1932

Abstract

Abstract

Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species' ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.ecolsys.37.091305.110100
2006-12-01
2024-07-13
Loading full text...

Full text loading...

/deliver/fulltext/es/37/1/annurev.ecolsys.37.091305.110100.html?itemId=/content/journals/10.1146/annurev.ecolsys.37.091305.110100&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad QK, Warrick RA, Downing TE, Nishioka S, Parikh KS. et al. 2001. Methods and tools. See IPCC 2001a pp. 105–43
  2. Ainley DG, Ballard G, Emslie SD, Fraser WR, Wilson PR, Woehler EJ. 2003. Adelie penguins and environmental change. Science 300:429–30 [Google Scholar]
  3. Ainley DG, Divoky GJ. 1998. Climate change and seabirds: a review of trends in the eastern portion of the Pacific Basin. Pac. Seab 25:20 [Google Scholar]
  4. Alley RB, Clark PU, Huybrechts P, Joughin I. 2005. Ice-sheet and sea-level changes. Science 310:456–60 [Google Scholar]
  5. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM. et al. 2003. Abrupt climate change. Science 299:2005–10 [Google Scholar]
  6. Andrewartha HG, Birch LC. 1954. The Distribution and Abundance of Animals Chicago, IL: Univ. Chicago Press [Google Scholar]
  7. Anisimov O, Fitzharris B, Hagen JO, Jefferies R, Marchant H. et al. 2001. Polar regions (Arctic and Antarctic). See IPCC 2001a pp. 801–47
  8. Antonovics J. 1976. The nature of limits to natural selection. Ann. Mo. Bot. Gard 63:224–47 [Google Scholar]
  9. Arctic Climate Impact Assessment 2004. Impacts of a Warming Arctic Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  10. Atkinson A, Siegel V, Pakhomov E, Rothery P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–3 [Google Scholar]
  11. Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W. et al. 2004. Responses of spring phenology to climate change. New Phytol. 162:295–309 [Google Scholar]
  12. Baker AC. 2001. Reef corals bleach to survive change. Nature 411:765–66 [Google Scholar]
  13. Baker AC, Starger CJ, McClanahan TR, Glynn PW. 2004. Coral reefs: corals' adaptive response to climate change. Nature 430:741 [Google Scholar]
  14. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM. et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8:1–16 [Google Scholar]
  15. Barber VA, Juday GP, Finney BP. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–73 [Google Scholar]
  16. Barbraud C, Weimerskirch H. 2001. Emperor penguins and climate change. Nature 411:183–86 [Google Scholar]
  17. Battisti A, Stastny M, Netherer S, Robinet C, Schopf A. et al. 2005. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15:2084–96 [Google Scholar]
  18. Beare DJ, Burns F, Greig A, Jones EG, Peach K. et al. 2004. Long-term increases in prevalence of North Sea fishes having southern biogeographic affinities. Mar. Ecol. Prog. Ser. 284:269–78 [Google Scholar]
  19. Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M. 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–94 [Google Scholar]
  20. Beebee TJC. 1995. Amphibian breeding and climate. Nature 374:219–20 [Google Scholar]
  21. Beever EA, Brussard PF, Berger J. 2003. Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J. Mammal 84:37–54 [Google Scholar]
  22. Berteaux D, Reale D, McAdam AG, Boutin S. 2004. Keeping pace with fast climate change: Can Arctic life count on evolution. Integr. Comp. Biol 44:140–51 [Google Scholar]
  23. Blenckner T, Hillebrand H. 2002. North Atlantic Oscillation signatures in aquatic and terrestrial ecosystems: a meta-analysis. Glob. Change Biol 8:203–12 [Google Scholar]
  24. Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ. et al. 2004. Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc. R. Soc. London Ser. B 271:1657–62 [Google Scholar]
  25. Bradley NL, Leopold AC, Ross J, Wellington H. 1999. Phenological changes reflect climate change in Wisconsin. Proc. Natl. Acad. Sci. USA 96:9701–4 [Google Scholar]
  26. Bradshaw WE, Holzapfel CM. 2001. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl. Acad. Sci. USA 98:14509–11 [Google Scholar]
