1932

Abstract

Navigation waxes and wanes in precision and flexibility over the life span. However, at no age is it completely egocentric or allocentric, or completely nonmetric. Instead, we see steady changes in the balance of strategies and the extent to which relevant information is combined in an adaptive way. Many of these changes may be related to underlying neural maturation or decline, although we know less about this topic in the first 15 years of life than during aging. However, both behavioral and neural changes may be propelled by sensory, motor, or environmental pressures as well as by biological programs. When children and the elderly see or hear better, walk more confidently, and travel further independently, it is likely that navigational abilities respond.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-devpsych-121020-031846
2022-12-09
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/devpsych/4/1/annurev-devpsych-121020-031846.html?itemId=/content/journals/10.1146/annurev-devpsych-121020-031846&mimeType=html&fmt=ahah

Literature Cited

  1. Acredolo LP. 1978. Development of spatial orientation in infancy. Dev. Psychol. 14:3224–34 https://doi.org/10.1037/0012-1649.14.3.224
    [Crossref] [Google Scholar]
  2. Acredolo LP. 1979. Laboratory versus home: the effect of environment on the 9-month-old infant's choice of spatial reference system. Dev. Psychol. 15:6666–67 https://doi.org/10.1037/0012-1649.15.6.666
    [Crossref] [Google Scholar]
  3. Acredolo LP, Evans D. 1980. Developmental changes in the effects of landmarks on infant spatial behavior. Dev. Psychol. 16:4312–18 https://doi.org/10.1037/0012-1649.16.4.312
    [Crossref] [Google Scholar]
  4. Adamo DE, Briceño EM, Sindone JA, Alexander NB, Moffat SD. 2012. Age differences in virtual environment and real world path integration. Front. Aging Neurosci. 4:26 https://doi.org/10.3389/fnagi.2012.00026
    [Crossref] [Google Scholar]
  5. Allen GL, Kirasic KC, Rashotte MA, Haun DBM. 2004. Aging and path integration skill: kinesthetic and vestibular contributions to wayfinding. Percept. Psychophys. 66:1170–79 https://doi.org/10.3758/BF03194870
    [Crossref] [Google Scholar]
  6. Auger SD, Mullally SL, Maguire EA. 2012. Retrosplenial cortex codes for permanent landmarks. PLOS ONE 7:8e43620 https://doi.org/10.1371/journal.pone.0043620
    [Crossref] [Google Scholar]
  7. Balcomb F, Newcombe NS, Ferrara K. 2011. Finding where and saying where: developmental relationships between place learning and language in the first year. J. Cogn. Dev. 12:3315–31 https://doi.org/10.1080/15248372.2010.544692
    [Crossref] [Google Scholar]
  8. Barnes CA. 1979. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93:174–104 https://doi.org/10.1037/h0077579
    [Crossref] [Google Scholar]
  9. Basu R, Gebauer R, Herfurth T, Kolb S, Golipour Z et al. 2021. The orbitofrontal cortex maps future navigational goals. Nature 599:7885449–52 https://doi.org/10.1038/s41586-021-04042-9
    [Crossref] [Google Scholar]
  10. Bécu M, Sheynikhovich D, Ramanoël S, Tatur G, Ozier-Lafontaine A et al. 2020. Modulation of spatial cue processing across the lifespan: a geometric polarization of space restores allocentric navigation strategies in children and older adults. bioRxiv 945808: https://doi.org/10.1101/2020.02.12.945808
    [Crossref] [Google Scholar]
  11. Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF. 2018. Navigating cognition: spatial codes for human thinking. Science 362:6415eaat6766 https://doi.org/10.1126/science.aat6766
    [Crossref] [Google Scholar]
  12. Broadbent HJ, Farran EK, Tolmie A. 2014. Object-based mental rotation and visual perspective-taking in typical development and Williams syndrome. Dev. Neuropsychol. 39:3205–25 https://doi.org/10.1080/87565641.2013.876027
    [Crossref] [Google Scholar]
