1932

Abstract

Patterns of variation and evolution at a given site in a genome can be strongly influenced by the effects of selection at genetically linked sites. In particular, the recombination rates of genomic regions correlate with their amount of within-population genetic variability, the degree to which the frequency distributions of DNA sequence variants differ from their neutral expectations, and the levels of adaptation of their functional components. We review the major population genetic processes that are thought to lead to these patterns, focusing on their effects on patterns of variability: selective sweeps, background selection, associative overdominance, and Hill–Robertson interference among deleterious mutations. We emphasize the difficulties in distinguishing among the footprints of these processes and disentangling them from the effects of purely demographic factors such as population size changes. We also discuss how interactions between selective and demographic processes can significantly affect patterns of variability within genomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-010621-044528
2021-11-03
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-010621-044528.html?itemId=/content/journals/10.1146/annurev-ecolsys-010621-044528&mimeType=html&fmt=ahah

Literature Cited

  1. Bank C, Foll M, Ferrer-Admetlla A, Ewing G, Jensen JD. 2014. Thinking too positive? Revisiting current methods in population genetic selection inference. Trends Genet 30:540–46
    [Google Scholar]
  2. Barton NH. 1979. Gene flow past a cline. Heredity 43:333–39
    [Google Scholar]
  3. Barton NH. 2000. Genetic hitchhiking. Philos. Trans. R. Soc. B 355:1553–62
    [Google Scholar]
  4. Bast J, Parker DJ, Dumas Z, Jalvingh KM, Van PT et al. 2018. Consequences of asexuality in natural populations: insights from stick insects. Mol. Biol. Evol. 35:1668–77
    [Google Scholar]
  5. Becher H, Jackson BC, Charlesworth B. 2020. Patterns of genetic variability in genomic regions with low rates of recombination. Curr. Biol. 30:94–100
    [Google Scholar]
  6. Begun D, Aquadro CF. 1992. Levels of naturally occurring DNA polymorphism correlate with recombination rate in Drosophila melanogaster. Nature 356:519–20
    [Google Scholar]
  7. Bengtsson BO 1985. The flow of genes through a genetic barrier. Evolution: Essays in Honour of John Maynard Smith PJ Greenwood, PH Harvey, M Slatkin 31–42 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  8. Berry AJ, Ajioka JW, Kreitman M. 1991. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129:1111–17
    [Google Scholar]
  9. Booker TR, Jackson BC, Keightley PD. 2017. Detecting positive selection in the genome. BMC Biol 15:98
    [Google Scholar]
  10. Braverman JM, Hudson RR, Kaplan NL, Langley CH, Stephan W 1995. The hitchhiking effect on the site frequency spectrum of DNA polymorphism. Genetics 140:783–96
    [Google Scholar]
  11. Campos JL, Charlesworth B. 2019. The effects on neutral variability of recurrent selective sweeps and background selection. Genetics 212:287–303
    [Google Scholar]
  12. Campos JL, Halligan DL, Haddrill PR, Charlesworth B. 2014. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster. Mol. Biol. Evol. 31:1010–28
    [Google Scholar]
  13. Campos JL, Zhao L, Charlesworth B. 2017. Estimating the parameters of background selection and selective sweeps in Drosophila in the presence of gene conversion. PNAS 114:E4762–71
    [Google Scholar]
  14. Casillas S, Barbadilla A, Bergman CM. 2007. Purifying selection maintains highly conserved noncoding sequences in Drosophila. Mol. Biol. Evol. 24:2222–34
    [Google Scholar]
  15. Charlesworth B. 1996. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet. Res. 68:131–50
    [Google Scholar]
  16. Charlesworth B. 2009. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10:195–205
    [Google Scholar]
  17. Charlesworth B. 2020a. How good are predictions of the effects of selective sweeps on levels of neutral diversity?. Genetics 216:1217–38
    [Google Scholar]
  18. Charlesworth B. 2020b. How long does it take to fix a favorable mutation, and why should we care?. Am. Nat. 195:753–71
    [Google Scholar]
