1932

Abstract

Understanding how we come to make sense of our environments requires understanding both how we take in new information and how we flexibly process and store that information in memory for subsequent retrieval. In other words, infant cognitive development research is best served by studies that probe infant attention as well as infant learning and memory development. In this article, we first review what is known about infant attention and what is known about a selection of learning systems available in infancy. Then, we review what is known about the interactions between attention and these systems, focusing on infancy when possible but highlighting relevant child and adult literatures when infant research is yet scarce. Finally, we close by proposing a path forward, which we believe will result in a clearer understanding of the interactions between attention and memory that govern infant learning.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-devpsych-120321-011300
2023-12-11
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/devpsych/5/1/annurev-devpsych-120321-011300.html?itemId=/content/journals/10.1146/annurev-devpsych-120321-011300&mimeType=html&fmt=ahah

Literature Cited

  1. Althaus N, Mareschal D. 2012.. Using saliency maps to separate competing processes in infant visual cognition. . Child Dev. 83:(4):112228 https://doi.org/10.1111/j.1467-8624.2012.01766.x
    [Google Scholar]
  2. Amso D, Haas S, Markant J. 2014.. An eye tracking investigation of developmental change in bottom-up attention orienting to faces in cluttered natural scenes. . PLOS ONE 9:(1):e85701. https://doi.org/10.1371/journal.pone.0085701
    [Crossref] [Google Scholar]
  3. Amso D, Johnson SP. 2006.. Learning by selection: visual search and object perception in young infants. . Dev. Psychol. 42:(6):123645 https://doi.org/10.1037/0012-1649.42.6.1236
    [Google Scholar]
  4. Amso D, Johnson SP. 2008.. Development of visual selection in 3- to 9-month-olds: evidence from saccades to previously ignored locations. . Infancy 13:(6):67586 https://doi.org/10.1080/15250000802459060
    [Google Scholar]
  5. Amso D, Scerif G. 2015.. The attentive brain: insights from developmental cognitive neuroscience. . Nat. Rev. Neurosci. 16:(10):60619 https://doi.org/10.1038/nrn4025
    [Google Scholar]
  6. Arciuli J. 2017.. The multi-component nature of statistical learning. . Philos. Trans. R. Soc. B 372:(1711):20160058. https://doi.org/10.1098/rstb.2016.0058
    [Google Scholar]
  7. Arredondo MM, Aslin RN, Werker JF. 2022.. Bilingualism alters infants’ cortical organization for attentional orienting mechanisms. . Dev. Sci. 25:(2):e13172. https://doi.org/10.1111/desc.13172
    [Crossref] [Google Scholar]
  8. Aslin RN. 2017.. Statistical learning: a powerful mechanism that operates by mere exposure. . WIREs Cogn. Sci. 8:(1):e1373. https://doi.org/10.1002/wcs.1373
    [Google Scholar]
  9. Bacher LF, Smotherman WP. 2004.. Spontaneous eye blinking in human infants: a review. . Dev. Psychobiol. 44:(2):95102 https://doi.org/10.1002/dev.10162
    [Google Scholar]
  10. Badre D, D'Esposito M. 2009.. Is the rostro-caudal axis of the frontal lobe hierarchical?. Nat. Rev. Neurosci. 10:(9):65969 https://doi.org/10.1038/nrn2667
    [Crossref] [Google Scholar]
  11. Bandura A, Walters RH. 1977.. Social Learning Theory 1. Englewood Cliffs, NJ:: Prentice Hall
    [Google Scholar]
  12. Barr R, Brito N. 2014.. From specificity to flexibility: early developmental changes in memory generalization. . In The Wiley Handbook on the Development of Children's Memory, ed. PJ Bauer, R Fivush , pp. 45379 Chichester, UK:: Wiley Blackwell
    [Google Scholar]
  13. Batterink LJ, Paller KA. 2017.. Online neural monitoring of statistical learning. . Cortex 90::3145 https://doi.org/10.1016/j.cortex.2017.02.004
    [Google Scholar]
  14. Batterink LJ, Paller KA. 2019.. Statistical learning of speech regularities can occur outside the focus of attention. . Cortex 115::5671 https://doi.org/10.1016/j.cortex.2019.01.013
    [Google Scholar]
  15. Batterink LJ, Zhang S. 2022.. Simple statistical regularities presented during sleep are detected but not retained. . Neuropsychologia 164::108106. https://doi.org/10.1016/j.neuropsychologia.2021.108106
    [Google Scholar]
  16. Bertenthal BI, Campos JJ, Barrett KC. 1984.. Self-produced locomotion. . In Continuities and Discontinuities in Development, ed. RN Emde, RJ Harmon , pp. 175210 New York:: Plenum. https://doi.org/10.1007/978-1-4613-2725-7_8
    [Crossref] [Google Scholar]
  17. Brainerd CJ, Reyna VF. 2004.. Fuzzy-trace theory and memory development. . Dev. Rev. 24:(4):396439 https://doi.org/10.1016/j.dr.2004.08.005
    [Crossref] [Google Scholar]
  18. Bulf H, Valenza E. 2013.. Object-based visual attention in 8-month-old infants: evidence from an eye-tracking study. . Dev. Psychol. 49:(10):190918 https://doi.org/10.1037/a0031310
    [Google Scholar]