  13. Brucato M, Frick A, Pichelmann S, Nazareth A, Newcombe NS. 2022a. Measuring spatial perspective taking: analysis of four measures using item response theory. Topics Cogn. Sci. In press. https://doi.org/10.1111/tops.12597
    [Crossref] [Google Scholar]
  14. Brucato M, Nazareth A, Newcombe NS. 2022b. Longitudinal development of cognitive mapping from childhood to adolescence. J. Exp. Child Psychol. 219:105412 https://doi.org/10.1016/j.jecp.2022.105412
    [Crossref] [Google Scholar]
  15. Buckley MG, Haselgrove M, Smith AD. 2015. The developmental trajectory of intramaze and extramaze landmark biases in spatial navigation: an unexpected journey. Dev. Psychol. 51:6771–91 https://doi.org/10.1037/a0039054
    [Crossref] [Google Scholar]
  16. Bullens J, Iglói K, Berthoz A, Postma A, Rondi-Reig L. 2010a. Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. J. Exp. Child Psychol. 107:3337–50 https://doi.org/10.1016/j.jecp.2010.05.010
    [Crossref] [Google Scholar]
  17. Bullens J, Nardini M, Doeller CF, Braddick O, Postma A, Burgess N. 2010b. The role of landmarks and boundaries in the development of spatial memory. Dev. Sci. 13:1170–80 https://doi.org/10.1111/j.1467-7687.2009.00870.x
    [Crossref] [Google Scholar]
  18. Burgess N. 2006. Spatial memory: how egocentric and allocentric combine. Trends Cogn. Sci. 10:12551–57 https://doi.org/10.1016/j.tics.2006.10.005
    [Crossref] [Google Scholar]
  19. Burles F, Liu I, Hart C, Murias K, Graham SA, Iaria G. 2020. The emergence of cognitive maps for spatial navigation in 7- to 10-year-old children. Child Dev 91:3e733–44 https://doi.org/10.1111/cdev.13285
    [Crossref] [Google Scholar]
  20. Burns PC. 1999. Navigation and the mobility of older drivers. J. Gerontol. Ser. B 54B:1S49–55 https://doi.org/10.1093/geronb/54B.1.S49
    [Crossref] [Google Scholar]
  21. Chen X, DeAngelis GC, Angelaki DE. 2018. Flexible egocentric and allocentric representations of heading signals in parietal cortex. PNAS 115:14E3305–12 https://doi.org/10.1073/pnas.1715625115
    [Crossref] [Google Scholar]
  22. Chrastil ER, Warren WH. 2014. From cognitive maps to cognitive graphs. PLOS ONE 9:11e112544 https://doi.org/10.1371/journal.pone.0112544
    [Crossref] [Google Scholar]
  23. Clearfield MW. 2004. The role of crawling and walking experience in infant spatial memory. J. Exp. Child Psychol. 89:3214–41 https://doi.org/10.1016/j.jecp.2004.07.003
    [Crossref] [Google Scholar]
  24. Coutrot A, Manley E, Goodroe S, Gahnstrom C, Filomena G et al. 2022. Entropy of city street networks linked to future spatial navigation ability. Nature 604:7904104–10 https://doi.org/10.1038/s41586-022-04486-7
    [Crossref] [Google Scholar]
  25. Dahmani L, Bohbot VD. 2020. Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Sci. Rep. 10:16310 https://doi.org/10.1038/s41598-020-62877-0
    [Crossref] [Google Scholar]
  26. Davis HE, Gurven M, Cashdan E. 2022. Navigational experience and the preservation of spatial abilities into old age among a tropical forager-farmer population. Top. Cogn. Sci. In press. https://doi.org/10.1111/tops.12602
    [Crossref] [Google Scholar]
  27. Dilks DD, Kamps FS, Persichetti AS. 2022. Three cortical scene systems and their development. Trends Cogn. Sci. 26:2117–27 https://doi.org/10.1016/j.tics.2021.11.002
    [Crossref] [Google Scholar]
  28. Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM et al. 2003. The aging hippocampus: cognitive, biochemical and structural findings. Cereb. Cortex 13:121344–51 https://doi.org/10.1093/cercor/bhg081
    [Crossref] [Google Scholar]
  29. Du AT, Schuff N, Kramer JH, Ganzer S, Zhu XP et al. 2004. Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology 62:3422–27 https://doi.org/10.1212/01.WNL.0000106462.72282.90
    [Crossref] [Google Scholar]
  30. Ekstrom AD, Arnold AEGF, Iaria G. 2014. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Front. Hum. Neurosci. 8:803 https://doi.org/10.3389/fnhum.2014.00803