  19. Charlesworth B, Betancourt AJ, Kaiser VB, Gordo I. 2010. Genetic recombination and molecular evolution. Cold Spring Harb. Symp. Quant. Biol. 74:177–86
    [Google Scholar]
  20. Charlesworth B, Campos JL. 2014. The relations between recombination rate and patterns of molecular evolution and variation in Drosophila. Annu. Rev. Genet. 48:383–403
    [Google Scholar]
  21. Charlesworth B, Charlesworth D. 1997. Rapid fixation of deleterious alleles by Muller's ratchet. Genet. Res. 70:63–73
    [Google Scholar]
  22. Charlesworth B, Morgan MT, Charlesworth D. 1993. The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–303
    [Google Scholar]
  23. Charlesworth B, Nordborg M, Charlesworth D. 1997. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 70:155–74
    [Google Scholar]
  24. Charlesworth D. 1991. The apparent selection on neutral marker loci in partially inbreeding populations. Genet. Res. 57:159–75
    [Google Scholar]
  25. Charlesworth D. 2003. Effects of inbreeding on the genetic diversity of plant populations. Philos. Trans. R. Soc. B 358:1051–70
    [Google Scholar]
  26. Charlesworth D, Charlesworth B, Morgan MT. 1995. The pattern of neutral molecular variation under the background selection model. Genetics 141:1619–32
    [Google Scholar]
  27. Chikhi L, Rodríguez W, Grusea S, Santos P, Boitard S, Mazet O. 2018. The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic inference and model choice. Heredity 120:13–24
    [Google Scholar]
  28. Comeron JM. 2017. Background selection as null hypothesis in population genomics: insights and challenges from Drosophila studies. Philos. Trans. R. Soc. B 372:20160471
    [Google Scholar]
  29. Comeron JM, Kreitman M. 2002. Population, evolutionary and genomic consequences of interference selection. Genetics 161:389–410
    [Google Scholar]
  30. Crisci JL, Poh Y-P, Mahajan S, Jensen JD. 2013. The impact of equilibrium assumptions on tests of selection. Front. Genet. 4:235
    [Google Scholar]
  31. Crow JF, Nagylaki T. 1976. The rate of change of a character correlated with fitness. Am. Nat. 110:207–13
    [Google Scholar]
  32. Cutter AD, Payseur BA. 2013. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14:262–72
    [Google Scholar]
  33. Cvijović I, Good BH, Desai MM. 2018. The effect of strong purifying selection on genetic diversity. Genetics 209:1235–78
    [Google Scholar]
  34. DeGiorgio M, Huber CD, Hubisz M, Nielsen R. 2016. SweepFinder2: increase in sensitivity, robustness and flexibility. Bioinformatics 32:1895–97
    [Google Scholar]
  35. Eldon B, Birkner M, Blath J, Freund F. 2015. Can the site-frequency spectrum distinguish exponential population growth from multiple-merger coalescents?. Genetics 199:841–56
    [Google Scholar]
  36. Elyashiv E, Sattah S, Hu TT, Strutovsky A, McVicker G et al. 2016. A genomic map of the effects of linked selection in Drosophila. PLOS Genet 12:e1006130
    [Google Scholar]
  37. Ewing GB, Jensen JD. 2016. The consequences of not accounting for background selection in demographic inference. Mol. Ecol. 25:135–41
    [Google Scholar]
  38. Excoffier L, Dupanloup I, Huerta-Saánchez E, Sousa V, Foll M. 2013. Robust demographic inference from genomic and SNP data. PLOS Genet 9:e1003905
    [Google Scholar]
  39. Eyre-Walker A, Keightley PD 2009. Estimating the rate of adaptive mutations in the presence of slightly deleterious mutations and population size change. Mol. Biol. Evol. 26:2097–108
    [Google Scholar]
  40. Fay JC, Wu CI. 2000. Hitchhiking under positive Darwinian selection. Genetics 155:1405–13
    [Google Scholar]
  41. Felsenstein J. 1974. The evolutionary advantage of recombination. Genetics 78:737–56
    [Google Scholar]
  42. Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. 2014. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol. Biol. Evol. 31:1275–91
    [Google Scholar]
  43. Fijarczyk A, Babik W. 2015. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24:3529–45
    [Google Scholar]
  44. Foll M, Poh Y-P, Renzette N, Ferrer-Admetlla A, Bank C et al. 2014. Influenza virus drug resistance: a time-sampled population genetics perspective. PLOS Genet 10:e1004185