  19. Calabro FJ, Murty VP, Jalbrzikowski M, Tervo-Clemmens B, Luna B. 2020.. Development of hippocampal-prefrontal cortex interactions through adolescence. . Cereb. Cortex 30:(3):154858 https://doi.org/10.1093/cercor/bhz186
    [Crossref] [Google Scholar]
  20. Carrigan AJ, Curby KM, Moerel D, Rich AN. 2019.. Exploring the effect of context and expertise on attention: Is attention shifted by information in medical images?. Atten. Percept. Psychophys. 81:(5):128396 https://doi.org/10.3758/s13414-019-01695-7
    [Crossref] [Google Scholar]
  21. Casasola M. 2018.. Above and beyond objects: the development of infants’ spatial concepts. . In Advances in Child Development and Behavior 54, ed. JB Benson , pp. 87121 Cambridge, MA:: Academic. https://doi.org/10.1016/bs.acdb.2017.10.007
    [Crossref] [Google Scholar]
  22. Casasola M, Ahn YA. 2018.. What Develops in Infants’ Spatial Categorization? Korean infants’ categorization of containment and tight-fit relations. . Child Dev. 89:(4):e38296 https://doi.org/10.1111/cdev.12903
    [Google Scholar]
  23. Casasola M, Bhagwat J, Doan SN, Love H. 2017.. Getting some space: infants’ and caregivers’ containment and support spatial constructions during play. . J. Exp. Child Psychol. 159::11028 https://doi.org/10.1016/j.jecp.2017.01.012
    [Crossref] [Google Scholar]
  24. Charvet CJ, Cahalane DJ, Finlay BL. 2015.. Systematic, cross-cortex variation in neuron numbers in rodents and primates. . Cereb. Cortex 25:(1):14760 https://doi.org/10.1093/cercor/bht214
    [Google Scholar]
  25. Choi D, Batterink LJ, Black AK, Paller KA, Werker JF. 2020.. Preverbal infants discover statistical word patterns at similar rates as adults: evidence from neural entrainment. . Psychol. Sci. 31:(9):116173 https://doi.org/10.1177/0956797620933237
    [Crossref] [Google Scholar]
  26. Chun MM, Jiang Y. 1998.. Contextual cueing: implicit learning and memory of visual context guides spatial attention. . Cogn. Psychol. 36:(1):2871 https://doi.org/10.1006/cogp.1998.0681
    [Google Scholar]
  27. Clark CR, Geffen GM, Geffen LB. 1989.. Catecholamines and the covert orientation of attention in humans. . Neuropsychologia 27:(2):13139 https://doi.org/10.1016/0028-3932(89)90166-8
    [Google Scholar]
  28. Collins A, Cavanagh JF, Frank MJ. 2014.. Human EEG uncovers latent generalizable rule structure during learning. . J. Neurosci. 34:(13):467785 https://doi.org/10.1523/JNEUROSCI.3900-13.2014
    [Google Scholar]
  29. Collins A, Frank MJ. 2013.. Cognitive control over learning: creating, clustering, and generalizing task-set structure. . Psychol. Rev. 120:(1):190229 https://doi.org/10.1037/a0030852
    [Google Scholar]
  30. Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH. 2010.. Neuron densities vary across and within cortical areas in primates. . PNAS 107:(36):1592732 https://doi.org/10.1073/pnas.1010356107
    [Google Scholar]
  31. Collins CE, Turner EC, Sawyer EK, Reed JL, Young NA, et al. 2016.. Cortical cell and neuron density estimates in one chimpanzee hemisphere. . PNAS 113:(3):74045 https://doi.org/10.1073/pnas.1524208113
    [Google Scholar]
  32. Colombo J. 2001.. The development of visual attention in infancy. . Annu. Rev. Psychol. 52::33767 https://doi.org/10.1146/annurev.psych.52.1.337
    [Google Scholar]
  33. Colombo J, Horowitz FD. 1987.. Behavioral state as a lead variable in neonatal research. . Merrill-Palmer Q. 33:(4):42337
    [Google Scholar]
  34. Conway CM. 2020.. How does the brain learn environmental structure? Ten core principles for understanding the neurocognitive mechanisms of statistical learning. . Neurosci. Biobehav. Rev. 112::27999 https://doi.org/10.1016/j.neubiorev.2020.01.032
    [Crossref] [Google Scholar]
  35. Courage ML, Reynolds GD, Richards JE. 2006.. Infants’ attention to patterned stimuli: developmental change from 3 to 12 months of age. . Child Dev. 77:(3):68095 https://doi.org/10.1111/j.1467-8624.2006.00897.x
    [Crossref] [Google Scholar]
  36. Covington NV, Brown-Schmidt S, Duff MC. 2018.. The necessity of the hippocampus for statistical learning. . J. Cogn. Neurosci. 30:(5):68097 https://doi.org/10.1162/jocn_a_01228
    [Google Scholar]
  37. Crone EA. 2009.. Executive functions in adolescence: inferences from brain and behavior. . Dev. Sci. 12:(6):82530 https://doi.org/10.1111/j.1467-7687.2009.00918.x
    [Google Scholar]
  38. Cubit LS, Canale R, Handsman R, Kidd C, Bennetto L. 2021.. Visual attention preference for intermediate predictability in young children. . Child Dev. 92:(2):691703 https://doi.org/10.1111/cdev.13536
    [Google Scholar]
  39. Cuevas K, Davinson K. 2022.. The development of infant memory. . In The Development of Memory in Infancy and Childhood, ed. ML Courage, N Cowan , pp. 3159 London:: Psychol. Press. https://doi.org/10.4324/9781003016533-2
    [Crossref] [Google Scholar]
