1932

Abstract

Four decades of research have examined the antecedents and consequences of behavioral inhibition (BI), a temperament profile associated with heightened reactivity to sensory stimuli in infancy, reticence toward social cues in childhood, and the later emergence of social anxiety in adolescence. This review proposes that a two-hit model can supplement prior work to better understand these developmental pathways. Specifically, time limited experiences (“hits”) centered in infancy and adolescence stress idiosyncratic BI-linked processes that uniquely trigger the developmental pathway from temperament to disorder. To illustrate, we focus on caregiver distress in infancy (including fetal development), social reorientation in adolescence, and their impact on malleable attentional and cognitive systems. These are developmental challenges and processes that go to the heart of the BI phenotype. Finally, we note open questions in this conceptual model, potential caveats, and needed future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-devpsych-120621-043722
2023-12-11
2025-02-12
Loading full text...

Full text loading...

/deliver/fulltext/devpsych/5/1/annurev-devpsych-120621-043722.html?itemId=/content/journals/10.1146/annurev-devpsych-120621-043722&mimeType=html&fmt=ahah

Literature Cited

  1. Aktar E, Nimphy CA, Kret ME, Pérez-Edgar K, Raijmakers MEJ, Bögels SM. 2022.. Attention biases to threat in infants and parents: links to parental and infant anxiety dispositions. . Res. Child Adolesc. Psychopathol. 50::387402 https://doi.org/10.1007/s10802-021-00848-3
    [Crossref] [Google Scholar]
  2. Aktar E, Pérez-Edgar K. 2020.. Infant emotion development and temperament. . In The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context, ed. J Lockman, C Tamis-LeMonda , pp. 71541 Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781108351959.026
    [Crossref] [Google Scholar]
  3. Aktar E, Van Bockstaele B, Pérez-Edgar K, Wiers RW, Bögels SM. 2019.. Intergenerational transmission of attentional bias and anxiety. . Dev. Sci. 22::e12772. https://doi.org/10.1111/desc.12772
    [Crossref] [Google Scholar]
  4. Arnett JJ. 2011.. Emerging adulthood(s): the cultural psychology of a new life stage. . In Bridging Cultural and Developmental Approaches to Psychology: New Syntheses in Theory, Research, and Policy, ed. LA Jensen , pp. 25575 New York:: Oxford Press
    [Google Scholar]
  5. Bar-Haim Y, Fox NA, Benson B, Guyer AE, Williams A, et al. 2009.. Neural correlates of reward processing in adolescents with a history of inhibited temperament. . Psychol. Sci. 20::100918 https://doi.org/10.1111/j.1467-9280.2009.02401.x
    [Crossref] [Google Scholar]
  6. Bitsko RH, Claussen AH, Lichstein J, Black LI, Jones SE, et al. 2022.. Mental health surveillance among children—United States, 2013–2019. . Morb. Mortal. Wkly. Rep. Suppl. 71:(2):142 https://doi.org/10.15585/mmwr.su7102a1
    [Crossref] [Google Scholar]
  7. Bitsko RH, Holbrook JR, Ghandour RM, Blumberg SJ, Visser SN, et al. 2018.. Epidemiology and impact of health care provider–diagnosed anxiety and depression among US children. . J. Dev. Behav. Pediatr. 39::395403 https://doi.org/10.1097/DBP.0000000000000571
    [Crossref] [Google Scholar]
  8. Blackford JU, Clauss JA, Benningfield MM. 2018.. The neurobiology of behavioral inhibition as a developmental mechanism. . See Pérez-Edgar & Fox 2018 , pp. 11334 https://doi.org/10.1007/978-3-319-98077-5_6
    [Crossref]
  9. Braun K, Bock J, Wainstock T, Matas E, Gaisler-Salomon I, et al. 2020.. Experience-induced transgenerational (re-)programming of neuronal structure and functions: impact of stress prior and during pregnancy. . Neurosci. Biobehav. Rev. 117::28196 https://doi.org/10.1016/j.neubiorev.2017.05.021
    [Crossref] [Google Scholar]
  10. Burris JL, Reider LB, Oleas DS, Gunther KE, Buss KA, et al. 2022.. Moderating effects of environmental stressors on the development of attention to threat in infancy. . Dev. Psychobiol. 64::e22241. https://doi.org/10.1002/dev.22241
    [Crossref] [Google Scholar]
  11. Buzzell GA, Barker TV, Troller-Renfree SV, Bernat EM, Bowers ME, et al. 2019.. Adolescent cognitive control, theta oscillations, and social observation. . NeuroImage 198::1330 https://doi.org/10.1016/j.neuroimage.2019.04.077 Theta oscillations and medial frontal cortex connectivity relate to cognitive control in adolescents when socially observed.
    [Crossref] [Google Scholar]
  12. Buzzell GA, Morales S, Bowers ME, Troller-Renfree S, Chronis-Tuscano A, et al. 2021.. Inhibitory control and set shifting describe different pathways from behavioral inhibition to socially anxious behavior. . Dev. Sci. 24::e13040. https://doi.org/10.1111/desc.13040
    [Crossref] [Google Scholar]
  13. Casey BJ, Jones RM, Hare TA. 2008.. The adolescent brain. . Ann. N.Y. Acad. Sci. 1124::11126 https://doi.org/10.1196/annals.1440.010
    [Crossref] [Google Scholar]
  14. Caspi A, Moffitt TE, Newman DL, Silva PA. 1996.. Behavioral observations at age 3 years predict adult psychiatric disorders: longitudinal evidence from a birth cohort. . Arch. Gen. Psychiatry 53::103339 https://doi.org/10.1001/archpsyc.1996.01830110071009
    [Crossref] [Google Scholar]
  15. Catuzzi JE, Beck KD. 2014.. Anxiety vulnerability in women: a two-hit hypothesis. . Exp. Neurol. 259::7580 https://doi.org/10.1016/j.expneurol.2014.01.023
    [Crossref] [Google Scholar]
  16. Cavanagh JF, Frank MJ. 2014.. Frontal theta as a mechanism for cognitive control. . Trends Cogn. Sci. 18::41421 https://doi.org/10.1016/j.tics.2014.04.012
    [Crossref] [Google Scholar]
  17. Chen X. 2018.. Culture, temperament, and social and psychological adjustment. . Dev. Rev. 50::4253 https://doi.org/10.1016/j.dr.2018.03.004
    [Crossref] [Google Scholar]
  18. Chen X, Fu R, Li D, Chen H, Wang Z, Wang L. 2021.. Behavioral inhibition in early childhood and adjustment in late adolescence in China. . Child Dev. 92::9941010 https://doi.org/10.1111/cdev.13463
    [Crossref] [Google Scholar]
  19. Chini M, Pfeffer T, Hanganu-Opatz I. 2022.. An increase of inhibition drives the developmental decorrelation of neural activity. . eLife 11::e78811. https://doi.org/10.7554/elife.78811 The transition from synchronous to sparse neural activity in the prefrontal cortex impacts neurodevelopmental functioning.