    [Crossref] [Google Scholar]
  31. Epstein R, Harris A, Stanley D, Kanwisher N. 1999. The parahippocampal place area: recognition, navigation, or encoding?. Neuron 23:1115–25 https://doi.org/10.1016/S0896-6273(00)80758-8
    [Crossref] [Google Scholar]
  32. Epstein RA, Parker WE, Feiler AM. 2007. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci. 27:236141–49 https://doi.org/10.1523/JNEUROSCI.0799-07.2007
    [Crossref] [Google Scholar]
  33. Epstein RA, Patai EZ, Julian JB, Spiers HJ. 2017. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20:111504–13 https://doi.org/10.1038/nn.4656
    [Crossref] [Google Scholar]
  34. Epstein RA, Vass LK. 2014. Neural systems for landmark-based wayfinding in humans. Philos. Trans. R. Soc. B 369:163520120533 https://doi.org/10.1098/rstb.2012.0533
    [Crossref] [Google Scholar]
  35. Fjell AM, Walhovd KB. 2010. Structural brain changes in aging: courses, causes and cognitive consequences. Rev. Neurosci. 21:3187–221 https://doi.org/10.1515/REVNEURO.2010.21.3.187
    [Crossref] [Google Scholar]
  36. Flavell JH, Shipstead SG, Croft K. 1978. Young children's knowledge about visual perception: hiding objects from others. Child Dev. 49:41208–11 https://doi.org/10.1111/j.1467-8624.1978.tb04090.x
    [Crossref] [Google Scholar]
  37. Frick A, Möhring W, Newcombe NS. 2014. Picturing perspectives: development of perspective-taking abilities in 4- to 8-year-olds. Front. Psychol. 5:386 https://doi.org/10.3389/fpsyg.2014.00386
    [Crossref] [Google Scholar]
  38. Gallistel CR. 1990. The Organization of Learning Cambridge, MA: MIT Press
  39. Gazova I, Laczó J, Rubinova E, Mokrisova I, Hyncicova E et al. 2013. Spatial navigation in young versus older adults. Front. Aging Neurosci. 5:94 https://doi.org/10.3389/fnagi.2013.00094
    [Crossref] [Google Scholar]
  40. Glöckner F, Schuck NW, Li SC. 2021. Differential prioritization of intramaze cue and boundary information during spatial navigation across the human lifespan. Sci. Rep. 11:115257 https://doi.org/10.1038/s41598-021-94530-9
    [Crossref] [Google Scholar]
  41. Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL et al. 2007. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat. Neurosci. 10:4512–22 https://doi.org/10.1038/nn1865
    [Crossref] [Google Scholar]
  42. Harris MA, Wolbers T. 2012. Ageing effects on path integration and landmark navigation. Hippocampus 22:81770–80 https://doi.org/10.1002/hipo.22011
    [Crossref] [Google Scholar]
  43. Head D, Isom M. 2010. Age effects on wayfinding and route learning skills. Behav. Brain Res. 209:149–58 https://doi.org/10.1016/j.bbr.2010.01.012
    [Crossref] [Google Scholar]
  44. Hermer L, Spelke E. 1996. Modularity and development: the case of spatial reorientation. Cognition 61:3195–232 https://doi.org/10.1016/S0010-0277(96)00714-7
    [Crossref] [Google Scholar]
  45. Huttenlocher J, Hedges LV, Duncan S 1991. Categories and particulars: prototype effects in estimating spatial location. Psychol. Rev. 98:3352–76 https://doi.org/10.1037/0033-295X.98.3.352
    [Crossref] [Google Scholar]
  46. Huttenlocher J, Newcombe N, Sandberg EH. 1994. The coding of spatial location in young children. Cogn. Psychol. 27:2115–47 https://doi.org/10.1006/cogp.1994.1014
    [Crossref] [Google Scholar]
  47. Huttenlocher J, Presson CC. 1979. The coding and transformation of spatial information. Cogn. Psychol. 11:3375–94 https://doi.org/10.1016/0010-0285(79)90017-3
    [Crossref] [Google Scholar]
  48. Iaria G, Palermo L, Committeri G, Barton JJS. 2009. Age differences in the formation and use of cognitive maps. Behav. Brain Res. 196:2187–91 https://doi.org/10.1016/j.bbr.2008.08.040
    [Crossref] [Google Scholar]
  49. Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD. 2003. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J. Neurosci. 23:135945–52 https://doi.org/10.1523/JNEUROSCI.23-13-05945.2003