    [Google Scholar]
  45. Galtier N, Depaulis F, Barton NH. 2000. Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics 155:981–87
    [Google Scholar]
  46. Galtier N, Rousselle M. 2020. How much does Ne vary among species?. Genetics 216:559–72
    [Google Scholar]
  47. Garud NR, Messer PW, Buszbas EO, Petrov DA. 2015. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLOS Genet 11:e1005004
    [Google Scholar]
  48. Gilbert KJ, Pouyet F, Excoffier L, Peischl S. 2020. Transition from background selection to associative overdominance promotes diversity in regions of low recombination. Curr. Biol. 30:101–7
    [Google Scholar]
  49. Good BH, Walczak AM, Neher RA, Desai MM. 2014. Genetic diversity in the interference selection limit. PLOS Genet 10:e1004222
    [Google Scholar]
  50. Haldane JBS. 1924. A mathematical theory of natural and artificial selection. Part I. Trans. Camb. Philos. Soc. 23:19–41
    [Google Scholar]
  51. Harris RB, Jensen JD. 2020. Considering genome scans for selection as coalescent model choice. Genome Biol. Evol. 12:871–77
    [Google Scholar]
  52. Harris RB, Sackman A, Jensen JD. 2018. On the unfounded enthusiasm for soft selective sweeps II: examining recent evidence from humans, flies, and viruses. PLOS Genet 14:e1007859
    [Google Scholar]
  53. Hartfield M, Bataillon T. 2020. Selective sweeps under dominance and inbreeding. G3 Genes Genomes Genet 10:1063–75
    [Google Scholar]
  54. Hermisson J, Pennings PS. 2005. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–52
    [Google Scholar]
  55. Hermisson J, Pennings PS. 2017. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol. Evol. 8:700–16
    [Google Scholar]
  56. Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8:269–94
    [Google Scholar]
  57. Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G et al. 2016. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am. Nat. 188:379–97
    [Google Scholar]
  58. Hudson RR. 1990. Gene genealogies and the coalescent process. Oxf. Surv. Evol. Biol. 7:1–45
    [Google Scholar]
  59. Hudson RR, Kaplan NL 1994. Gene trees with background selection. Non-Neutral Evolution: Theories and Molecular Data ed. B Golding 140–53 London: Chapman & Hall
    [Google Scholar]
  60. Hudson RR, Kaplan NL. 1995. Deleterious background selection with recombination. Genetics 141:1605–17
    [Google Scholar]
  61. Irwin KK, Matuszewski S, Vuilleumier S, Ormond L, Shim H et al. 2016. On the importance of skewed offspring distributions and background selection in virus population genetics. Heredity 117:393–99
    [Google Scholar]
  62. Jain K. 2008. Loss of least-loaded class in asexual populations due to drift and epistasis. Genetics 179:2125–34
    [Google Scholar]
  63. Jensen JD. 2014. On the unfounded enthusiasm for soft selective sweeps. Nat. Commun. 5:5281
    [Google Scholar]
  64. Jensen JD, Kim Y, Bauer DuMont V, Aquadro CF, Bustamante CD 2005. Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics 170:1401–10
    [Google Scholar]
  65. Jensen JD, Kim Y, Bustamante CD, Aquadro CF. 2007. On the utility of linkage disequilibrium as a statistic for identifying targets of positive selection in nonequilibrium populations. Genetics 176:2371–79
    [Google Scholar]
  66. Johri P, Charlesworth B, Howell EK, Lynch M, Jensen JD 2021a. Revisiting the notion of deleterious sweeps. Genetics In press. https://doi.org/10.1093/genetics/iyab094
    [Crossref] [Google Scholar]
  67. Johri P, Charlesworth B, Jensen JD. 2020. Toward an evolutionarily appropriate null model: jointly inferring demography and purifying selection. Genetics 215:173–92
    [Google Scholar]
  68. Johri P, Riall K, Becher H, Excoffier L, Charlesworth B, Jensen JD. 2021b. The impact of purifying and background selection on the inference of population history: problems and prospects. Mol. Biol. Evol. 38:2986–3003
    [Google Scholar]
  69. Kaiser VB, Charlesworth B. 2009. The effects of deleterious mutations on evolution in non-recombining genomes. Trends Genet. 25:9–12
    [Google Scholar]
  70. Kaiser VB, Charlesworth B. 2010. Muller's ratchet and the degeneration of the Drosophila miranda neo-Y chromosome. Genetics 185:339–48