  40. Dabney W, Kurth-Nelson Z, Uchida N, Starkweather CK, Hassabis D, et al. 2020.. A distributional code for value in dopamine-based reinforcement learning. . Nature 577::67175 https://doi.org/10.1038/s41586-019-1924-6
    [Crossref] [Google Scholar]
  41. Dannemiller JL. 2005.. Motion popout in selective visual orienting at 4.5 but not at 2 months in human infants. . Infancy 8:(3):20116 https://doi.org/10.1207/s15327078in0803_1
    [Google Scholar]
  42. Davis JM, Rovee-Collier CK. 1983.. Alleviated forgetting of a learned contingency in 8-week-old infants. . Dev. Psychol. 19::35365 https://doi.org/10.1037/0012-1649.19.3.353
    [Google Scholar]
  43. Desimone R. 1998.. Visual attention mediated by biased competition in extrastriate visual cortex. . Philos. Trans. R. Soc. B 353::124555 https://doi.org/10.1098/rstb.1998.0280
    [Google Scholar]
  44. Diamond A. 2013.. Executive functions. . Annu. Rev. Psychol. 64::13568 https://doi.org/10.1146/annurev-psych-113011-143750
    [Google Scholar]
  45. Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, et al. 2010.. Prediction of individual brain maturity using fMRI. . Science 329:(5997):135861 https://doi.org/10.1126/science.1194144
    [Google Scholar]
  46. Ellis CT, Skalaban LJ, Yates TS, Bejjanki VR, Córdova NI, Turk-Browne NB. 2021.. Evidence of hippocampal learning in human infants. . Curr. Biol. 31:(15):335864 https://doi.org/10.1016/j.cub.2021.04.072
    [Google Scholar]
  47. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. 2002.. Testing the efficiency and independence of attentional networks. . J. Cogn. Neurosci. 14:(3):34047 https://doi.org/10.1162/089892902317361886
    [Google Scholar]
  48. Fantz RL. 1964.. Visual experience in infants: decreased attention to familiar patterns relative to novel ones. . Science 146:(3644):66870 https://www.science.org/doi/10.1126/science.146.3644.668
    [Google Scholar]
  49. Finn AS, Kharitonova M, Holtby N, Sheridan MA. 2019.. Prefrontal and hippocampal structure predict statistical learning ability in early childhood. . J. Cogn. Neurosci. 31:(1):12637 https://doi.org/10.1162/jocn_a_01342
    [Crossref] [Google Scholar]
  50. Fló A, Benjamin L, Palu M, Dehaene-Lambertz G. 2022.. Sleeping neonates track transitional probabilities in speech but only retain the first syllable of words. . Sci. Rep. 12::4391. https://doi.org/10.1038/s41598-022-08411-w
    [Crossref] [Google Scholar]
  51. Forest TA, Schlichting ML, Duncan KD, Finn AS. 2023.. Changes in statistical learning across development. . Nat. Rev. Psychol. 2::20519 https://doi.org/10.1038/s44159-023-00157-0
    [Google Scholar]
  52. Forest TA, Siegelman N, Finn AS. 2022.. Attention shifts to more complex structures with experience. . Psychol. Sci. 33:(12):205972 https://doi.org/10.1177/09567976221114055
    [Google Scholar]
  53. Frank MC, Amso D, Johnson SP. 2014.. Visual search and attention to faces during early infancy. . J. Exp. Child Psychol. 118::1326 https://doi.org/10.1016/j.jecp.2013.08.012
    [Google Scholar]
  54. Freud E, Plaut DC, Behrmann M. 2016.. ‘What’ is happening in the dorsal visual pathway. . Trends Cogn. Sci. 20:(10):77384 https://doi.org/10.1016/j.tics.2016.08.003
    [Google Scholar]
  55. Frick JE, Colombo J, Saxon TF. 1999.. Individual and developmental differences in disengagement of fixation in early infancy. . Child Dev. 70:(3):53748 https://doi.org/10.1111/1467-8624.00039
    [Google Scholar]
  56. Frick JE, Richards JE. 2001.. Individual differences in infants’ recognition of briefly presented visual stimuli. . Infancy 2:(3):33152 https://doi.org/10.1207/S15327078IN0203_3
    [Google Scholar]
  57. Gava L, Valenza E, Turati C. 2009.. Newborns’ perception of left–right spatial relations. . Child Dev. 80:(6):1797810 https://doi.org/10.1111/j.1467-8624.2009.01368.x
    [Google Scholar]
  58. Gibson EJ, Walk RD. 1960.. The “visual cliff. Sci. Am. 202::6471 https://doi.org/10.1038/scientificamerican0460-64
    [Crossref] [Google Scholar]
  59. Gilbert CD, Li W. 2013.. Top-down influences on visual processing. . Nat. Rev. Neurosci. 14:(5):35063 https://doi.org/10.1038/nrn3476
    [Crossref] [Google Scholar]
  60. Glimcher PW. 2011.. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. . PNAS 108:(Suppl. 3):1564754 https://www.pnas.org/doi/abs/10.1073/pnas.1014269108
    [Google Scholar]
  61. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, et al. 2004.. Dynamic mapping of human cortical development during childhood through early adulthood. . PNAS 101:(21):817479 https://doi.org/10.1073/pnas.0402680101
    [Crossref] [Google Scholar]
  62. Gomez RL. 2002.. Variability and detection of invariant structure. . Psychol. Sci. 13:(5):43136 https://doi.org/10.1111/1467-9280.00476
    [Crossref] [Google Scholar]
  63. Gomez RL. 2016.. Do infants retain the statistics of a statistical learning experience? Insights from a developmental cognitive neuroscience perspective. . Philos. Trans. R. Soc. B 372:(1711):20160054. https://doi.org/10.1098/rstb.2016.0054
    [Crossref] [Google Scholar]