    [Crossref] [Google Scholar]
  20. Chocyk A, Przyborowska A, Makuch W, Majcher-Maślanka I, Dudys D, Wędzony K. 2014.. The effects of early-life adversity on fear memories in adolescent rats and their persistence into adulthood. . Behav. Brain Res. 264::16172 https://doi.org/10.1016/j.bbr.2014.01.040
    [Crossref] [Google Scholar]
  21. Chronis-Tuscano A, Degnan KA, Pine DS, Perez-Edgar K, Henderson HA, et al. 2009.. Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. . J. Am. Acad. Child Adolesc. Psychiatry 48::92835 https://doi.org/10.1097/CHI.0b013e3181ae09df
    [Crossref] [Google Scholar]
  22. Chronis-Tuscano A, Novick DR, Danko CM, Smith KA, Wagner NJ, et al. 2022.. Early intervention for inhibited young children: a randomized controlled trial comparing the Turtle Program and Cool Little Kids. . J. Child Psychol. Psychiatry 63::27381 https://doi.org/10.1111/jcpp.13475
    [Crossref] [Google Scholar]
  23. Clauss JA, Blackford JU. 2012.. Behavioral inhibition and risk for developing social anxiety disorder: a meta-analytic study. . J. Am. Acad. Child Adolesc. Psychiatry 51::106675 https://doi.org/10.1016/j.jaac.2012.08.002
    [Crossref] [Google Scholar]
  24. Clauss JA, Seay AL, Vanderklok RM, Avery SN, Cao A, et al. 2014.. Structural and functional bases of inhibited temperament. . Soc. Cogn. Affect. Neurosci. 9::204958 https://doi.org/10.1093/scan/nsu019
    [Crossref] [Google Scholar]
  25. Clauss K, Gorday JY, Bardeen JR. 2022.. Eye tracking evidence of threat-related attentional bias in anxiety- and fear-related disorders: a systematic review and meta-analysis. . Clin. Psychol. Rev. 93::102142. https://doi.org/10.1016/j.cpr.2022.102142
    [Crossref] [Google Scholar]
  26. Crone EA, Green KH, van den Groep IH, van der Cruijsen R. 2022.. A neurocognitive model of self-concept development in adolescence. . Annu. Rev. Dev. Psychol. 4::27395 https://doi.org/10.1146/annurev-devpsych-120920-023842
    [Crossref] [Google Scholar]
  27. Crowley MJ, van Noordt SJR, Wu J, Hommer RE, South M, et al. 2014.. Reward feedback processing in children and adolescents: medial frontal theta oscillations. . Brain Cogn. 89::7989 https://doi.org/10.1016/j.bandc.2013.11.011
    [Crossref] [Google Scholar]
  28. Davis SK, Rice M, Rudlong J, Eaton V, King T, Burman MA. 2018.. Neonatal pain and stress disrupts later-life Pavlovian fear conditioning and sensory function in rats: evidence for a two-hit model. . Dev. Psychobiol. 60::52033 https://doi.org/10.1002/dev.21632
    [Crossref] [Google Scholar]
  29. Dela Cruz KL, Kelsey CM, Tong X, Grossmann T. 2023.. Infant and maternal responses to emotional facial expressions: a longitudinal study. . Infant. Behav. Dev. 71::101818. https://doi.org/10.1016/j.infbeh.2023.101818
    [Crossref] [Google Scholar]
  30. Demers CH, Begonia MM, Al-Ali K, Garcia SE, Styner MA, et al. 2022.. Exposure to prenatal maternal distress and infant white matter neurodevelopment. . Dev. Psychopathol. 33::152638 https://doi.org/10.1017/S0954579421000742
    [Crossref] [Google Scholar]
  31. Dollar MJ, Calkins SD. 2019.. The development of anger. . In Handbook of Emotional Development, ed. V LoBue, K Pérez-Edgar, KA Buss , pp. 199225 Cham, Switz.:: Springer. https://doi.org/10.1007/978-3-030-17332-6_9
    [Crossref] [Google Scholar]
  32. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, et al. 2020.. Parameterizing neural power spectra into periodic and aperiodic components. . Nat. Neurosci. 23::165565 https://doi.org/10.1038/s41593-020-00744-x
    [Crossref] [Google Scholar]
  33. Dufford AJ, Spann M, Scheinost D. 2021.. How prenatal exposures shape the infant brain: insights from infant neuroimaging studies. . Neurosci. Biobehav. Rev. 131::4758 https://doi.org/10.1016/j.neubiorev.2021.09.017
    [Crossref] [Google Scholar]
  34. Ellis BJ, Bianchi J, Griskevicius V, Frankenhuis WE. 2017.. Beyond risk and protective factors: an adaptation-based approach to resilience. . Perspect. Psychol. Sci. 12::56187 https://doi.org/10.1177/1745691617693054
    [Crossref] [Google Scholar]
  35. Etkin A, Egner T, Kalisch R. 2011.. Emotional processing in anterior cingulate and medial prefrontal cortex. . Trends Cogn. Sci. 15::8593 https://doi.org/10.1016/j.tics.2010.11.004
    [Crossref] [Google Scholar]
  36. Field T, Hernandez-Reif M, Schanberg S, Kuhn C, Yando R, Bendell D. 2003.. Pregnancy anxiety and comorbid depression and anger: effects on the fetus and neonate. . Depress. Anxiety 17::14051 https://doi.org/10.1002/da.10071
    [Crossref] [Google Scholar]
  37. Filippi CA, Ravi S, Bracy M, Winkler A, Sylvester CM, et al. 2021.. Amygdala functional connectivity and negative reactive temperament at age 4 months. . J. Am. Acad. Child Adolesc. Psychiatry 60::113746 https://doi.org/10.1016/j.jaac.2020.11.021 Infant amygdala connectivity relates to observed novelty-evoked distress, undergirding the developmental pathophysiology of anxiety.