  27. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Harris IC. et al. 1998a. Trees tell of past climates, but are they speaking less clearly today. Philos. Trans. R. Soc. London Ser. B 353:65–73 [Google Scholar]
  28. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA. 1998b. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–82 [Google Scholar]
  29. Brown JL, Li SH, Bhagabati N. 1999. Long-tem trend toward earlier breeding in an American bird: a response to global warming. Proc. Natl. Acad. Sci. USA 96:5565–69 [Google Scholar]
  30. Bumpus HC. 1899. The elimination of the unfit as illustrated by the introduced sparrow, Passer domesicus. In Biological Lectures Delivered at the Marine Biological Laboratory of Wood's Holl, 1896–97 pp. 209–26 Boston: Ginn & Co [Google Scholar]
  31. Burger M. 1998. Physiological mechanisms limiting the northern boundary of the winter range of the northern cardinal (Cardinalis cardinalis) PhD diss. Univ. Mich., Ann Arbor [Google Scholar]
  32. Burton J. 1975. The effects of recent climatic change on British insects. Bird Study 22:203–4 [Google Scholar]
  33. Burton JF. 1998a. The apparent effects of climatic changes since 1850 on European lepidoptera. Mém. Soc. R. Belge Entomol. 38:125–44 [Google Scholar]
  34. Burton JF. 1998b. The apparent responses of European lepidottera to the climate changes of the past hundred years. Atropos 5:24–30 [Google Scholar]
  35. Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature 425:365 [Google Scholar]
  36. Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH. 2001. Changes in the onset of spring in the western United States. Bull. Am. Meteorol. Soc 82:399–415 [Google Scholar]
  37. Chapin FS III, Berman M, Callaghan TV, Convey P, Crepin AS. et al. 2006. Polar systems. In Millennium Ecosystem Assessment, Ecosystems and Human Well-Being, Volume 1: Current State and Trends ed. R Hassan, R Scholes, N Ash pp. 717–43 Washington, DC: Island Press [Google Scholar]
  38. Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KG, Laundre JA. 1995. Response of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711 [Google Scholar]
  39. Chuine I, Beaubien E. 2001. Phenology is a major determinant of tree species range. Ecol. Lett 4:500–10 [Google Scholar]
  40. Coope GR. 1994. The response of insect faunas to glacial-interglacial climatic fluctuations. Philos. Trans. R. Soc. London Ser. B 344:19–26 [Google Scholar]
  41. Crick HQ, Dudley C, Glue DE. 1997. UK birds are laying eggs earlier. Nature 388:526 [Google Scholar]
  42. Croxall JP, Trathan PN, Murphy EJ. 2002. Environmental change and Antarctic seabird populations. Science 297:1510–14 [Google Scholar]
  43. Crozier L. 2003. Winter warming facilitates range expansion: cold tolerance of the butterfly Atalopedes campestris. Oecologia 135:648–56 [Google Scholar]
  44. Crozier L. 2004. Warmer winters drive butterfly range expansion by increasing survivorship. Ecology 85:231–41 [Google Scholar]
  45. Davis MB, Shaw RG. 2001. Range shifts and adaptive responses to quaternary climate change. Science 292:673–79 [Google Scholar]
  46. Davis MB, Zabinski C. 1992. Changes in geographical range resulting from greenhouse warming: effects on biodiversity in forests. In Global Warming and Biological Diversity ed. TEL Peters, R Lovejoy pp. 297–308 New Haven, CT: Yale Univ. Press [Google Scholar]
  47. Dennis RLH. 1993. Butterflies and Climate Change Manchester, UK: Manchester Univ. Press [Google Scholar]
  48. Derocher AE. 2005. Population ecology of polar bears at Svarlbad, Norway. Popul. Ecol 47:267–75 [Google Scholar]
  49. Derocher AE, Lunn NJ, Stirling I. 2004. Polar bears in a warming climate. Integr. Comp. Biol 44:163–76 [Google Scholar]
  50. Descimon H, Bachelard P, Boitier E, Pierrat V. 2006. Decline and extinction of Parnassius apollo populations in France—continued. In Studies on the Ecology and Conservation of Butterflies in Europe (EBIE) ed. E Kühn, R Feldmann, J Settele. Bulgaria: PENSOFT. In press [Google Scholar]