    [Crossref] [Google Scholar]
  50. Ishikawa T. 2022. Individual differences and skill training in cognitive mapping: how and why people differ. Topics Cogn. Sci. In press. https://doi.org/10.1111/tops.12605
    [Crossref] [Google Scholar]
  51. Ishikawa T, Montello D. 2006. Spatial knowledge acquisition from direct experience in the environment: individual differences in the development of metric knowledge and the integration of separately learned places. Cogn. Psychol. 52:293–129 https://doi.org/10.1016/j.cogpsych.2005.08.003
    [Crossref] [Google Scholar]
  52. Ito HT. 2018. Prefrontal–hippocampal interactions for spatial navigation. Neurosci. Res. 129:2–7 https://doi.org/10.1016/j.neures.2017.04.016
    [Crossref] [Google Scholar]
  53. Jansen-Osmann P, Fuchs P. 2006. Wayfinding behavior and spatial knowledge of adults and children in a virtual environment. Exp. Psychol. 53:3171–81 https://doi.org/10.1027/1618-3169.53.3.171
    [Crossref] [Google Scholar]
  54. Jansen-Osmann P, Wiedenbauer G. 2004. The representation of landmarks and routes in children and adults: a study in a virtual environment. J. Environ. Psychol. 24:3347–57 https://doi.org/10.1016/j.jenvp.2004.08.003
    [Crossref] [Google Scholar]
  55. Julian JB, Ryan J, Hamilton RH, Epstein RA. 2016. The occipital place area is causally involved in representing environmental boundaries during navigation. Curr. Biol. 26:81104–9 https://doi.org/10.1016/j.cub.2016.02.066
    [Crossref] [Google Scholar]
  56. Kamps FS, Hendrix CL, Brennan PA, Dilks DD. 2020. Connectivity at the origins of domain specificity in the cortical face and place networks. PNAS 117:116163–69 https://doi.org/10.1073/pnas.1911359117
    [Crossref] [Google Scholar]
  57. Keresztes A, Bender AR, Bodammer NC, Lindenberger U, Shing YL, Werkle-Bergner M. 2017. Hippocampal maturity promotes memory distinctiveness in childhood and adolescence. PNAS 114:349412–17 https://doi.org/10.1073/pnas.1710654114
    [Crossref] [Google Scholar]
  58. Klatzky RL, Loomis JM, Golledge RG, Cicinelli JG, Doherty S, Pellegrino JW. 1990. Acquisition of route and survey knowledge in the absence of vision. J. Mot. Behav. 22:119–43 https://doi.org/10.1080/00222895.1990.10735500
    [Crossref] [Google Scholar]
  59. Konishi K, Bohbot VD. 2013. Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Front. Aging Neurosci. 5::1. https://doi.org/10.3389/fnagi.2013.00001
    [Crossref] [Google Scholar]
  60. Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D. 2017. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93:3480–90 https://doi.org/10.1016/j.neuron.2016.12.041
    [Crossref] [Google Scholar]
  61. Laurance HE, Learmonth AE, Nadel L, Jacobs WJ. 2003. Maturation of spatial navigation strategies: convergent findings from computerized spatial environments and self-report. J. Cogn. Dev. 4:2211–38 https://doi.org/10.1207/S15327647JCD0402_04
    [Crossref] [Google Scholar]
  62. Lee SA. 2017. The boundary-based view of spatial cognition: a synthesis. Curr. Opin. Behav. Sci. 16:58–65 https://doi.org/10.1016/j.cobeha.2017.03.006
    [Crossref] [Google Scholar]
  63. Lester AW, Moffat SD, Wiener JM, Barnes CA, Wolbers T. 2017. The aging navigational system. Neuron 95:51019–35 https://doi.org/10.1016/j.neuron.2017.06.037
    [Crossref] [Google Scholar]
  64. Liben LS, Downs RM. 1993. Understanding person-space-map relations: cartographic and developmental perspectives. Dev. Psychol. 29:4739–52 https://doi.org/10.1037/0012-1649.29.4.739
    [Crossref] [Google Scholar]
  65. Lich M, Bremmer F. 2014. Self-motion perception in the elderly. Front. Hum. Neurosci. 8:681 https://doi.org/10.3389/fnhum.2014.00681
    [Crossref] [Google Scholar]
  66. Lingwood J, Blades M, Farran EK, Courbois Y, Matthews D. 2015. Encouraging 5-year olds to attend to landmarks: a way to improve children's wayfinding strategies in a virtual environment. Front. Psychol. 6:174 https://doi.org/10.3389/fpsyg.2015.00174