    [Crossref] [Google Scholar]
  38. Fox NA, Buzzell GA, Morales S, Valadez EA, Wilson M, Henderson HA. 2021.. Understanding the emergence of social anxiety in children with behavioral inhibition. . Biol. Psychiatry 89::68189 https://doi.org/10.1016/j.biopsych.2020.10.004
    [Crossref] [Google Scholar]
  39. Fox NA, Henderson HA, Marshall PJ, Nichols KE, Ghera MM. 2005.. Behavioral inhibition: linking biology and behavior within a developmental framework. . Annu. Rev. Psychol. 56::23562 https://doi.org/10.1146/annurev.psych.55.090902.141532
    [Crossref] [Google Scholar]
  40. Fox NA, Henderson HA, Rubin KH, Calkins SD, Schmidt LA. 2001.. Continuity and discontinuity of behavioral inhibition and exuberance: psychophysiological and behavioral influences across the first four years of life. . Child Dev. 72::121 https://doi.org/10.1111/1467-8624.00262
    [Crossref] [Google Scholar]
  41. Fox NA, Snidman N, Haas SA, Degnan KA, Kagan J. 2015.. The relations between reactivity at 4 months and behavioral inhibition in the second year: replication across three independent samples. . Infancy 20::98114 https://doi.org/10.1111/infa.12063
    [Crossref] [Google Scholar]
  42. Froemke RC. 2015.. Plasticity of cortical excitatory-inhibitory balance. . Annu. Rev. Neurosci. 38::195219 https://doi.org/10.1146/annurev-neuro-071714-034002
    [Crossref] [Google Scholar]
  43. Fuhrmann D, Knoll LJ, Blakemore SJ. 2015.. Adolescence as a sensitive period of brain development. . Trends Cogn. Sci. 19::55866 https://doi.org/10.1016/j.tics.2015.07.008
    [Crossref] [Google Scholar]
  44. Gabard-Durnam L, McLaughlin KA. 2020.. Sensitive periods in human development: charting a course for the future. . Curr. Opin. Behav. Sci. 36::12028 https://doi.org/10.1016/j.cobeha.2020.09.003
    [Crossref] [Google Scholar]
  45. Gao R, Peterson EJ, Voytek B. 2017.. Inferring synaptic excitation/inhibition balance from field potentials. . NeuroImage 158::7078 https://doi.org/10.1016/j.neuroimage.2017.06.078
    [Crossref] [Google Scholar]
  46. Gao W, Lin W, Grewen K, Gilmore JH. 2017.. Functional connectivity of the infant human brain: plastic and modifiable. . Neuroscientist 23::16984 https://doi.org/10.1177/1073858416635986
    [Crossref] [Google Scholar]
  47. Garcia-Coll C, Kagan J, Reznick JS. 1984.. Behavioral inhibition in young children. . Child Dev. 55::100519 https://doi.org/10.2307/1130152
    [Crossref] [Google Scholar]
  48. Geva R, Schreiber J, Segal-Caspi L, Markus-Shiffman M. 2014.. Neonatal brainstem dysfunction after preterm birth predicts behavioral inhibition. . J. Child Psychol. Psychiatry 55::80210 https://doi.org/10.1111/jcpp.12188
    [Crossref] [Google Scholar]
  49. Gluckman PD, Hanson MA, Beedle AS. 2007.. Early life events and their consequences for later disease: a life history and evolutionary perspective. . Am. J. Hum. Biol. 19::119 https://doi.org/10.1002/ajhb.20590
    [Crossref] [Google Scholar]
  50. Goddings A-L, Mills KL, Clasen LS, Giedd JN, Viner RM, Blackmore S-J. 2014.. The influence of puberty on subcortical brain development. . NeuroImage 88::24251 https://doi.org/10.1016/j.neuroimage.2013.09.073
    [Crossref] [Google Scholar]
  51. Graham AM, Buss C, Rasmussen JM, Rudolph MD, Demeter DV, et al. 2016.. Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age. . Dev. Cogn. Neurosci. 18::1225 https://doi.org/10.1016/j.dcn.2015.09.006
    [Crossref] [Google Scholar]
  52. Gunnar MR, DePasquale CE, Reid BM, Donzella B, Miller BS. 2019.. Pubertal stress recalibration reverses the effects of early life stress in postinstitutionalized children. . PNAS 116::2398488 https://doi.org/10.1073/pnas.1909699116
    [Crossref] [Google Scholar]
  53. Gunther KE, Anaya B, Myruski S, Burris JL, LoBue V, et al. 2022.. Variability in caregiver attention bias to threat: a Goldilocks effect in infant emotional development?. Dev. Psychopathol. In press. https://doi.org/10.1017/S0954579422000736
    [Crossref] [Google Scholar]
  54. Gunther KE, Pérez-Edgar K. 2021.. Dopaminergic associations between behavioral inhibition, executive functioning, and anxiety in development. . Dev. Rev. 60::100966. https://doi.org/10.1016/j.dr.2021.100966
    [Crossref] [Google Scholar]
  55. Guyer AE, Nelson EE, Pérez-Edgar K, Hardin MG, Roberson-Nay R, et al. 2006.. Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. . J. Neurosci. 26::6399405 https://doi.org/10.1523/JNEUROSCI.0666-06.2006
    [Crossref] [Google Scholar]
  56. Guyer AE, Pérez-Edgar K, Crone EA. 2018.. Opportunities for neurodevelopmental plasticity from infancy through early adulthood. . Child Dev. 89::68797 https://doi.org/10.1111/cdev.13073
    [Crossref] [Google Scholar]
  57. Heck A, Hock H, White H, Jubran R, Bhatt RS. 2017.. Further evidence of early development of attention to dynamic facial emotions: reply to Grossmann and Jessen. . J. Exp. Child Psychol. 153::15562 https://doi.org/10.1016/j.jecp.2016.08.006