  51. deYoung B, Harris R, Alheit J, Beaugrand G, Mantua N, Shannon L. 2004. Detecting regime shifts in the ocean: data considerations. Prog. Oceanogr 60:143–64 [Google Scholar]
  52. Dobzhansky TH. 1943. Genetics of natural populations. IX. Temporal changes in the composition of populations of Drosophila pseudoobscura. Genetics 28:162–86 [Google Scholar]
  53. Dobzhansky TH. 1947. A response of certain gene arrangements in the third chromosome of Drosophila pseudoobscura to natural selection. Genetics 32:142–60 [Google Scholar]
  54. Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg O. 2005. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Change Biol 11:2251–65 [Google Scholar]
  55. Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG. et al. 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–22 [Google Scholar]
  56. Dose V, Menzel A. 2004. Bayesian analysis of climate change impacts in phenology. Glob. Change Biol 10:259–72 [Google Scholar]
  57. Dunn PO, Winkler DW. 1999. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. London Ser. B 266:2487–90 [Google Scholar]
  58. Easterling DR, Meehl J, Parmesan C, Chagnon S, Karl TR, Mearns LO. 2000. Climate extremes: observations, modeling, and impacts. Science 289:2068–74 [Google Scholar]
  59. Ehrlich PR, Murphy DD, Singer MC, Sherwood CB, White RR, Brown IL. 1980. Extinction, reduction, stability and increase: the responses of checkerspot butterfly populations to the California drought. Oecologia 46:101–5 [Google Scholar]
  60. Emslie SD, Fraser W, Smith RC, Walker W. 1998. Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Anatarctic Peninsula. Antarct. Sci 10:257–68 [Google Scholar]
  61. Ferguson SH, Stirling I, McLoughlin P. 2005. Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Mar. Mamm. Sci 21:121–35 [Google Scholar]
  62. Ford EB. 1945. Butterflies London: Collins [Google Scholar]
  63. Ford SE. 1996. Range extension by the oyster parasite Perkinsus marinus into the northeastern United States: response to climate change. J. Shellfish Res 15:45–56 [Google Scholar]
  64. Forister ML, Shapiro AM. 2003. Climatic trends and advancing spring flight of butterflies in lowland California. Glob. Change Biol 9:1130–35 [Google Scholar]
  65. Fraser WR, Trivelpiece WZ, Ainley DC, Trivelpiece SG. 1992. Increases in Antarctic penguin populations: reduced competition with whales or a loss of sea ice due to environmental warming. Polar Biol. 11:525–31 [Google Scholar]
  66. Garcia-Ramos G, Kirkpatrick M. 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28 [Google Scholar]
  67. Gaston AJ, Gilchrist HG, Hipfner M. 2005. Climate change, ice conditions and reproduction in an Arctic nesting marine bird: Brunnich's guillemot (Uria lomvia L.). J. Anim. Ecol 74:832–41 [Google Scholar]
  68. Gibbs JP, Breisch AR. 2001. Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conserv. Biol. 15:1175–78 [Google Scholar]
  69. Gordo O, Brotons L, Rerrer X, Comass P. 2005. Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds. Glob. Change Biol 11:12–21 [Google Scholar]
  70. Grabherr G, Gottfried M, Pauli H. 1994. Climate effects on mountain plants. Nature 369:448 [Google Scholar]
  71. Grinnell J. 1917. Field tests of theories concerning distributional control. Am. Nat 51:115–28 [Google Scholar]
  72. Gross L. 2005. As the Antarctic ice pack recedes, a fragile ecosystem hangs in the balance. PLoS Biol. 3:(4)e127 [Google Scholar]
  73. Gudmundsson F. 1951. The effects of the recent climatic changes on the bird life of Iceland. Proc. 10th Int. Ornithol. Congr., Uppsala, June 1950 pp. 502–14 [Google Scholar]
  74. Gurevitch J, Hedges LV. 1999. Statistical issues in ecological meta-analyses. Ecology 80:1142–49 [Google Scholar]
  75. Haeger JF. 1999. Danaus chrysippus (Linnaeus 1758) en la Península Ibérica: migraciones o dinámica de metapoblaciones. Shilap 27:423–30 [Google Scholar]