  64. Gómez RL, Edgin JO. 2016.. The extended trajectory of hippocampal development: implications for early memory development and disorder. . Dev. Cogn. Neurosci. 18::5769 https://doi.org/10.1016/j.dcn.2015.08.009
    [Crossref] [Google Scholar]
  65. Hendry A, Johnson MH, Holmboe K. 2019.. Early development of visual attention: change, stability, and longitudinal associations. . Annu. Rev. Dev. Psychol. 1::25175 https://doi.org/10.1146/annurev-devpsych-121318-085114
    [Crossref] [Google Scholar]
  66. Henke K. 2010.. A model for memory systems based on processing modes rather than consciousness. . Nat. Rev. Neurosci. 11:(7):52332 https://doi.org/10.1038/nrn2850
    [Google Scholar]
  67. Hespos SJ, Piccin TB. 2009.. To generalize or not to generalize: Spatial categories are influenced by physical attributes and language. . Dev. Sci. 12:(1):8895 https://doi.org/10.1111/j.1467-7687.2008.00749.x
    [Google Scholar]
  68. Hespos SJ, Spelke ES. 2004.. Conceptual precursors to language. . Nature 430::45356 https://doi.org/10.1038/nature02634
    [Crossref] [Google Scholar]
  69. Hoehl S, Hellmer K, Johansson M, Gredebäck G. 2017.. Itsy Bitsy Spider…: Infants react with increased arousal to spiders and snakes. . Front. Psychol. 8::1710. https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01710
    [Google Scholar]
  70. Hoehl S, Pauen S. 2017.. Do infants associate spiders and snakes with fearful facial expressions?. Evol. Hum. Behav. 38:(3):40413 https://doi.org/10.1016/j.evolhumbehav.2016.12.001
    [Google Scholar]
  71. Hood BM. 1993.. Inhibition of return produced by covert shifts of visual attention in 6-month-old infants. . Infant Behav. Dev. 16::24554 https://doi.org/10.1016/0163-6383(93)80020-9
    [Google Scholar]
  72. Hood BM. 1995.. Shifts of visual attention in the human infant: a neuroscientific approach. . In Advances in Infancy Research 9, pp. 163216 Norwood, NJ:: Ablex Publ
    [Google Scholar]
  73. Hunter MA, Ames E. 1988.. A multifactor model of infant preferences for novel and familiar stimuli. . In Advances in Infancy Research 5, ed. C Rovee-Collier, LP Lupsitt , pp. 6995 Norwood, NJ:: Ablex Publ
    [Google Scholar]
  74. Hurley KB, Oakes LM. 2015.. Experience and distribution of attention: pet exposure and infants’ scanning of animal images. . J. Cogn. Dev. 16:(1):1130 https://doi.org/10.1080/15248372.2013.833922
    [Google Scholar]
  75. Hwang K, Velanova K, Luna B. 2010.. Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: a functional magnetic resonance imaging effective connectivity study. . J. Neurosci. 30:(46):1553545 https://doi.org/10.1523/JNEUROSCI.2825-10.2010
    [Google Scholar]
  76. Ishikawa M, Itakura S. 2022.. Social reward anticipation in infants as revealed by event-related potentials. . Soc. Neurosci. 17:(5):48089 https://doi.org/10.1080/17470919.2022.2138535
    [Google Scholar]
  77. Itti L, Baldi P. 2009.. Bayesian surprise attracts human attention. . Vis. Res. 49:(10):1295306 https://doi.org/10.1016/j.visres.2008.09.007
    [Crossref] [Google Scholar]
  78. Itti L, Koch C, Niebur E. 1998.. A model of saliency-based visual attention for rapid scene analysis. . IEEE Trans. Pattern Anal. Mach. Intell. 20:(11):125459 https://doi.org/10.1109/34.730558
    [Google Scholar]
  79. Johnson MH. 1995.. The inhibition of automatic saccades in early infancy. . Dev. Psychobiol. 28:(5):28191 https://doi.org/10.1002/dev.420280504
    [Google Scholar]
  80. Johnson MH. 2001.. Functional brain development in humans. . Nat. Rev. Neurosci. 2:(7):47583 https://doi.org/10.1038/35081509
    [Google Scholar]
  81. Johnson MH, Posner M, Rothbart M. 1991.. Components of visual orienting in early infancy: contingency learning, anticipatory looking, and disengaging. . J. Cogn. Neurosci. 3::33544 https://doi.org/10.1162/jocn.1991.3.4.335
    [Crossref] [Google Scholar]
  82. Johnson MH, Tucker LA. 1996.. The development and temporal dynamics of spatial orienting in infants. . J. Exp. Child Psychol. 63:(1):17188 https://doi.org/10.1006/jecp.1996.0046
    [Google Scholar]
  83. Johnson SP, Slemmer JA, Amso D. 2004.. Where infants look determines how they see: eye movements and object perception performance in 3-month-olds. . Infancy 6:(2):185201 https://doi.org/10.1207/s15327078in0602_3
    [Crossref] [Google Scholar]
  84. Jongkees BJ, Colzato LS. 2016.. Spontaneous eye blink rate as predictor of dopamine-related cognitive function—a review. . Neurosci. Biobehav. Rev. 71::5882 https://doi.org/10.1016/j.neubiorev.2016.08.020
    [Crossref] [Google Scholar]
  85. Jung Y, Larsen B, Walther DB. 2018.. Modality-independent coding of scene categories in prefrontal cortex. . J. Neurosci. 38:(26):596981 https://doi.org/10.1523/JNEUROSCI.0272-18.2018
    [Crossref] [Google Scholar]
  86. Karuza EA, Newport EL, Aslin RN, Starling SJ, Tivarus ME, Bavelier D. 2013.. The neural correlates of statistical learning in a word segmentation task: an fMRI study. . Brain Lang. 127:(1):4654 https://doi.org/doi:10.1016/j.bandl.2012.11.007