    [Crossref] [Google Scholar]
  58. Helfinstein SM, Benson B, Pérez-Edgar K, Bar-Haim Y, Detloff A, et al. 2011.. Striatal responses to negative monetary outcomes differ between behaviorally inhibited and non-inhibited adolescents. . Neuropsychologia 49::47985 https://doi.org/10.1016/j.neuropsychologia.2010.12.015
    [Crossref] [Google Scholar]
  59. Henderson HA, Green ES, Wick BL. 2018.. The social world of behaviorally inhibited children: a transactional account. . See Pérez-Edgar & Fox 2018 , pp. 13556 https://doi.org/10.1007/978-3-319-98077-5_7
    [Crossref]
  60. Henderson HA, Wilson MJ. 2017.. Attention processes underlying risk and resilience in behaviorally inhibited children. . Curr. Behav. Neurosci. Rep. 4::99106 https://doi.org/10.1007/s40473-017-0111-z
    [Crossref] [Google Scholar]
  61. Howes OD, Shatalina E. 2022.. Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance. . Biol. Psychiatry 92::50113 https://doi.org/10.1016/j.biopsych.2022.06.017
    [Crossref] [Google Scholar]
  62. Hudson JL, Murayama K, Meteyard L, Morris T, Dodd HF. 2018.. Early childhood predictors of anxiety in early adolescence. . J. Abnorm. Child Psychol. 47::112133 https://doi.org/10.1007/s10802-018-0495-6
    [Crossref] [Google Scholar]
  63. Humphreys KL, Camacho MC, Roth MC, Estes EC. 2020.. Prenatal stress exposure and multimodal assessment of amygdala–medial prefrontal cortex connectivity in infants. . Dev. Cogn. Neurosci. 46::100877. https://doi.org/10.1016/j.dcn.2020.100877
    [Crossref] [Google Scholar]
  64. Hwang K, Velanova K, Luna B. 2010.. Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: a functional magnetic resonance imaging effective connectivity study. . J. Neurosci. 30::1553545 https://doi.org/10.1523/JNEUROSCI.2825-10.2010
    [Crossref] [Google Scholar]
  65. Kagan J. 2018.. The history and theory of behavioral inhibition. . See Pérez-Edgar & Fox 2018 , pp. 115 https://doi.org/10.1007/978-3-319-98077-5_1
    [Crossref]
  66. Kagan J, Reznick JS, Clarke C, Snidman N, Garcia-Coll C. 1984.. Behavioral inhibition to the unfamiliar. . Child Dev. 55::221225 https://doi.org/10.2307/1129793
    [Crossref] [Google Scholar]
  67. Kagan J, Snidman N. 1991.. Infant predictors of inhibited and uninhibited profiles. . Psychol. Sci. 2::4044
    [Google Scholar]
  68. Kalomiris AE, Kiel EJ. 2016.. Maternal anxiety and physiological reactivity as mechanisms to explain overprotective primiparous parenting behaviors. . J. Fam. Psychol. 30::791801 https://doi.org/10.1037/fam0000237
    [Crossref] [Google Scholar]
  69. Kataja E-L, Eskola E, Pelto J, Korja R, Paija S-P, et al. 2022.. The stability of early developing attentional bias for faces and fear from 8 to 30 and 60 months in the FinnBrain Birth Cohort Study. . Dev. Psychol. 58::226474 https://doi.org/10.1037/dev0001432
    [Crossref] [Google Scholar]
  70. Kataja E-L, Karlsson L, Parsons CE, Pelto J, Pesonen H, et al. 2019.. Maternal pre- and postnatal anxiety symptoms and infant attention disengagement from emotional faces. . J. Affect. Disord. 243::28089 https://doi.org/10.1016/j.jad.2018.09.064
    [Crossref] [Google Scholar]
  71. Keaton B, Cline EFdirs. 1920.. One Week. Jacksonville, FL:: Metro Pict
    [Google Scholar]
  72. Keller AS, Sydnor VJ, Pines A, Fair DA, Bassett DS, Satterthwaite TD. 2023.. Hierarchical functional system development supports executive function. . Trends Cogn. Sci. 27::16074 https://doi.org/10.1016/j.tics.2022.11.005
    [Crossref] [Google Scholar]
  73. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. 2005.. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. . Arch. Gen. Psychiatry 62::593602 https://doi.org/10.1001/archpsyc.62.6.593
    [Crossref] [Google Scholar]
  74. Klein DN, Mumper EE. 2018.. Behavioral inhibition as a precursor to psychopathology. . See Pérez-Edgar & Fox 2018 , p. 283307 https://doi.org/10.1007/978-3-319-98077-5_13
    [Crossref]
  75. Knudson AG. 1971.. Mutation and cancer: statistical study of retinoblastoma. . PNAS 68::82023 https://doi.org/10.1073/pnas.68.4.820
    [Crossref] [Google Scholar]
  76. Lahat A, Pérez-Edgar K, Degnan KA, Guyer AE, Lejuez CW, et al. 2012.. Early childhood temperament predicts substance use in young adults. . Transl. Psychiatry 2::e157. https://doi.org/10.1038/tp.2012.87
    [Crossref] [Google Scholar]
  77. Larsen B, Cui Z, Adeimpe A, Pines A, Alexander-Bloch A, et al. 2022.. A developmental reduction of the excitation:inhibition ratio in association cortex during adolescence. . Sci. Adv. 8:: eabj8750. https://doi.org/10.1126/sciadv.abj8750 Pharmacological fMRI shows that excitation:inhibition ratio reductions during adolescence are specific to association cortex and related to psychopathology.