  76. Hanski I, Erälahti C, Kankare M, Ovaskainen O, Sirén H. 2004. Variation in migration propensity among individuals maintained by landscape structure. Ecol. Lett 7:958–66 [Google Scholar]
  77. Hari RE, Livingstone DM, Siber R, Burkhardt-Holm P, Güttinger H. 2006. Consequences of climatic change for water temperature and brown trout population in Alpine rivers and streams. Glob. Change Biol 12:10–26 [Google Scholar]
  78. Harrington R, Woiwod I, Sparks T. 1999. Climate change and trophic interactions. Trends Ecol. Evol 14:146–50 [Google Scholar]
  79. Harris G. 1964. Climatic changes since 1860 affecting European birds. Weather 19:70–79 [Google Scholar]
  80. Hays GC, Richardson AJ, Robinson C. 2005. Climate change and marine plankton. Trends Ecol. Evol 20:337–44 [Google Scholar]
  81. Heath J. 1974. A century of changes in the lepidoptera. In The Changing Flora and Fauna of Britain ed. DL Hawkesworth 6275–92 London: Syst. Assoc. [Google Scholar]
  82. Hemp A. 2005. Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob. Change Biol 11:1013–23 [Google Scholar]
  83. Hickling R, Roy DB, Hill JK, Thomas CD. 2005. A northward shift of range margins in British Odonata. Glob. Change Biol 11:502–6 [Google Scholar]
  84. Hill GE, Sargent RR, Sargent MB. 1998. Recent change in the winter distribution of Rufous Hummingbirds. Auk 115:240–45 [Google Scholar]
  85. Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG. et al. 2002. Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc. R. Soc. London Ser. B 269:2163–71 [Google Scholar]
  86. Hill JK, Thomas CD, Lewis OT. 1999. Flight morphology in fragmented populations of a rare British butterfly, Hesperia comma. Biol. Conserv 87:277–84 [Google Scholar]
  87. Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world's coral reefs. Mar. Freshw. Res 50:839–66 [Google Scholar]
  88. Hoegh-Guldberg O. 2005a. Low coral cover in a high-CO2 world. J. Geophys. Res. 110:C09S06 [Google Scholar]
  89. Hoegh-Guldberg O. 2005b. Marine ecosystems and climate change. See Lovejoy & Hannah 2005 pp. 256–71
  90. Hoegh-Guldberg O, Jones RJ, Ward S, Loh WK. 2002. Is coral bleaching really adaptive. Nature 415:601–2 [Google Scholar]
  91. Hoegh-Guldberg O, Pearse JS. 1995. Temperature, food availability, and the development of marine invertebrate larvae. Am. Zool 35:415–25 [Google Scholar]
  92. Hoffmann AA, Blows MW. 1994. Species borders: ecological and evolutionary perspectives. Trends Ecol. Evol 9:223–27 [Google Scholar]
  93. Holbrook SJ, Schmitt RJ, Stephens JS Jr. 1997. Changes in an assemblage of temperate reef fishes associated with a climatic shift. Ecol. Appl 7:1299–310 [Google Scholar]
  94. Holmgren M, Scheffer M, Ezcurra E, Gutierrez JR, Mohren GMJ. 2001. El Niño effects on the dynamics of terresrial ecosystems. Trends Ecol. Evol 16:89–94 [Google Scholar]
  95. Holt RD. 2003. On the evolution ecology of species' ranges. Evol. Ecol. Res 5:159–78 [Google Scholar]
  96. Howell SNG. 2002. Hummingbirds of North America San Diego, CA: Academic [Google Scholar]
  97. Hughes L. 2000. Biological consequences of global warming: Is the signal already apparent. Trends Ecol. Evol 15:56–61 [Google Scholar]
  98. Huntley B. 1991. How plants respond to climate change: migration rates, individualism and the consequences for the plant communities. J. Bot 67:15–22 [Google Scholar]
  99. Hüppop O, Hüppop K. 2003. North Atlantic Oscillation and timing of spring migration in birds. Proc. R. Soc. London Ser. B 270:233–40 [Google Scholar]
  100. Innes JL. 1991. High-altitude and high-latitude tree growth in relation to past, present, and future global climate change. Holocene 1:168–73 [Google Scholar]
  101. Inouye DW, Barr B, Armitage KB, Inouye BD. 2000. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl. Acad. Sci. USA 97:1630–33 [Google Scholar]