    [Google Scholar]
  71. Kaplan NL, Hudson RR, Langley CH. 1989. The “hitch-hiking” effect revisited. Genetics 123:887–99
    [Google Scholar]
  72. Kim Y, Nielsen R. 2004. Linkage disequilibrium as a signature of selective sweeps. Genetics 167:1513–24
    [Google Scholar]
  73. Kim Y, Stephan W 2000. Joint effects of genetic hitchhiking and background selection on neutral variation. Genetics 155:1415–27
    [Google Scholar]
  74. Kim Y, Stephan W 2002. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 160:765–77
    [Google Scholar]
  75. Kimura M. 1971. Theoretical foundations of population genetics at the molecular level. Theor. . Popul. Biol. 2:174–208
    [Google Scholar]
  76. Kimura M. 1983. The Neutral Theory of Molecular Evolution Cambridge, UK: Cambridge Univ. Press
  77. Kousathanas A, Keightley PD. 2013. A comparison of models to infer the distribution of fitness effects of new mutations. Genetics 193:1197–208
    [Google Scholar]
  78. Latter BDH. 1998. Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding in Drosophila melanogaster. Genetics 148:1143–58
    [Google Scholar]
  79. Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature 475:493–96
    [Google Scholar]
  80. Machado HE, Lawrie DS, Petrov DA. 2020. Pervasive strong selection at the level of codon usage bias in Drosophila melanogaster. Genetics 214:511–28
    [Google Scholar]
  81. Mafessoni F, Lachmann D. 2015. Selective strolls: Fixation and extinction in diploids are slower for weakly selected mutations than for neutral ones. Genetics 201:1581–89
    [Google Scholar]
  82. Maruyama T, Kimura M. 1974. A note on the speed of gene frequency changes in reverse directions in a finite population. Evolution 28:161–63
    [Google Scholar]
  83. Matuszewski S, Hildebrandt ME, Achaz G, Jensen JD. 2018. Coalescent processes with skewed offspring distributions and nonequilibrium demography. Genetics 208:323–38
    [Google Scholar]
  84. Maynard Smith J, Haigh J 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23:23–35
    [Google Scholar]
  85. McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR, Mirny LA. 2013. Impact of deleterious passenger mutations on cancer progression. PNAS 110:2910–15
    [Google Scholar]
  86. McVean G. 2007. The structure of linkage disequilibrium around a selective sweep. Genetics 175:1395–406
    [Google Scholar]
  87. McVicker G, Gordon D, Davis C, Green P. 2009. Widespread genomic signatures of natural selection in hominid evolution. PLOS Genet 5:e1000471
    [Google Scholar]
  88. Messer PW, Petrov DA. 2013. Frequent adaptation and the McDonald-Kreitman test. PNAS 110:8615–20
    [Google Scholar]
  89. Muller HJ. 1964. The relation of recombination to mutational advance. Mutat. Res. 1:2–9
    [Google Scholar]
  90. Nicolaisen LE, Desai M. 2013. Distortions in genealogies due to purifying selection and recombination. Genetics 195:221–30
    [Google Scholar]
  91. Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante CD. 2005. Genomic scans for selective sweeps using SNP data. Genome Res 15:1566–75
    [Google Scholar]
  92. Nordborg M, Charlesworth B, Charlesworth D. 1996. The effect of recombination on background selection. Genet. Res. 67:159–74
    [Google Scholar]
  93. Ohta T. 1971. Associative overdominance caused by linked detrimental mutations. Genet. Res. 18:277–86
    [Google Scholar]
  94. Orr HA, Betancourt AJ. 2001. Haldane's sieve and adaptation from the standing genetic variation. Genetics 157:875–84
    [Google Scholar]
  95. Palsson S, Pamilo P. 1999. The effects of deleterious mutations on linked neutral variation in small populations. Genetics 153:475–83
    [Google Scholar]
  96. Parmley JL, Hurst LD. 2007. How do synonymous mutations affect fitness?. Bioessays 29:515–19
    [Google Scholar]
  97. Pavlidis P, Živkovic D, Stamatakis A, Alachiotis N. 2013. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30:2224–34
    [Google Scholar]
  98. Pennings PS, Hermisson J. 2006. Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol. Biol. Evol. 23:1076–84
    [Google Scholar]
  99. Poh Y-P, Domingues V, Hoekstra HE, Jensen JD. 2014. On the prospect of identifying adaptive loci in recently bottlenecked populations. PLOS ONE 9:e110579