    [Crossref] [Google Scholar]
  78. Leno VC, Bagum-Ali J, Goodwin A, Mason L, Pasco G, et al. 2022.. Infant excitation/inhibition balance interacts with executive attention to predict autistic traits in childhood. . Mol. Autism 13:: 46:. https://doi.org/10.1186/s13229-022-00526-1
    [Crossref] [Google Scholar]
  79. Leppänen JM, Cataldo JK, Enlow MB, Nelson CA. 2018.. Early development of attention to threat-related expressions. . PLOS ONE 13::e0197424. https://doi.org/10.1371/journal.pone.0197424
    [Crossref] [Google Scholar]
  80. LoBue V, Kim E, Delgado M. 2019.. Fear in development. . In Handbook of Emotional Development, ed. V LoBue, K Pérez-Edgar, KA Buss , pp. 25782 Cham, Switz:.: Springer. https://doi.org/10.1007/978-3-030-17332-6_11
    [Crossref] [Google Scholar]
  81. Luciana M, Collins PF. 2012.. Incentive motivation, cognitive control, and the adolescent brain: Is it time for a paradigm shift?. Child Dev. Perspect. 6::39299 https://doi.org/10.1111/j.1750-8606.2012.00252.x
    [Crossref] [Google Scholar]
  82. Luna B, Marek S, Larsen B, Tervo-Clemmens B, Chahal R. 2015.. An integrative model of the maturation of cognitive control. . Annu. Rev. Neurosci. 38::15170 https://doi.org/10.1146/annurev-neuro-071714-034054
    [Crossref] [Google Scholar]
  83. Marchisella F, Creutzberg KC, Begni V, Sanson A, Wearick-Silva LE, et al. 2021.. Exposure to prenatal stress is associated with an excitatory/inhibitory imbalance in rat prefrontal cortex and amygdala and an increased risk for emotion dysregulation. . Front. Cell Dev. Biol. 9::653384. https:/doi.org/10.3389/fcell.2021.653384
    [Crossref] [Google Scholar]
  84. Maynard TM, Sikich L, Lieberman JA, LaMantia AS. 2001.. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. . Schizophr. Bull. 27::45776 https://doi.org/10.1093/oxfordjournals.schbul.a006887
    [Crossref] [Google Scholar]
  85. Monk CS, Telzer EH, Mogg K, Bradley BP, Mai X, et al. 2008.. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. . Arch. Gen. Psychiatry 65::56876 https://doi.org/10.1001/archpsyc.65.5.568
    [Crossref] [Google Scholar]
  86. Morales S, Fu X, Pérez-Edgar KE. 2016.. A developmental neuroscience perspective on affect-biased attention. . Dev. Cogn. Neurosci. 21::2641 https://doi.org/10.1016/j.dcn.2016.08.001
    [Crossref] [Google Scholar]
  87. Morales S, Taber-Thomas BC, Pérez-Edgar KE. 2017.. Patterns of attention to threat across tasks in behaviorally inhibited children at risk for anxiety. . Dev. Sci. 20::e12391. https://doi.org/10.1111/desc.12391
    [Crossref] [Google Scholar]
  88. Nelson EE, Jarcho JM, Guyer AE. 2016.. Social re-orientation and brain development: an expanded and updated view. . Dev. Cogn. Neurosci. 17::11827 https://doi.org/10.1016/j.dcn.2015.12.008 This review proposes a framework for understanding how social development relates to changes in brain function.
    [Crossref] [Google Scholar]
  89. Nielsen JD, Mennies RJ, Olino TM. 2020.. Application of a diathesis-stress model to the interplay of cortical structure development and emerging depression in youth. . Clin. Psychol. Rev. 82::101922. https://doi.org/10.1016/j.cpr.2020.101922
    [Crossref] [Google Scholar]
  90. Nikolaus S, Antke C, Beu M, Müller H-W. 2010.. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders - results from in vivo imaging studies. . Rev. Neurosci. 21::11939 https://doi.org/10.1515/REVNEURO.2010.21.2.119
    [Crossref] [Google Scholar]
  91. Nomura M, Ohira H, Haneda K, Iidaka T, Sadato N, et al. 2004.. Functional association of the amygdala and ventral prefrontal cortex during cognitive evaluation of facial expressions primed by masked angry faces: an event-related fMRI study. . NeuroImage 21::35263 https://doi.org/10.1016/j.neuroimage.2003.09.021
    [Crossref] [Google Scholar]
  92. Nozadi SS, Troller-Renfree S, White LK, Frenkel T, Degnan KA, et al. 2016.. The moderating role of attention biases in understanding the link between behavioral inhibition and anxiety. . J. Exp. Psychopathol. 7::45165 https://doi.org/10.5127/jep.052515
    [Crossref] [Google Scholar]
  93. Ojha A, Parr AC, Foran W, Calabro FJ, Luna B. 2022.. Puberty contributes to adolescent development of fronto-striatal functional connectivity supporting inhibitory control. . Dev. Cogn. Neurosci. 58::101183. https:doi.org/10.1016/j.dcn.2022.101183