  102. IPCC (Intergovernmental Panel Climate Change) 2001a. Climate Change 2001: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Intergovernmental Panel on Climate Change Third Assessment Report ed. JJ McCarthy, OF Canziani, NA Leary, DJ Dokken, KS White Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  103. IPCC (Intergovernmental Panel Climate Change) 2001b. Climate Change 2001: The Science of Climate Change, Contribution of Working Group I to the Intergovernmental Panel on Climate Change Third Assessment Report ed. JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai, K Maskell, CA Johnson. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  104. Jacoby GC, D'Arrigo RD. 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Glob. Biogeochem. Cycles 9:227–34 [Google Scholar]
  105. Johnson T, Dozier J, Michaelsen J. 1999. Climate change and Sierra Nevada snowpack. IAHS Publ 256:63–70 [Google Scholar]
  106. Johnston RF, Niles DM, Rohwer SA. 1972. Hermon Bumpus and natural selection in the house sparrow Passer domesticus. Evolution 26:20–31 [Google Scholar]
  107. Jordano D, Retamosa EC, Fernandez H. 1991. Factors facilitating the continued presence of Colotis evagore (Klug 1829) in southern Spain. J. Biogeogr 18:637–46 [Google Scholar]
  108. Jump AS, Peñuelas J. 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett 8:1010–20 [Google Scholar]
  109. Kaisila J. 1962. Immigration und Expansion der Lepidopteren in Finnland in den Jahren 1869–1960. Acta Entomol. Fenn. 18:1–452 [Google Scholar]
  110. Kalela O. 1949. Changes in geographic ranges in the avifauna of northern and central Europe in response to recent changes in climate. Bird-Band 20:77–103 [Google Scholar]
  111. Kalela O. 1952. Changes in the geographic distribution of Finnish birds and mammals in relation to recent changes in climate. In The Recent Climatic Fluctuation in Finland and its Consequences: A Symposium ed. I Hustichi pp. 38–51 Helsinki: Fennia [Google Scholar]
  112. Karieva PM, Kingsolver JG, Huey RB. eds. 1993. Biotic Interactions and Global Change Sunderland, MA: Sinauer [Google Scholar]
  113. Karl TR, Trenberth KE. 2003. Modern global climate change. Science 302:1719–23 [Google Scholar]
  114. Keeling CD, Chin JFS, Whorf TP. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–49 [Google Scholar]
  115. Kirkpatrick M, Barton NH. 1997. Evolution of a species' range. Am. Nat 150:1–23 [Google Scholar]
  116. Kullman L. 2001. 20th century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio 30:72–80 [Google Scholar]
  117. Kutz SJ, Hoberg EP, Polley L, Jenkins EJ. 2005. Global warming is changing the dynamics of Arctic host-parasite systems. Proc. R. Soc. London Ser. B 272:2571–76 [Google Scholar]
  118. Lapenis A, Shvidenko A, Shepaschenko D, Nilsson S, Aiyyer A. 2005. Acclimation of Russian forests to recent changes in climate. Glob. Change Biol 11:2090–102 [Google Scholar]
  119. Lescop-Sinclair K, Payette S. 1995. Recent advance of the Arctic treeline along the eastern coast of Hudson Bay. J. Ecol 83:929–36 [Google Scholar]
  120. Levitan M. 2003. Climatic factors and increased frequencies of ‘southern’ chromosome forms in natural populations of Drosophila robusta. Evol. Ecol. Res 5:597–604 [Google Scholar]
  121. Lewontin RC, Birch LC. 1966. Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–36 [Google Scholar]
  122. Lindgren E, Gustafson R. 2001. Tick-borne encephalitis in Sweden and climate change. Lancet 358:16–18 [Google Scholar]
  123. Logan JA, Regniere J, Powell JA. 2003. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ 1:130–37 [Google Scholar]
  124. Lovejoy T, Hannah L. eds. 2005. In Climate Change and Biodiversity New Haven, CT: Yale Univ. Press [Google Scholar]
  125. Luckman B, Kavanagh T. 2000. Impact of climate fluctuations on mountain environments in the Canadian Rockies. Ambio 29:371–80 [Google Scholar]
  126. Lynch M, Lande R. 1993. Evolution and extinction in response to environmental change. See Karieva et al. 1993 pp. 234–50
  127. MacArthur RM. 1972. Geographical Ecology New York: Harper & Row [Google Scholar]
  128. Marttila O, Haahtela T, Aarnio H, Ojalainen P. 1990. Suomen Päiväperhoset Helsinki: Kirjayhtymä [Google Scholar]