    [Crossref] [Google Scholar]
  87. Kastner S, De Weerd P, Desimone R, Ungerleider LG. 1998.. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. . Science 282:(5386):10811 https://doi.org/10.1126/science.282.5386.108
    [Crossref] [Google Scholar]
  88. Kastner S, De Weerd P, Pinsk MA, Elizondo MI, Desimone R, Ungerleider LG. 2001.. Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. . J. Neurophysiol. 86:(3):1398411 https://doi.org/10.1152/jn.2001.86.3.1398
    [Google Scholar]
  89. Kastner S, Ungerleider LG. 2000.. Mechanisms of visual attention in the human cortex. . Annu. Rev. Neurosci. 23::31541 https://doi.org/10.1146/annurev.neuro.23.1.315
    [Google Scholar]
  90. Kastner S, Ungerleider LG. 2001.. The neural basis of biased competition in human visual cortex. . Neuropsychologia 39:(12):126376 https://doi.org/10.1016/s0028-3932(01)00116-6
    [Google Scholar]
  91. Kidd C, Hayden BY. 2015.. The psychology and neuroscience of curiosity. . Neuron 88:(3):44960 https://doi.org/10.1016/j.neuron.2015.09.010
    [Google Scholar]
  92. Kidd C, Piantadosi ST, Aslin RN. 2012.. The Goldilocks effect: Human infants allocate attention to visual sequences that are neither too simple nor too complex. . PLOS ONE 7:(5):e36399. https://doi.org/10.1371/journal.pone.0036399
    [Crossref] [Google Scholar]
  93. Kirkham NZ, Slemmer JA, Johnson SP. 2002.. Visual statistical learning in infancy: evidence for a domain general learning mechanism. . Cognition 83:(2):B3542 https://doi.org/10.1016/S0010-0277(02)00004-5
    [Google Scholar]
  94. Klein RM. 2000.. Inhibition of return. . Trends Cogn. Sci. 4:(4):13847 https://doi.org/10.1016/S1364-6613(00)01452-2
    [Google Scholar]
  95. Konrad K, Neufang S, Thiel CM, Specht K, Hanisch C, et al. 2005.. Development of attentional networks: an fMRI study with children and adults. . NeuroImage 28:(2):42939 https://doi.org/10.1016/j.neuroimage.2005.06.065
    [Crossref] [Google Scholar]
  96. Krogh L, Vlach HA, Johnson SP. 2013.. Statistical learning across development: flexible yet constrained. . Front. Psychol. 3::598. https://doi.org/10.3389/fpsyg.2012.00598
    [Google Scholar]
  97. Kwon M-K, Setoodehnia M, Baek J, Luck SJ, Oakes LM. 2016.. The development of visual search in infancy: attention to faces versus salience. . Dev. Psychol. 52:(4):53755 https://doi.org/10.1037/dev0000080
    [Google Scholar]
  98. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. 2012.. Diffusion tensor imaging of white matter tract evolution over the lifespan. . NeuroImage 60:(1):34052 https://doi.org/10.1016/j.neuroimage.2011.11.094
    [Crossref] [Google Scholar]
  99. Lenroot RK, Giedd JN. 2006.. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. . Neurosci. Biobehav. Rev. 30:(6):71829 https://doi.org/10.1016/j.neubiorev.2006.06.001
    [Crossref] [Google Scholar]
  100. Lewkowicz DJ, Schmuckler MA, Mangalindan DMJ. 2018.. Learning of hierarchical serial patterns emerges in infancy. . Dev. Psychobiol. 60:(3):24355 https://doi.org/10.1002/dev.21614
    [Google Scholar]
  101. LoBue V, Adolph KE. 2019.. Fear in infancy: lessons from snakes, spiders, heights, and strangers. . Dev. Psychol. 55:(9):1889907 https://doi.org/10.1037/dev0000675
    [Google Scholar]
  102. LoBue V, DeLoache JS. 2010.. Superior detection of threat-relevant stimuli in infancy. . Dev. Sci. 13:(1):22128 https://doi.org/10.1111/j.1467-7687.2009.00872.x
    [Google Scholar]
  103. Loewenstein G. 1994.. The psychology of curiosity: a review and reinterpretation. . Psychol. Bull. 116:(1):7598 https://doi.org/10.1037/0033-2909.116.1.75
    [Google Scholar]
  104. Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA. 2004.. Maturation of cognitive processes from late childhood to adulthood. . Child Dev. 75:(5):1357372 https://doi.org/10.1111/j.1467-8624.2004.00745.x
    [Crossref] [Google Scholar]
  105. Lynn A, Amso D. 2021.. Attention along the cortical hierarchy: development matters. . WIREs Cogn. Sci. 14:(1):e1575. https://doi.org/10.1002/wcs.1575
    [Google Scholar]
  106. Marcinowski EC, Campbell JM. 2017.. Building on what you have learned: Object construction skill during infancy predicts the comprehension of spatial relations words. . Int. J. Behav. Dev. 41:(3):34149 https://doi.org/10.1177/0165025416635283
    [Google Scholar]
  107. Markant J, Amso D. 2013.. Selective memories: Infants’ encoding is enhanced in selection via suppression. . Dev. Sci. 16:(6):92640 https://doi.org/10.1111/desc.12084
    [Google Scholar]
  108. Markant J, Worden MS, Amso D. 2015.. Not all attention orienting is created equal: Recognition memory is enhanced when attention orienting involves distractor suppression. . Neurobiol. Learn. Mem. 120::2840 https://doi.org/10.1016/j.nlm.2015.02.006
    [Google Scholar]