    [Crossref] [Google Scholar]
  94. Padmanabhan V, Cardoso RC, Puttabyatappa M. 2016.. Developmental programming, a pathway to disease. . Endocrinology 157::132840 https://doi.org/10.1210/en.2016-1003
    [Crossref] [Google Scholar]
  95. Peltola MJ, Leppänen JM, Mäki S, Hietanen JK. 2009.. Emergence of enhanced attention to fearful faces between 5 and 7 months of age. . Soc. Cogn. Affect. Neurosci. 4::13442 https://doi.org/10.1093/scan/nsn046
    [Crossref] [Google Scholar]
  96. Pérez-Edgar K. 2018.. Attention mechanisms in behavioral inhibition: exploring and exploiting the environment. . See Pérez-Edgar & Fox 2018 , pp. 23761 https://doi.org/10.1007/978-3-319-98077-5_11
    [Crossref]
  97. Pérez-Edgar K, Bar-Haim Y, McDermott JM, Chronis-Tuscano A, Pine DS, Fox NA. 2010.. Attention biases to threat and behavioral inhibition in early childhood shape adolescent social withdrawal. . Emotion 10::34957 https://doi.org/10.1037/a0018486
    [Crossref] [Google Scholar]
  98. Pérez-Edgar K, Fox NA. 2018.. Behavioral Inhibition: Integrating Theory, Research, and Clinical Perspectives. Cham, Switz:.: Springer. https://doi.org/10.1007/978-3-319-98077-5
    [Crossref] [Google Scholar]
  99. Pérez-Edgar KE, Guyer AE. 2014.. Behavioral inhibition: temperament or prodrome?. Curr. Behav. Neurosci. Rep. 1::18290 https://doi.org/10.1007/s40473-014-0019-9
    [Crossref] [Google Scholar]
  100. Pérez-Edgar K, Hardee J, Guyer AE, Benson B, Nelson EE, et al. 2014.. DRD4 and striatal modulation of the link between childhood behavioral inhibition and adolescent anxiety. . Soc. Cogn. Affect. Neurosci. 9::44553 https://doi.org/10.1093/scan/nst001
    [Crossref] [Google Scholar]
  101. Pérez-Edgar K, Morales S, LoBue V, Taber-Thomas BC, Allen EK, et al. 2017.. The impact of negative affect on attention patterns to threat across the first 2 years of life. . Dev. Psychol. 53::221932 https://doi.org/10.1037/dev0000408
    [Crossref] [Google Scholar]
  102. Perlman S, Lunkenheimer E, Panlilio C, Pérez-Edgar K. 2022.. Parent-to-child anxiety transmission through dyadic social dynamics: a dynamic developmental model. . Clin. Child Fam. Psychol. Rev. 25::11029 https://doi.org/10.1007/s10567-022-00391-7. Correction . 2022.. Clin. Child Fam. Psychol. Rev. 25::130
    [Crossref] [Google Scholar]
  103. Picci G, Scherf S. 2014.. A two-hit model of autism: adolescence as the second hit. . Clin. Psychol. Sci. 3::34971 https://doi.org/10.1177/2167702614540646
    [Crossref] [Google Scholar]
  104. Pine DS, Cohen P, Gurley D, Brook J, Ma Y. 1998.. The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. . Arch. Gen. Psychiatry 55::5664 https://doi.org/10.1001/archpsyc.55.1.56
    [Crossref] [Google Scholar]
  105. Qiu A, Anh TT, Li Y, Chen H, Rifkin-Graboi A, et al. 2015.. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. . Transl. Psychiatry 5::e508. https://doi.org/10.1038/tp.2015.3
    [Crossref] [Google Scholar]
  106. Qui A, Rifkin-Graboi A, Chen H, Chong Y-S, Kwek K, et al. 2013.. Maternal anxiety and infants’ hippocampal development: Timing matters. . Transl. Psychiatry 3::e306. https://doi.org/10.1038/tp.2013.79
    [Crossref] [Google Scholar]
  107. Rakers F, Rupprecht S, Dreiling M, Bergmeier C, Witte OW, Schwab M. 2020.. Transfer of maternal psychosocial stress to the fetus. . Neurosci. Biobehav. Rev. 117::18597 https://doi.org/10.1016/j.neubiorev.2017.02.019
    [Crossref] [Google Scholar]
  108. Rapee RM, Kennedy SJ, Ingram M, Edwards SL, Sweeney L. 2010.. Altering the trajectory of anxiety in at-risk young children. . Am. J. Psychiatry 167::151825 https://doi.org/10.1176/appi.ajp.2010.09111619
    [Crossref] [Google Scholar]
  109. Regier DA, Rae DS, Narrow WE, Kaelber CT, Schatzberg AF. 1998.. Prevalence of anxiety disorders and their comorbidity with mood and addictive disorders. . Br. J. Psychiatry 173:(Suppl. 34):2428
    [Google Scholar]
  110. Reider LB, Bierstedt L, Burris JL, Vallorani A, Gunther KE, et al. 2022.. Developmental patterns of affective attention across the first 2 years of life. . Child Dev. 93::e60721 https://doi.org/10.1111/cdev.13831 Attention toward affective stimuli in infants becomes faster at detecting, and engages more with, angry faces.