    [Google Scholar]
  100. Pouyet F, Aeschbacher S, Thiery A, Excoffier L. 2018. Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences. eLife 7:e36317
    [Google Scholar]
  101. Price GR. 1970. Selection and covariance. Nature 227:520–21
    [Google Scholar]
  102. Przeworski M. 2002. The signature of positive selection at randomly chosen loci. Genetics 160:1179–89
    [Google Scholar]
  103. Robertson A. 1968. The spectrum of genetic variation. Population Biology and Evolution, Proceedings of the International Symposium, June 7–9, 1967, Syracuse RC Lewontin 5–16 Syracuse, NY: Syracuse Univ. Press
    [Google Scholar]
  104. Sackman AM, Harris RB, Jensen JD. 2019. Inferring demography and selection in organisms characterized by skewed offspring distributions. Genetics 211:1019–28
    [Google Scholar]
  105. Santiago E, Caballero A. 1995. Effective size of populations under selection. Genetics 139:1013–30
    [Google Scholar]
  106. Santiago E, Caballero A. 1998. Effective size and polymorphism of linked neutral loci in populations under selection. Genetics 149:2105–17
    [Google Scholar]
  107. Sattah S, Elyashiv E, Kolodny O, Rinott Y, Sella G 2011. Pervasive adaptive protein evolution apparent in diversity patterns around amino acid substitutions in Drosophila simulans. PLOS Genet 7:e1001302
    [Google Scholar]
  108. Schiffels S, Durbin R. 2014. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46:919–25
    [Google Scholar]
  109. Schrider DR, Kern AD. 2016. S/HIC: robust identification of soft and hard sweeps using machine learning. PLOS Genet 12:e1005928
    [Google Scholar]
  110. Schrider DR, Kern AD. 2017. Soft sweeps are the dominant mode of adaptation in the human genome. Mol. Biol. Evol. 34:1863–77
    [Google Scholar]
  111. Schrider DR, Mendes F, Hahn MW, Kern AD. 2015. Soft shoulders ahead: Spurious signatures of soft and partial sweeps result from linked hard sweeps. Genetics 200:267–84
    [Google Scholar]
  112. Söderberg RJ, Berg OG. 2007. Mutational interference and the progression of Muller's ratchet when mutations have a broad range of deleterious effects. Genetics 177:971–86
    [Google Scholar]
  113. Stephan W. 2019. Selective sweeps. Genetics 211:5–13
    [Google Scholar]
  114. Stephan W, Song YS, Langley CH. 2006. The hitchhiking effect on linkage disequilibrium between linked neutral loci. Genetics 172:2647–63
    [Google Scholar]
  115. Stephan W, Wiehe THE, Lenz MW. 1992. The effect of strongly selected substitutions on neutral polymorphism: analytical results based on diffusion theory. Theor. Popul. Biol. 41:237–54
    [Google Scholar]
  116. Tajima F. 1990. Relationship between DNA polymorphism and fixation time. Genetics 125:447–54
    [Google Scholar]
  117. Tellier A, Lemaire C. 2014. Coalescence 2.0: a multiple branching of recent theoretical developments and their applications. Mol. Ecol. 23:2637–52
    [Google Scholar]
  118. Teshima KM, Coop G, Przeworski M. 2006. How reliable are empirical genome scans for selective sweeps?. Genome Res 16:702–12
    [Google Scholar]
  119. Thornton KR, Jensen JD. 2007. Controlling the false-positive rate in multilocus genome scans for selection. Genetics 175:737–50
    [Google Scholar]
  120. Wakeley J. 2008. Coalescent Theory: An Introduction Greenwood Village, CO: Roberts & Co.
  121. Wiehe THE, Stephan W. 1993. Analysis of a genetic hitchhiking model and its application to DNA polymorphism data. Mol. Biol. Evol. 10:842–54
    [Google Scholar]
  122. Xia Q, Guo Y, Zheng Z, Li D, Xuan Z et al. 2009. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326:433–36
    [Google Scholar]
  123. Zeng K. 2013. A coalescent model of background selection with recombination, demography and variation in selection coefficients. Heredity 110:363–71
    [Google Scholar]
  124. Zhao L, Charlesworth B. 2016. Resolving the conflict between associative overdominance and background selection. Genetics 203:1315–34
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-010621-044528
Loading
/content/journals/10.1146/annurev-ecolsys-010621-044528
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error