. Int. Neuropsychol. Soc. 7:312–22 https://doi.org/10.1017/s135561770173305x
    [Crossref] [Google Scholar]
  140. Sowell ER, Thompson PM, Toga AW 2004. Mapping changes in the human cortex throughout the span of life. Neuroscientist 10:4372–92 https://doi.org/10.1177/1073858404263960
    [Crossref] [Google Scholar]
  141. Stolyarova A, Rakhshan M, Hart EE, O'Dell TJ, Peters MAK et al. 2019. Contributions of anterior cingulate cortex and basolateral amygdala to decision confidence and learning under uncertainty. Nat. Commun. 10:14704 https://doi.org/10.1038/s41467-019-12725-1
    [Crossref] [Google Scholar]
  142. Tamnes CK, Walhovd KB, Engvig A, Grydeland H, Krogsrud SK et al. 2014. Regional hippocampal volumes and development predict learning and memory. Dev. Neurosci. 36:3–4161–74 https://doi.org/10.1159/000362445
    [Crossref] [Google Scholar]
  143. Tamnes CK, Walhovd KB, Torstveit M, Sells VT, Fjell AM 2013. Performance monitoring in children and adolescents: a review of developmental changes in the error-related negativity and brain maturation. Dev. Cogn. Neurosci. 6:1–13 https://doi.org/10.1016/j.dcn.2013.05.001
    [Crossref] [Google Scholar]
  144. Tang L, Shafer AT, Ofen N 2018. Prefrontal cortex contributions to the development of memory formation. Cereb. Cortex 28:93295–308 https://doi.org/10.1093/cercor/bhx200
    [Crossref] [Google Scholar]
  145. Tarder-Stoll H, Jayakumar M, Dimsdale-Zucker HR, Günseli E, Aly M 2020. Dynamic internal states shape memory retrieval. Neuropsychologia 138:107328 https://doi.org/10.1016/j.neuropsychologia.2019.107328
    [Crossref] [Google Scholar]
  146. Tibon R, Fuhrmann D, Levy DA, Simons JS, Henson RN 2019. Multimodal integration and vividness in the angular gyrus during episodic encoding and retrieval. J. Neurosci. 39:224365–74 https://doi.org/10.1523/jneurosci.2102-18.2018
    [Crossref] [Google Scholar]
  147. Tulving E. 1985. Memory and consciousness. Can. Psychol. 26:11–12 https://doi.org/10.1037/h0080017
    [Crossref] [Google Scholar]
  148. Tulving E, Thomson DM. 1973. Encoding specificity and retrieval processes in episodic memory. Psychol. Rev. 80:5352–73 https://doi.org/10.1037/h0020071
    [Crossref] [Google Scholar]
  149. Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR 2010. Conscious perception of errors and its relation to the anterior insula. Brain Struct. Funct. 214:5–6629–43 https://doi.org/10.1007/s00429-010-0261-1
    [Crossref] [Google Scholar]
  150. Vaccaro AG, Fleming SM. 2018. Thinking about thinking: a coordinate-based meta-analysis of neuroimaging studies of metacognitive judgements. Brain Neurosci. Adv. 2:239821281881059 https://doi.org/10.1177/2398212818810591
    [Crossref] [Google Scholar]
  151. Vandekar SN, Shinohara RT, Raznahan A, Roalf DR, Ross M et al. 2015. Topologically dissociable patterns of development of the human cerebral cortex. J. Neurosci. 35:2599–609 https://doi.org/10.1523/jneurosci.3628-14.2015
    [Crossref] [Google Scholar]
  152. van Duijvenvoorde ACK, Peters S, Braams BR, Crone EA 2016. What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neurosci. Biobehav. Rev. 70:135–47 https://doi.org/10.1016/j.neubiorev.2016.06.037
    [Crossref] [Google Scholar]
  153. Vilberg KL, Rugg MD. 2008. Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia 46:71787–99 https://doi.org/10.1016/j.neuropsychologia.2008.01.004
    [Crossref] [Google Scholar]
  154. Wagner AD, Shannon BJ, Kahn I, Buckner RL 2005. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9:9445–53 https://doi.org/10.1016/j.tics.2005.07.001
    [Crossref] [Google Scholar]
  155. Wendelken C, Baym C, Gazzaley A, Bunge S 2011. Neural indices of improved attentional modulation over middle childhood. Dev. Cogn. Neurosci. 1:2175–86 https://doi.org/10.1016/j.dcn.2010.11.001
    [Crossref] [Google Scholar]
  156. Wendelken C, Lee JK, Pospisil J, Sastre M, Ross JM et al. 2014. White matter tracts connected to the medial temporal lobe support the development of mnemonic control. Cereb. Cortex 25:92574–83 https://doi.org/10.1093/cercor/bhu059
    [Crossref] [Google Scholar]
  157. Yassa MA, Stark CE. 2011. Pattern separation in the hippocampus. Trends Neurosci 34:10515–25 https://doi.org/10.1016/j.tins.2011.06.006
    [Crossref] [Google Scholar]
  158. Yazar Y, Bergström ZM, Simons JS 2012. What is the parietal lobe contribution to long-term memory. ? Cortex 48:101381–82 https://doi.org/10.1016/j.cortex.2012.05.011
    [Crossref] [Google Scholar]
  159. Yu Q, McCall DM, Homayouni R, Tang L, Chen Z et al. 2018. Age-associated increase in mnemonic strategy use is linked to prefrontal cortex development. NeuroImage 181:162–69 https://doi.org/10.1016/j.neuroimage.2018.07.008
    [Crossref] [Google Scholar]
  160. Zeithamova D, Preston AR. 2010. Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. J. Neurosci. 30:4414676–84 https://doi.org/10.1523/jneurosci.3250-10.2010
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-devpsych-060320-085634
Loading
/content/journals/10.1146/annurev-devpsych-060320-085634
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error