    [Crossref] [Google Scholar]
  111. Reilly EB, Dickerson KL, Pierce LJ, Leppänen J, Valdes V, et al. 2022.. Maternal stress and development of infant attention to threat-related facial expressions. . Dev. Psychobiol. 64::e22332. https://doi.org/10.1002/dev.22332
    [Crossref] [Google Scholar]
  112. Rifkin-Graboi A, Bai J, Chen H, Hameed WB, Sim LW, et al. 2015.. Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. . Biol. Psychiatry 74::83744 https://doi.org/10.1016/j.biopsych.2013.06.019
    [Crossref] [Google Scholar]
  113. Rogers CE, Sylvester CM, Mintz C, Kenley JK, Shimony JS, et al. 2017.. Neonatal amygdala functional connectivity at rest in healthy and preterm infants and early internalizing symptoms. . J. Am. Acad. Child Adolesc. Psychiatry 56::15766 https://doi.org/10.1016/j.jaac.2016.11.005
    [Crossref] [Google Scholar]
  114. Roy AK, Benson BE, Degnan KA, Pérez-Edgar K, Pine DS, et al. 2014.. Alterations in amygdala functional connectivity reflect early temperament. . Biol. Psychol. 103::24854 https://doi.org/10.1016/j.biopsycho.2014.09.007
    [Crossref] [Google Scholar]
  115. Ruba AL, Meltzoff AN, Repacholi BM. 2020.. The development of negative event-emotion matching in infancy: implications for theories in affective science. . Affect. Sci. 1::419 https://doi.org/10.1007/s42761-020-00005-x
    [Crossref] [Google Scholar]
  116. Rubin KH, Coplan RJ, Bowker JC. 2009.. Social withdrawal in childhood. . Annu. Rev. Psychol. 60::14171 https://doi.org/10.1146/annurev.psych.60.110707.163642
    [Crossref] [Google Scholar]
  117. Safer K, Moulson MC. 2020.. Three-month-old infants show enhanced behavioral and neural sensitivity to fearful faces. . Dev. Cogn. Neurosci. 42::100759. https://doi.org/10.1016/j.dcn.2020.100759
    [Crossref] [Google Scholar]
  118. Sandstrom A, Uher R, Pavlova B. 2020.. Prospective association between childhood behavioral inhibition and anxiety: a meta-analysis. . J. Abnorm. Psychol. 48::5766 https://doi.org/10.1007/s10802-019-00588-5
    [Crossref] [Google Scholar]
  119. Scherf KS, Behrmann M, Dahl RE. 2012.. Facing changes and changing faces in adolescence: a new model for investigating adolescent-specific interactions between pubertal, brain and behavioral development. . Dev. Cogn. Neurosci. 2::199219 https://doi.org/10.1016/j.dcn.2011.07.016
    [Crossref] [Google Scholar]
  120. Schwab M, Rakers F. 2022.. Long-term effects of prenatal maternal stress and mental health. . In Developmental Origins of Health and Disease, ed. L Poston, K Godfrey, S Gluckman, M Hanson , pp. 4655 Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/9781009272254.007
    [Crossref] [Google Scholar]
  121. Schwartz CE, Wright CI, Shin LM, Kagan J, Rauch SL. 2003.. Inhibited and uninhibited infants “grown up”: adult amygdalar response to novelty. . Science 300::195253 https://doi.org/10.1126/science.1083703
    [Crossref] [Google Scholar]
  122. Sequeira SL, Rosen DK, Silk JS, Hutchinson E, Allen KB, et al. 2021. Don't judge me!”: links between in vivo attention bias toward a potentially critical judge and fronto-amygdala functional connectivity during rejection in adolescent girls. . Dev. Cogn. Neurosci. 49::100960. https://doi.org/10.1016/j.dcn.2021.100960
    [Crossref] [Google Scholar]
  123. Sheynin J, Beck KD, Pang KCH, Servatius RJ, Shikari S, et al. 2014.. Behaviorally inhibited temperament and female sex, two vulnerability factors for anxiety disorders, facilitate conditioned avoidance (also) in humans. . Behav. Process. 103::22835 https://doi.org/10.1016/j.beproc.2014.01.003
    [Crossref] [Google Scholar]
  124. Shiner RL, Buss KA, McClowry SG, Putnam SP, Saudino KJ, Zentner M. 2012.. What is temperament now? Assessing progress in temperament research on the twenty-fifth anniversary of Goldsmith et al. . Child Dev. Perspect. 6::43644 https://doi.org/10.1111/j.1750-8606.2012.00254.x
    [Crossref] [Google Scholar]
  125. Sisk CL, Gee DG. 2022.. Stress and adolescence: vulnerability and opportunity during a sensitive window of development. . Curr. Opin. Psychol. 44::28692 https://doi.org/10.1016/j.copsyc.2021.10.005
    [Crossref] [Google Scholar]
  126. Smith AK, Rhee SH, Corley RP, Friedman NP, Hewitt JK, Robinson JL. 2012.. The magnitude of genetic and environmental influences on parental and observational measures of behavioral inhibition and shyness in toddlerhood. . Behav. Genet. 42::76477 https://doi.org/10.1007/s10519-012-9551-0
    [Crossref] [Google Scholar]
  127. Smoller JW, Rosenbaum JF, Biederman J, Kennedy J, Dai D, et al. 2003.. Association of a genetic marker at the corticotropin-releasing hormone locus with behavioral inhibition. . Biol. Psychiatry 54::137681 https://doi.org/10.1016/S0006-3223(03)00598-5
    [Crossref] [Google Scholar]
  128. Spann MN, Alleyne K, Holland CM, Davids A, Pierre-Louis A, et al. 2022.. The effects of ethnoracial-related stressors during pregnancy on the developing offspring brain. . bioRxiv 2022.08.08.503168. https://doi.org/10.1101/2022.08.08.503168
    [Crossref]
  129. Sylvester CM, Myers MJ, Perino MT, Kaplan S, Kenley JK, et al. 2021.. Neonatal brain responses to deviant auditory stimuli and relation to maternal trait anxiety. . Am. J. Psychiatry 178::77178 https://doi.org/10.1176/appi.ajp.2020.20050672
    [Crossref] [Google Scholar]
  130. Sylvester CM, Smyser CD, Smyser T, Kenley J, Ackerman JJ, et al. 2018.. Cortical functional connectivity evident after birth and behavioral inhibition at age 2. . Am. J. Psychiatry 175::180187 https://doi.org/10.1176/appi/ajp.2017.17010018
    [Crossref] [Google Scholar]
  131. Takesian AE, Hensch TK. 2013.. Balancing plasticity/stability across brain development. . In Progress in Brain Research 207, ed. MM Merzenich, M Nahum, TM Van Vleet , pp. 334 Amsterdam:: Elsevier. https://doi.org/10.1016/B978-0-444-63327-9.00001-1
    [Crossref] [Google Scholar]
  132. Tang A, Crawford H, Morales S, Degnan KA, Pine DS, Fox NA. 2020.. Infant behavioral inhibition predicts personality and social outcomes three decades later. . PNAS 117::98007 https://doi.org/10.1073/pnas.1917376117 This three-decade study found that an inhibited temperament at 14 months predicts introversion and socioemotional challenges in adulthood.