    [Crossref] [Google Scholar]
  67. Lingwood J, Blades M, Farran EK, Courbois Y, Matthews D. 2018. Using virtual environments to investigate wayfinding in 8- to 12-year-olds and adults. J. Exp. Child Psychol. 166:178–89 https://doi.org/10.1016/j.jecp.2017.08.012
    [Crossref] [Google Scholar]
  68. Lithfous S, Dufour A, Després O. 2013. Spatial navigation in normal aging and the prodromal stage of Alzheimer's disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12:1201–13 https://doi.org/10.1016/j.arr.2012.04.007
    [Crossref] [Google Scholar]
  69. Maguire EA, Burgess N, Donnett JG, Frackowiak RSJ, Frith CD, O'Keefe J. 1998. Knowing where and getting there: a human navigation network. Science 280:5365921–24 https://doi.org/10.1126/science.280.5365.921
    [Crossref] [Google Scholar]
  70. Marchette SA, Vass LK, Ryan J, Epstein RA 2015. Outside looking in: landmark generalization in the human navigational system. J. Neurosci. 35:4414896–908 https://doi.org/10.1523/JNEUROSCI.2270-15.2015
    [Crossref] [Google Scholar]
  71. McQuail JA, Beas BS, Kelly KB, Simpson KL, Frazier CJ et al. 2016. NR2A-containing NMDARs in the prefrontal cortex are required for working memory and associated with age-related cognitive decline. J. Neurosci. 36:5012537–48 https://doi.org/10.1523/JNEUROSCI.2332-16.2016
    [Crossref] [Google Scholar]
  72. Meissner TW, Nordt M, Weigelt S. 2019. Prolonged functional development of the parahippocampal place area and occipital place area. NeuroImage 191:104–15 https://doi.org/10.1016/j.neuroimage.2019.02.025
    [Crossref] [Google Scholar]
  73. Mitchell AS, Czajkowski R, Zhang N, Jeffery K, Nelson AJD 2018. Retrosplenial cortex and its role in spatial cognition. Brain Neurosci. Adv. 2: https://doi.org/10.1177/2398212818757098
    [Crossref] [Google Scholar]
  74. Moffat SD, Elkins W, Resnick SM. 2006. Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiol. Aging 27:7965–72 https://doi.org/10.1016/j.neurobiolaging.2005.05.011
    [Crossref] [Google Scholar]
  75. Moffat SD, Kennedy KM, Rodrigue KM, Raz N. 2007. Extrahippocampal contributions to age differences in human spatial navigation. Cereb. Cortex 17:61274–82 https://doi.org/10.1093/cercor/bhl036
    [Crossref] [Google Scholar]
  76. Moffat SD, Resnick SM. 2002. Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behav. Neurosci. 116:5851–59 https://doi.org/10.1037/0735-7044.116.5.851
    [Crossref] [Google Scholar]
  77. Morris R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11:147–60 https://doi.org/10.1016/0165-0270(84)90007-4
    [Crossref] [Google Scholar]
  78. Murias K, Slone E, Tariq S, Iaria G. 2019. Development of spatial orientation skills: an fMRI study. Brain Imaging Behav 13:1590–601 https://doi.org/10.1007/s11682-018-0028-5
    [Crossref] [Google Scholar]
  79. Nardini M, Atkinson J, Braddick O, Burgess N. 2006. The development of body, environment, and object-based frames of reference in spatial memory in normal and atypical populations. Cogn. Process. 7:68–69 https://doi.org/10.1007/s10339-006-0070-x
    [Crossref] [Google Scholar]
  80. Nardini M, Bales J, Mareschal D. 2016. Integration of audio-visual information for spatial decisions in children and adults. Dev. Sci. 19:5803–16 https://doi.org/10.1111/desc.12327
    [Crossref] [Google Scholar]
  81. Nardini M, Begus K, Mareschal D. 2013. Multisensory uncertainty reduction for hand localization in children and adults. J. Exp. Psychol. Hum. Percept. Perform. 39:3773–87 https://doi.org/10.1037/a0030719
    [Crossref] [Google Scholar]
  82. Nardini M, Jones P, Bedford R, Braddick O. 2008. Development of cue integration in human navigation. Curr. Biol. 18:9689–93 https://doi.org/10.1016/j.cub.2008.04.021
    [Crossref] [Google Scholar]