  129. McGowan JA, Cayan DR, Dorman LM. 1998. Climate-ocean variability and ecosystem response in the Northeast Pacific. Science 281:210–17 [Google Scholar]
  130. Meehl GA, Zwiers F, Evans J, Knutson T, Mearns LO, Whetton P. 2000. Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bull. Am. Meteorol. Soc 81:427–36 [Google Scholar]
  131. Menzel A. 2000. Trends in phenological phases in Europe between 1951 and 1996. Int. J. Biometeorol 44:76–81 [Google Scholar]
  132. Menzel A. 2005. A 500 year pheno-climatological view on the 2003 heatwave in Europe assessed by grape harvest dates. Meteorol. Z 14:75–77 [Google Scholar]
  133. Menzel A, Dose V. 2005. Analysis of long-term time-series of beginning of flowering by Bayesian function estimation. Meteorol. Z 14:429–34 [Google Scholar]
  134. Menzel A, Fabian P. 1999. Growing season extended in Europe. Nature 397:659 [Google Scholar]
  135. Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N. 2003. Variations of the climatological growing season (1951–2000) in Germany compared with other countries. Int. J. Climatol. 23:793–812 [Google Scholar]
  136. Meshinev T, Apostolova I, Koleva E. 2000. Influence of warming on timberline rising: a case study on Pinus peuce Griseb. in Bulgaria. Phytocoenologia 30:431–38 [Google Scholar]
  137. Mikkola K. 1997. Population trends of Finnish Lepidoptera during 1961–1996. Entomol. Fenn. 3:121–43 [Google Scholar]
  138. Moiseev PA, Shiyatov SG. 2003. The use of old landscape photographs for studying vegetation dynamics at the treeline ecotone in the Ural Highlands, Russia. In Alpine Biodiversity in Europe ed. L Nagy, G Grabherr, C Körner, DBA Thompson pp. 423–36 Berlin: Springer-Verlag [Google Scholar]
  139. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702 [Google Scholar]
  140. Nylin S. 1988. Host plant specialization and seasonality in a phytophagous butterfly, Polygonia c-album (Nymphalidae). Oikos 53:381–86 [Google Scholar]
  141. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC. et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–86 [Google Scholar]
  142. Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC. 2001. Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14 [Google Scholar]
  143. Parmesan C. 1996. Climate and species' range. Nature 382:765–66 [Google Scholar]
  144. Parmesan C. 2002. Detection of range shifts: general methodological issues and case studies using butterflies. In Fingerprints of Climate Change: Adapted Behaviour and Shifting Species' Ranges ed. G-R Walther, CA Burga, PJ Edwards pp. 57–76 Dordrecht, Netherlands: Kluwer Acad./Plenum [Google Scholar]
  145. Parmesan C. 2003. Butterflies as bio-indicators of climate change impacts. In Evolution and Ecology Taking Flight: Butterflies as Model Systems ed. CL Boggs, WB Watt, PR Ehrlich pp. 541–60 Chicago: Univ. Chicago Press [Google Scholar]
  146. Parmesan C. 2005a. Detection at multiple levels: Euphydryas editha and climate change. Case study. See Lovejoy & Hannah 2005 pp. 56–60
  147. Parmesan C. 2005b. Range and abundance changes. See Lovejoy & Hannah 2005 pp. 41–55
  148. Parmesan C, Gaines S, Gonzalez L, Kaufman DM, Kingsolver J. et al. 2005. Empirical perspectives on species' borders: environmental change as challenge and opportunity. Oikos 108:58–75 [Google Scholar]
  149. Parmesan C, Galbraith H. 2004. Observed Ecological Impacts of Climate Change in North America Arlington, VA: Pew Cent. Glob. Clim. Change [Google Scholar]
  150. Parmesan C, Martens P. 2006. Climate change. In Biodiversity, Health and the Environment: SCOPE/Diversitas Rapid Assessment Project ed. O Sala, L Meyerson, C Parmesan Washington, DC: Island Press. In press [Google Scholar]
  151. Parmesan C, Root TL, Willig MR. 2000. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc 81:443–50 [Google Scholar]
  152. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD. et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–83 [Google Scholar]
  153. Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42 [Google Scholar]