  109. McClelland JL, McNaughton BL, O'Reilly RC. 1995.. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. . Psychol. Rev. 102:(3):41957 https://doi.org/10.1037/0033-295X.102.3.419
    [Google Scholar]
  110. McNealy K, Mazziotta JC, Dapretto M. 2010.. The neural basis of speech parsing in children and adults. . Dev. Sci. 13:(2):385406 https://doi.org/10.1111/j.1467-7687.2009.00895.x
    [Google Scholar]
  111. Meltzoff AN. 1988.. Infant imitation and memory: nine-month-olds in immediate and deferred tests. . Child Dev. 59:(1):21725 https://doi.org/10.2307/1130404
    [Google Scholar]
  112. Messinger DS, Cassel TD, Acosta SI, Ambadar Z, Cohn JF. 2008.. Infant smiling dynamics and perceived positive emotion. . J. Nonverbal Behav. 32:(3):13355 https://doi.org/10.1007/s10919-008-0048-8
    [Google Scholar]
  113. Mishkin M, Ungerleider LG, Macko KA. 1983.. Object vision and spatial vision: two cortical pathways. . Trends Neurosci. 6::41417 https://doi.org/10.1016/0166-2236(83)90190-X
    [Google Scholar]
  114. Morales S, Brown KM, Taber-Thomas BC, LoBue V, Buss KA, Pérez-Edgar KE. 2017.. Maternal anxiety predicts attentional bias towards threat in infancy. . Emotion 17::87483 https://doi.org/10.1037/emo0000275
    [Crossref] [Google Scholar]
  115. Moran J, Desimone R. 1985.. Selective attention gates visual processing in the extrastriate cortex. . Science 229:(4715):78284 https://doi.org/10.1126/science.4023713
    [Google Scholar]
  116. Newcombe N, Huttenlocher J. 2003.. Making Space: The Development of Spatial Representation and Reasoning. Cambridge, MA:: MIT Press
    [Google Scholar]
  117. Newcombe N, Huttenlocher J, Learmonth A. 1999.. Infants’ coding of location in continuous space. . Infant Behav. Dev. 22:(4):483510 https://doi.org/10.1016/S0163-6383(00)00011-4
    [Google Scholar]
  118. Öhman A, Mineka S. 2001.. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. . Psychol. Rev. 108:(3):483. https://doi.org/10.1037/0033-295X.108.3.483
    [Google Scholar]
  119. Pavlov IP. 1927.. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  120. Poli F, Serino G, Mars RB, Hunnius S. 2020.. Infants tailor their attention to maximize learning. . Sci. Adv. 6:(39):eabb5053. https://doi.org/10.1126/sciadv.abb5053
    [Google Scholar]
  121. Pomaranski KI, Hayes TR, Kwon M-K, Henderson JM, Oakes LM. 2021.. Developmental changes in natural scene viewing in infancy. . Dev. Psychol. 57:(7):102541 https://doi.org/10.1037/dev0001020
    [Google Scholar]
  122. Posner MI. 1980.. Orienting of attention. . Q. J. Exp. Psychol. 32::325 https://doi.org/10.1080/00335558008248231
    [Crossref] [Google Scholar]
  123. Posner MI, Petersen SE. 1990.. The attention system of the human brain. . Annu. Rev. Neurosci. 13::2542 https://doi.org/10.1146/annurev.ne.13.030190.000325
    [Google Scholar]
  124. Posner MI, Rafal RD, Choate LS, Vaughan J. 1985.. Inhibition of return: neural basis and function. . Cogn. Neuropsychol. 2:(3):21128 https://doi.org/10.1080/02643298508252866
    [Google Scholar]
  125. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012.. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. . NeuroImage 59:(3):214254 https://doi.org/10.1016/j.neuroimage.2011.10.018
    [Google Scholar]
  126. Quinn PC, Adams A, Kennedy E, Shettler L, Wasnik A. 2003.. The categorization of above and below spatial relations by young infants. . Child Dev. 39:(1):15162 https://doi.org/10.1111/j.1467-8624.1994.tb00734.x
    [Crossref] [Google Scholar]
  127. Quinn PC, Cummins M, Kase J, Martin E, Weissman S. 1996.. Development of categorical representations for above and below spatial relations in 3- to 7-month-old infants. . Dev. Psychol. 32:(5):94250 https://doi.org/10.1037/0012-1649.32.5.942
    [Crossref] [Google Scholar]
  128. Quinn PC, Norris CM, Pasko RN, Schmader TM, Mash C. 1999.. Formation of a categorical representation for the spatial relation between by 6- to 7-month-old infants. . Vis. Cogn. 6:(5):56985 https://doi.org/10.1080/135062899394948
    [Crossref] [Google Scholar]
  129. Raviv L, Arnon I. 2018.. The developmental trajectory of children's auditory and visual statistical learning abilities: modality-based differences in the effect of age. . Dev. Sci. 21:(4):e12593. https://doi.org/10.1111/desc.12593
    [Crossref] [Google Scholar]
  130. Reynolds GD, Richards JE. 2005.. Familiarization, attention, and recognition memory in infancy: an event-related potential and cortical source localization study. . Dev. Psychol. 41:(4):598615 https://doi.org/10.1037/0012-1649.41.4.598
    [Crossref] [Google Scholar]
  131. Reynolds JH, Chelazzi L, Desimone R. 1999.. Competitive mechanisms subserve attention in macaque areas V2 and V4. . J. Neurosci. 19:(5):173653 https://doi.org/10.1523/JNEUROSCI.19-05-01736.1999
    [Google Scholar]
  132. Richards JE. 2000.. Localizing the development of covert attention in infants with scalp event-related potentials. . Dev. Psychol. 36:(1):91108 https://doi.org/10.1037/0012-1649.36.1.91
    [Google Scholar]