  83. Nardini M, Thomas RL, Knowland VCP, Braddick OJ, Atkinson J. 2009. A viewpoint-independent process for spatial reorientation. Cognition 112:2241–48 https://doi.org/10.1016/j.cognition.2009.05.003
    [Crossref] [Google Scholar]
  84. Nazareth A, Weisberg SM, Margulis K, Newcombe NS. 2018. Charting the development of cognitive mapping. J. Exp. Child Psychol. 170:86–106 https://doi.org/10.1016/j.jecp.2018.01.009
    [Crossref] [Google Scholar]
  85. Negen J, Ali LB, Chere B, Roome HE, Park Y, Nardini M 2019. Coding locations relative to one or many landmarks in childhood. PLOS Comput. Biol. 15:10e1007380 https://doi.org/10.1371/journal.pcbi.1007380
    [Crossref] [Google Scholar]
  86. Negen J, Roome H, Nardini M. 2016. Young children can combine audio-visual cues near-optimally after training. J. Vision 16:12576 https://doi.org/10.1167/16.12.576
    [Crossref] [Google Scholar]
  87. Newcombe N. 1989. The development of spatial perspective taking. Adv. Child Dev. Behav. 22:203–47 https://doi.org/10.1016/S0065-2407(08)60415-2
    [Crossref] [Google Scholar]
  88. Newcombe N, Huttenlocher J. 1992. Children's early ability to solve perspective-taking problems. Dev. Psychol. 28:4635–43 https://doi.org/10.1037/0012-1649.28.4.635
    [Crossref] [Google Scholar]
  89. Newcombe N, Huttenlocher J. 2006. Development of spatial cognition. Child Psychol. Pract. 4:734–76
    [Google Scholar]
  90. Newcombe N, Huttenlocher J, Drummey AB, Wiley JG. 1998. The development of spatial location coding: place learning and dead reckoning in the second and third years. Cogn. Dev. 13:2185–200 https://doi.org/10.1016/S0885-2014(98)90038-7
    [Crossref] [Google Scholar]
  91. Newcombe N, Huttenlocher J, Learmonth A. 1999. Infants’ coding of location in continuous space. Infant Behav. Dev. 22:4483–510 https://doi.org/10.1016/S0163-6383(00)00011-4
    [Crossref] [Google Scholar]
  92. Nys M, Gyselinck V, Orriols E, Hickmann M. 2015. Landmark and route knowledge in children's spatial representation of a virtual environment. Front. Psychol. 5:1522 https://doi.org/10.3389/fpsyg.2014.01522
    [Crossref] [Google Scholar]
  93. O'Keefe J, Nadel L. 1979. Précis of O'Keefe & Nadel's The Hippocampus as a Cognitive Map. Behav. Brain Sci. 2:4487–94 https://doi.org/10.1017/S0140525X00063949
    [Crossref] [Google Scholar]
  94. Overman WH, Pate BJ, Moore K, Peuster A 1996. Ontogeny of place learning in children as measured in the Radial Arm Maze, Morris Search Task, and Open Field Task. Behav. Neurosci. 110:61205–28 https://doi.org/10.1037/0735-7044.110.6.1205
    [Crossref] [Google Scholar]
  95. Peer M, Brunec IK, Newcombe NS, Epstein RA. 2021. Structuring knowledge with cognitive maps and cognitive graphs. Trends Cogn. Sci. 25:137–54 https://doi.org/10.1016/j.tics.2020.10.004
    [Crossref] [Google Scholar]
  96. Piaget J, Inhelder B. 1956. The Child's Conception of Space London: Routledge & Kegan Paul
  97. Piper BJ, Acevedo SF, Craytor MJ, Murray PW, Raber J. 2010. The use and validation of the spatial navigation Memory Island test in primary school children. Behav. Brain Res. 210:2257–62 https://doi.org/10.1016/j.bbr.2010.02.040
    [Crossref] [Google Scholar]
  98. Raz N, Rodrigue KM. 2006. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 30:6730–48 https://doi.org/10.1016/j.neubiorev.2006.07.001
    [Crossref] [Google Scholar]
  99. Raz N, Rodrigue KM, Kennedy KM, Head D, Gunning-Dixon F, Acker JD. 2003. Differential aging of the human striatum: longitudinal evidence. Am. J. Neuroradiol. 24:91849–56
    [Google Scholar]
  100. Raznahan A, Shaw PW, Lerch JP, Clasen LS, Greenstein D et al. 2014. Longitudinal four-dimensional mapping of subcortical anatomy in human development. PNAS 111:41592–97 https://doi.org/10.1073/pnas.1316911111
    [Crossref] [Google Scholar]