    [Crossref] [Google Scholar]
  133. Thomas E, Buss C, Rasmussen JM, Entringer S, Ramirez JSB, et al. 2019.. Newborn amygdala connectivity and early emerging fear. . Dev. Cogn. Neurosci. 37::100604. https://doi.org/10.1016/j.dcn.2018.12.002
    [Crossref] [Google Scholar]
  134. Thomason ME. 2020.. Development of brain networks in utero: relevance for common neural disorders. . Biol. Psychiatry 88::4050 https://doi.org/10.1016/j.biopsych.2020.02.007
    [Crossref] [Google Scholar]
  135. Todd RM, Cunningham WA, Anderson AK, Thompson E. 2012.. Affect-biased attention as emotion regulation. . Trends Cogn. Sci. 16::36572 https://doi.org/10.1016/j.tics.2012.06.003
    [Crossref] [Google Scholar]
  136. Troller-Renfree SV, Buzzell GA, Pine DS, Henderson HA, Fox NA. 2019.. Consequences of not planning ahead: Reduced proactive control moderates longitudinal relations between behavioral inhibition and anxiety. . J. Am. Acad. Child Adolesc. Psychiatry 58::76875.e1 https://doi.org/10.1016/j.jaac.2018.06.040
    [Crossref] [Google Scholar]
  137. Ullsperger M, Fischer AG, Kiel R, Endrass T. 2014.. Neural mechanisms and temporal dynamics of performance monitoring. . Trends Cogn. Sci. 18::25967 https://doi.org/10.1016/j.tics.2014.02.009
    [Crossref] [Google Scholar]
  138. Valadez EA, Morales S, Buzzell GA, Troller-Renfree SV, Henderson HA, et al. 2022a.. Development of proactive control and anxiety among behaviorally inhibited adolescents. . J. Am. Acad. Child Adolesc. Psychiatry 61::146675 https://doi.org/10.1016/j.jaac.2022.04.012
    [Crossref] [Google Scholar]
  139. Valadez EA, Pine DS, Fox NA, Bar-Haim Y. 2022b.. Attentional biases in human anxiety. . Neurosci. Biobehav. Rev. 142::104917. https://doi.org/10.1016/j.neubiorev.2022.104917
    [Crossref] [Google Scholar]
  140. Valadez EA, Troller-Renfree S, Buzzell GA, Henderson HA, Chronis-Tuscano A, et al. 2021.. Behavioral inhibition and dual mechanisms of anxiety risk: disentangling neural correlates of proactive and reactive control. . JCPP Adv. 1::e12022. https://doi.org/10.1002/jcv2.12022
    [Crossref] [Google Scholar]
  141. Vallorani A, Fu X, Morales S, LoBue V, Buss KA, Pérez-Edgar K. 2021.. Variable- and person-centered approaches to affect-biased attention in infancy reveal unique relations with infant negative affect and maternal anxiety. . Sci. Rep. 11::1719. https://doi.org/10.1038/s41598-021-81119-5
    [Crossref] [Google Scholar]
  142. Vallorani A, Gunther KE, Anaya B, Burris JL, Field AP, et al. 2023.. Assessing bidirectional relations between infant temperamental negative affect, maternal anxiety symptoms and infant affect-biased attention across the first 24-months of life. . Dev. Psychol. 59::36476 https://doi.org/10.1037/dev0001479
    [Crossref] [Google Scholar]
  143. Wang H-L, Sun Y-X, Liu X, Wang H, Ma Y-N, et al. 2019.. Adolescent stress increases depression-like behaviors and alters the excitatory-inhibitory balance in aged mice. . Chin. Med. J. 132::168999 https://doi.org/10.1097/CM9.0000000000000313
    [Crossref] [Google Scholar]
  144. Wieringa LM, Bos MGN, Schreuders E, vd Kamp F, Peper JS, et al. 2018.. Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. . Psychoneuroendocrinology 91::10514 https://doi.org/10.1016/j.psyneuen.2018.02.034
    [Crossref] [Google Scholar]
  145. Williams RL, Fox NA, Lejuez CW, Reynolds EK, Henderson HA, et al. 2010.. Early temperament, propensity for risk-taking and adolescent substance-related problems: a prospective multi-method investigation. . Addict. Behav. 35::114851 https://doi.org/10.1016/j.addbeh.2010.07.005
    [Crossref] [Google Scholar]
  146. White LK, Degnan KA, Henderson HA, Pérez-Edgar K, Walker OL, et al. 2017.. Developmental relations among behavioral inhibition, anxiety, and attention biases to threat and positive information. . Child Dev. 88::14155 https://doi.org/10.1111/cdev.12696
    [Crossref] [Google Scholar]
  147. Woodward SA, McManis MH, Kagan J, Deldin P, Snidman N, et al. 2001.. Infant temperament and the brainstem auditory evoked response in later childhood. . Dev. Psychol. 37::53338 https://doi.org/10.1037/0012-1649.37.4.533
    [Crossref] [Google Scholar]
  148. Xie W, Leppänen JM, Kane-Grade FE, Nelson CA. 2021.. Converging neural and behavioral evidence for a rapid, generalized response to threat-related facial expressions in 3-year-old children. . NeuroImage 229::117732. https://doi.org/10.1016/j.neuroimage.2021.117732
    [Crossref] [Google Scholar]
  149. Zhang Z, Jiao Y-Y, Sun Q-Q. 2011.. Developmental maturation of excitation and inhibition balance in principle neurons across four layers of somatosensory cortex. . Neuroscience 174::1025 https://doi.org/10.1016/j.neuroscience.2010.11.045
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-devpsych-120621-043722
Loading
/content/journals/10.1146/annurev-devpsych-120621-043722
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error