  133. Richards JE. 2003.. Attention affects the recognition of briefly presented visual stimuli in infants: an ERP study. . Dev. Sci. 6:(3):31228 https://doi.org/10.1111/1467-7687.00287
    [Google Scholar]
  134. Richards JE, Casey BJ. 1991.. Heart rate variability during attention phases in young infants. . Psychophysiology 28::4353 https://doi.org/10.1111/j.1469-8986.1991.tb03385.x
    [Google Scholar]
  135. Rovee-Collier CK, Sullivan MW, Enright M, Lucas D, Fagen JW. 1980.. Reactivation of infant memory. . Science 208:(4448):115961 https://doi.org/10.1126/science.7375924
    [Google Scholar]
  136. Saffran JR. 2020.. Statistical language learning in infancy. . Child Dev. Perspect. 14:(1):4954 https://doi.org/10.1111/cdep.12355
    [Crossref] [Google Scholar]
  137. Saffran JR, Aslin RN, Newport EL. 1996.. Statistical learning by 8-month-old infants. . Science 274:(5294):192628 https://doi.org/10.1126/science.274.5294.1926
    [Google Scholar]
  138. Saffran JR, Kirkham NZ. 2018.. Infant statistical learning. . Annu. Rev. Psychol. 69::181203 https://doi.org/10.1146/annurev-psych-122216-011805
    [Crossref] [Google Scholar]
  139. Scerif G, Karmiloff-Smith A, Campos R, Elsabbagh M, Driver J, Cornish K. 2005.. To look or not to look? Typical and atypical development of oculomotor control. . J. Cogn. Neurosci. 17:(4):591604 https://doi.org/10.1162/0898929053467523
    [Crossref] [Google Scholar]
  140. Schapiro AC, Gregory E, Landau B, McCloskey M, Turk-Browne NB. 2014.. The necessity of the medial temporal lobe for statistical learning. . J. Cogn. Neurosci. 26:(8):173647 https://doi.org/10.1162/jocn_a_00578
    [Crossref] [Google Scholar]
  141. Schapiro AC, Kustner LV, Turk-Browne NB. 2012.. Shaping of object representations in the human medial temporal lobe based on temporal regularities. . Curr. Biol. 22:(17):162227 https://doi.org/10.1016/j.cub.2012.06.056
    [Crossref] [Google Scholar]
  142. Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, Botvinick MM. 2013.. Neural representations of events arise from temporal community structure. . Nat. Neurosci. 16:(4):48692 https://doi.org/10.1038/nn.3331
    [Crossref] [Google Scholar]
  143. Schapiro AC, Turk-Browne NB, Norman KA, Botvinick MM. 2016.. Statistical learning of temporal community structure in the hippocampus. . Hippocampus 26:(1):38 https://doi.org/10.1002/hipo.22523
    [Google Scholar]
  144. Schlichting ML, Guarino KF, Schapiro AC, Turk-Browne NB, Preston AR. 2017.. Hippocampal structure predicts statistical learning and associative inference abilities during development. . J. Cogn. Neurosci. 29:(1):3751 https://doi.org/10.1162/jocn_a_01028
    [Google Scholar]
  145. Schultz W. 2010.. Dopamine signals for reward value and risk: basic and recent data. . Behav. Brain Funct. 6:(1):24. https://doi.org/10.1186/1744-9081-6-24
    [Google Scholar]
  146. Schultz W, Dayan P, Montague PR. 1997.. A neural substrate of prediction and reward. . Science 275:(5306):159399 https://doi.org/10.1126/science.275.5306.1593
    [Google Scholar]
  147. Schultz W, Stauffer WR, Lak A. 2017.. The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility. . Curr. Opin. Neurobiol. 43::13948 https://doi.org/10.1016/j.conb.2017.03.013
    [Crossref] [Google Scholar]
  148. Shohamy D, Turk-Browne NB. 2013.. Mechanisms for widespread hippocampal involvement in cognition. . J. Exp. Psychol. Gen. 142:(4):115970 https://doi.org/10.1037/a0034461
    [Google Scholar]
  149. Siegelman N, Bogaerts L, Kronenfeld O, Frost R. 2018.. Redefining “learning” in statistical learning: What does an online measure reveal about the assimilation of visual regularities?. Cogn. Sci. 42:(53):692727 https://doi.org/10.1111/cogs.12556
    [Crossref] [Google Scholar]
  150. Skversky-Blocq Y, Haaker J, Shechner T. 2021.. Watch and learn: vicarious threat learning across human development. . Brain Sci. 11:(10):1345. https://doi.org/10.3390/brainsci11101345
    [Google Scholar]
  151. Slone LK, Johnson SP. 2018.. When learning goes beyond statistics: Infants represent visual sequences in terms of chunks. . Cognition 178::92102 https://doi.org/10.1016/j.cognition.2018.05.016
    [Google Scholar]
  152. Tamnes CK, Roalf DR, Goddings A-L, Lebel C. 2017.. Diffusion MRI of white matter microstructure development in childhood and adolescence: methods, challenges and progress. . Dev. Cogn. Neurosci. 33::16175 https://doi.org/10.1016/j.dcn.2017.12.002
    [Google Scholar]
  153. Teinonen T, Fellman V, Näätänen R, Alku P, Huotilainen M. 2009.. Statistical language learning in neonates revealed by event-related brain potentials. . BMC Neurosci. 10::21. https://doi.org/10.1186/1471-2202-10-21
    [Crossref] [Google Scholar]
  154. Thiele M, Hepach R, Michel C, Gredebäck G, Haun DBM. 2021.. Social interaction targets enhance 13-month-old infants’ associative learning. . Infancy 26:(3):40922 https://doi.org/10.1111/infa.12393
    [Google Scholar]