  101. Ribordy Lambert F, Lavenex P, Banta Lavenex P. 2017. The “when” and the “where” of single-trial allocentric spatial memory performance in young children: insights into the development of episodic memory. Dev. Psychobiol. 59:2185–96 https://doi.org/10.1002/dev.21479
    [Crossref] [Google Scholar]
  102. Rodgers MK, Sindone JA, Moffat SD. 2012. Effects of age on navigation strategy. Neurobiol. Aging 33:1202.e15–e22 https://doi.org/10.1016/j.neurobiolaging.2010.07.021
    [Crossref] [Google Scholar]
  103. Sandberg EH, Huttenlocher J, Newcombe N. 1996. The development of hierarchical representation of two-dimensional space. Child Dev. 67:3721–39 https://doi.org/10.1111/j.1467-8624.1996.tb01761.x
    [Crossref] [Google Scholar]
  104. Schimanski LA, Lipa P, Barnes CA. 2013. Tracking the course of hippocampal representations during learning: When is the map required?. J. Neurosci. 33:73094–106 https://doi.org/10.1523/JNEUROSCI.1348-12.2013
    [Crossref] [Google Scholar]
  105. Schinazi VR, Nardi D, Newcombe NS, Shipley TF, Epstein RA. 2013. Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus 23:6515–28 https://doi.org/10.1002/hipo.22111
    [Crossref] [Google Scholar]
  106. Schuck NW, Doeller CF, Polk TA, Lindenberger U, Li S-C. 2015. Human aging alters the neural computation and representation of space. NeuroImage 117:141–50 https://doi.org/10.1016/j.neuroimage.2015.05.031
    [Crossref] [Google Scholar]
  107. Seed A, Byrne R. 2010. Animal tool-use. Curr. Biol. 20:23R1032–39 https://doi.org/10.1016/j.cub.2010.09.042
    [Crossref] [Google Scholar]
  108. Shelton AL, Marchette SA, Furman AJ 2013. A mechanistic approach to individual differences in spatial learning, memory, and navigation. Psychology of Learning and Motivation, Vol. 59: BH Ross 223–59 https://doi.org/10.1016/B978-0-12-407187-2.00006-X
    [Crossref] [Google Scholar]
  109. Sluzenski J, Newcombe NS, Satlow E. 2004. Knowing where things are in the second year of life: implications for hippocampal development. J. Cogn. Neurosci. 16:81443–51 https://doi.org/10.1162/0898929042304804
    [Crossref] [Google Scholar]
  110. Spelke E, Lee SA, Izard V. 2010. Beyond core knowledge: natural geometry. Cogn. Sci. 34:5863–84 https://doi.org/10.1111/j.1551-6709.2010.01110.x
    [Crossref] [Google Scholar]
  111. Stangl M, Achtzehn J, Huber K, Dietrich C, Tempelmann C, Wolbers T. 2018. Compromised grid-cell-like representations in old age as a key mechanism to explain age-related navigational deficits. Curr. Biol. 28:71108–15.e6. https://doi.org/10.1016/j.cub.2018.02.038
    [Crossref] [Google Scholar]
  112. Stangl M, Kanitscheider I, Riemer M, Fiete I, Wolbers T. 2020. Sources of path integration error in young and aging humans. Nat. Commun. 11:12626 https://doi.org/10.1038/s41467-020-15805-9
    [Crossref] [Google Scholar]
  113. Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K et al. 2014. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J. Neurosci. 34:258488–98 https://doi.org/10.1523/JNEUROSCI.0391-14.2014
    [Crossref] [Google Scholar]
  114. Toepper M. 2017. Dissociating normal aging from Alzheimer's disease: a view from cognitive neuroscience. J. Alzheimer's Dis. 57:2331–52 https://doi.org/10.3233/JAD-161099
    [Crossref] [Google Scholar]
  115. Tolman EC. 1948. Cognitive maps in rats and men. Psychol. Rev. 55:4189–208 https://doi.org/10.1037/h0061626
    [Crossref] [Google Scholar]
  116. van Ekert J, Wegman J, Janzen G. 2015. Neurocognitive development of memory for landmarks. Front. Psychol. 6:224 https://doi.org/10.3389/fpsyg.2015.00224
    [Crossref] [Google Scholar]
  117. Vuontela V, Jiang P, Tokariev M, Savolainen P, Ma Y et al. 2013. Regulation of brain activity in the fusiform face and parahippocampal place areas in 7–11-year-old children. Brain Cogn. 81:2203–14 https://doi.org/10.1016/j.bandc.2012.11.003
    [Crossref] [Google Scholar]
  118. Waismeyer AS, Jacobs LF. 2013. The emergence of flexible spatial strategies in young children. Dev. Psychol. 49:2232–42 https://doi.org/10.1037/a0028334
    [Crossref] [Google Scholar]
  119. Wang RF, Spelke ES. 2002. Human spatial representation: insights from animals. Trends Cogn. Sci. 6:9376–82 https://doi.org/10.1016/S1364-6613(02)01961-7
    [Crossref] [Google Scholar]
  120. Warren WH. 2019. Non-Euclidean navigation. J. Exp. Biol. 222:Suppl_1jeb187971 https://doi.org/10.1242/jeb.187971
    [Crossref] [Google Scholar]
  121. Warren WH, Rothman DB, Schnapp BH, Ericson JD. 2017. Wormholes in virtual space: from cognitive maps to cognitive graphs. Cognition 166:152–63 https://doi.org/10.1016/j.cognition.2017.05.020
    [Crossref] [Google Scholar]
  122. Weisberg SM, Newcombe NS. 2016. How do (some) people make a cognitive map? Routes, places, and working memory. J. Exp. Psychol. Learn. Mem. Cogn. 42:5768–85 https://doi.org/10.1037/xlm0000200
    [Crossref] [Google Scholar]
  123. Weisberg SM, Schinazi VR, Newcombe NS, Shipley TF, Epstein RA. 2014. Variations in cognitive maps: understanding individual differences in navigation. J. Exp. Psychol. Learn. Mem. Cogn. 40:3669–82 https://doi.org/10.1037/a0035261
    [Crossref] [Google Scholar]
  124. Wendelken C, Baym CL, Gazzaley A, Bunge SA. 2011. Neural indices of improved attentional modulation over middle childhood. Dev. Cogn. Neurosci. 1:2175–86 https://doi.org/10.1016/j.dcn.2010.11.001
    [Crossref] [Google Scholar]
  125. Wiener JM, Carroll D, Moeller S, Bibi I, Ivanova D et al. 2020. A novel virtual-reality-based route-learning test suite: assessing the effects of cognitive aging on navigation. Behav. Res. Methods 52:2630–40 https://doi.org/10.3758/s13428-019-01264-8
    [Crossref] [Google Scholar]
  126. Wilkniss SM, Jones MG, Korol DL, Gold PE, Manning CA. 1997. Age-related differences in an ecologically based study of route learning. Psychol. Aging 12:2372–75 https://doi.org/10.1037/0882-7974.12.2.372
    [Crossref] [Google Scholar]
  127. Wilson IA. 2005. Age-associated alterations of hippocampal place cells are subregion specific. J. Neurosci. 25:296877–86 https://doi.org/10.1523/JNEUROSCI.1744-05.2005
    [Crossref] [Google Scholar]
  128. Xie Y, Bigelow RT, Frankenthaler SF, Studenski SA, Moffat SD, Agrawal Y. 2017. Vestibular loss in older adults is associated with impaired spatial navigation: data from the triangle completion task. Front. Neurol. 8:173 https://doi.org/10.3389/fneur.2017.00173
    [Crossref] [Google Scholar]
  129. Xu Y, Regier T, Newcombe NS. 2017. An adaptive cue combination model of human spatial reorientation. Cognition 163:56–66 https://doi.org/10.1016/j.cognition.2017.02.016
    [Crossref] [Google Scholar]
  130. Yan J, Zhang Y, Roder J, McDonald RJ. 2003. Aging effects on spatial tuning of hippocampal place cells in mice. Exp. Brain Res. 150:2184–93 https://doi.org/10.1007/s00221-003-1396-6
    [Crossref] [Google Scholar]
  131. Yaniv I, Shatz M. 1990. Heuristics of reasoning and analogy in children's visual perspective taking. Child Dev. 61:51491 https://doi.org/10.2307/1130758
    [Crossref] [Google Scholar]
  132. Yassa MA, Mattfeld AT, Stark SM, Stark CEL. 2011. Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. PNAS 108:218873–78 https://doi.org/10.1073/pnas.1101567108
    [Crossref] [Google Scholar]
  133. Zhang J-X, Wang L, Hou H-Y, Yue C-L, Wang L, Li H-J. 2021. Age-related impairment of navigation and strategy in virtual star maze. BMC Geriatr. 21:1108 https://doi.org/10.1186/s12877-021-02034-y
    [Crossref] [Google Scholar]
  134. Zhong JY, Moffat SD. 2018. Extrahippocampal contributions to age-related changes in spatial navigation ability. Front. Hum. Neurosci. 12:272 https://doi.org/10.3389/fnhum.2018.00272
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-devpsych-121020-031846
Loading
/content/journals/10.1146/annurev-devpsych-121020-031846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error