  155. Thrasher C, LoBue V. 2016.. Do infants find snakes aversive? Infants’ physiological responses to “fear-relevant” stimuli. . J. Exp. Child Psychol. 142::38290 https://doi.org/10.1016/j.jecp.2015.09.013
    [Google Scholar]
  156. Tummeltshammer K, Amso D. 2018.. Top-down contextual knowledge guides visual attention in infancy. . Dev. Sci. 21:(4):e12599. https://doi.org/10.1111/desc.12599
    [Google Scholar]
  157. Tummeltshammer K, Amso D. 2023.. Infants use contextual memory to attend and learn in naturalistic scenes. . Infancy 28:(3):63449 https://doi.org/10.1111/infa.12530
    [Crossref] [Google Scholar]
  158. Tummeltshammer K, Feldman ECH, Amso D. 2019.. Using pupil dilation, eye-blink rate, and the value of mother to investigate reward learning mechanisms in infancy. . Dev. Cogn. Neurosci. 36::100608. https://doi.org/10.1016/j.dcn.2018.12.006
    [Crossref] [Google Scholar]
  159. Turk-Browne NB, Scholl BJ, Chun MM, Johnson MK. 2009.. Neural evidence of statistical learning: efficient detection of visual regularities without awareness. . J. Cogn. Neurosci. 21:(10):193445 https://doi.org/10.1162/jocn.2009.21131
    [Google Scholar]
  160. Twomey KE, Westermann G. 2018.. Curiosity-based learning in infants: a neurocomputational approach. . Dev. Sci. 21:(4):e12629. https://doi.org/10.1111/desc.12629
    [Google Scholar]
  161. Watabe-Uchida M, Eshel N, Uchida N. 2017.. Neural circuitry of reward prediction error. . Annu. Rev. Neurosci. 40::37394 https://doi.org/10.1146/annurev-neuro-072116-031109
    [Google Scholar]
  162. Werchan DM, Amso D. 2020.. Top-down knowledge rapidly acquired through abstract rule learning biases subsequent visual attention in 9-month-old infants. . Dev. Cogn. Neurosci. 42::100761. https://doi.org/10.1016/j.dcn.2020.100761
    [Crossref] [Google Scholar]
  163. Werchan DM, Amso D. 2021.. All contexts are not created equal: Social stimuli win the competition for organizing reinforcement learning in 9-month-old infants. . Dev. Sci. 24:(5):e13088. https://doi.org/10.1111/desc.13088
    [Crossref] [Google Scholar]
  164. Werchan DM, Collins AGE, Frank MJ, Amso D. 2015.. 8-month-old infants spontaneously learn and generalize hierarchical rules. . Psychol. Sci. 26:(6):80515 https://doi.org/10.1177/0956797615571442
    [Google Scholar]
  165. Werchan DM, Collins AGE, Frank MJ, Amso D. 2016.. Role of prefrontal cortex in learning and generalizing hierarchical rules in 8-month-old infants. . J. Neurosci. 36:(40):1031422 https://doi.org/10.1523/JNEUROSCI.1351-16.2016
    [Crossref] [Google Scholar]
  166. Werchan DM, Lynn A, Kirkham NZ, Amso D. 2019.. The emergence of object-based visual attention in infancy: a role for family socioeconomic status and competing visual features. . Infancy 24:(5):75267 https://doi.org/10.1111/infa.12309
    [Crossref] [Google Scholar]
  167. Wilcox T, Rosser R, Nadel L. 1994.. Representation of object location in 6.5-month-old infants. . Cogn. Dev. 9:(2):193209 https://doi.org/10.1016/0885-2014(94)90003-5
    [Google Scholar]
  168. Wise RA. 2005.. Forebrain substrates of reward and motivation. . J. Comp. Neurol. 493:(1):11521 https://doi.org/10.1002/cne.20689
    [Crossref] [Google Scholar]
  169. Witte EA, Marrocco RT. 1997.. Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. . Psychopharmacology 132:(4):31523 https://doi.org/10.1007/s002130050351
    [Crossref] [Google Scholar]
  170. Wolff PH. 1965.. The development of attention in young infants. . Ann. N.Y. Acad. Sci. 118:(21):81530 https://doi.org/10.1111/j.1749-6632.1965.tb40153.x
    [Crossref] [Google Scholar]
  171. Wu R, Kirkham NZ. 2010.. No two cues are alike: Depth of learning during infancy is dependent on what orients attention. . J. Exp. Child Psychol. 107:(2):118136 https://doi.org/10.1016/j.jecp.2010.04.014
    [Google Scholar]
  172. Wu R, McGee B, Echiverri C, Zinszer BD. 2018.. Prior knowledge of category size impacts visual search. . Psychophysiology 55:(8):e13075. https://doi.org/10.1111/psyp.13075
    [Google Scholar]
  173. Wu R, Zhao J. 2017.. Prior knowledge of object associations shapes attentional templates and information acquisition. . Front. Psychol. 8::843. https://doi.org/10.3389/fpsyg.2017.00843
    [Google Scholar]
  174. Yu C, Smith LB. 2011.. What you learn is what you see: using eye movements to study infant cross-situational word learning. . Dev. Sci. 14::16580 https://doi.org/10.1111/j.1467-7687.2010.00958.x
    [Google Scholar]
  175. Yuan L, Xu TL, Yu C, Smith LB. 2019.. Sustained visual attention is more than seeing. . J. Exp. Child Psychol. 179::32436 https://doi.org/10.1016/j.jecp.2018.11.020
    [Google Scholar]
  176. Zhang F, Emberson LL. 2020.. Using pupillometry to investigate predictive processes in infancy. . Infancy 25:(6):75880 https://doi.org/10.1111/infa.12358
    [Google Scholar]
/content/journals/10.1146/annurev-devpsych-120321-011300
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error