  154. Pauli H, Gottfried M, Grabherr G. 1996. Effects of climate change on mountain ecosystems: upward shifting of mountain plants. World Res. Rev 8:382–90 [Google Scholar]
  155. Paulson DR. 2001. Recent odonata records from southern Florida: effects of global warming. Int. J. Odonatol 4:57–69 [Google Scholar]
  156. Peñuelas J, Filella I. 2001. Responses to a warming world. Science 294:793–94 [Google Scholar]
  157. Perry AL, Low PJ, Ellis JR, Reynolds JD. 2005. Climate change and distribution shifts in marine fishes. Science 308:1912–15 [Google Scholar]
  158. Pollard E. 1979. Population ecology and change in range of the white admiral butterfly Ladoga camilla L. in England. Ecol. Entomol. 4:61–74 [Google Scholar]
  159. Pollard E, Eversham BC. 1995. Butterfly monitoring 2: interpreting the changes. In Ecology and Conservation of Butterflies ed. AS Pullin pp. 23–36 London: Chapman & Hall [Google Scholar]
  160. Post E, Langvatn R, Forchhammer MC, Stenseth NC. 1999. Environmental variation shapes sexual dimorhism in red deer. Proc. Natl. Acad. Sci. USA 96:4467–71 [Google Scholar]
  161. Pounds JA, Bustamente MR, Coloma LA, Consuegra JA, Fogden MPL. et al. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–67 [Google Scholar]
  162. Pounds JA, Fogden MPL, Campbell JH. 1999. Biological response to climate change on a tropical mountain. Nature 398:611–15 [Google Scholar]
  163. Pounds JA, Fogden MPL, Masters KL. 2005. Responses of natural communities to climate change in a highland tropical forest. Case study. See Lovejoy & Hannah 2005 pp. 70–74
  164. Precht H, Christophersen J, Hensel H, Larcher W. 1973. Temperature and Life New York: Springer-Verlag [Google Scholar]
  165. Precht WF, Aronson RB. 2004. Climate flickers and range shifts of reef corals. Front. Ecol. Environ 2:307–14 [Google Scholar]
  166. Réale D, McAdam A, Outin G, Berteaux S. 2003. Genetic and plastic response of a northern mammal to climate change. Proc. R. Soc. London Ser. B 270:591–96 [Google Scholar]
  167. Reid PC, Edwards M, Hunt HG, Warner AJ. 1998. Phytoplankton change in the North Atlantic. Nature 391:546 [Google Scholar]
  168. Richardson AJ, Schoeman DS. 2004. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–12 [Google Scholar]
  169. Rodríguez-Trelles F, Álvarez G, Zapata C. 1996. Time-series analysis of seasonal changes of the O inversion polymorphism of Drosophila subobscura. Genetics 142:179–87 [Google Scholar]
  170. Rodríguez-Trelles F, Rodriguez MA. 1998. Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evol. Ecol 12:829–38 [Google Scholar]
  171. Rodríguez-Trelles F, Rodriguez MA, Scheiner SM. 1998. Tracking the genetic effects of global warming: Drosophila and other model systems. Conserv. Ecol 2:2 [Google Scholar]
  172. Roessig JM, Woodley CM, Cech JJ, Hansen LJ. 2004. Effects of global climate change on marine and estuarine fishes. Rev. Fish Biol. Fish 14:215–75 [Google Scholar]
  173. Roetzer T, Wittenzeller M, Haeckel H, Nekovar J. 2000. Phenology in central Europe: difference and trends of spring phenophases in urban and rural areas. Int. J. Biometeorol 44:60–66 [Google Scholar]
  174. Root TL. 1988. Energy constraints on avian distributions and abundances. Ecology 69:330–39 [Google Scholar]
  175. Root TL, Hughes L. 2005. Present and future phenological changes in wild plants and animals. See Lovejoy & Hannah 2005 pp. 61–69
  176. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57–60 [Google Scholar]
  177. Rowan R. 2004. Thermal adaptation in reef coral symbionts. Nature 430:742 [Google Scholar]
  178. Roy DB, Sparks TH. 2000. Phenology of British butterflies and climate change. Glob. Change Biol 6:407–16 [Google Scholar]
  179. Sagarin RD, Barry JP, Gilman SE, Baxter CH. 1999. Climate-related change in an intertidal community over short and long time scales. Ecol. Monogr 69:465–90 [Google Scholar]
  180. Salomonsen F. 1948. The distribution of birds and the recent climatic change in the North Atlantic area. Dansk. Orn. Foren. Tidsskr 42:85–99 [Google Scholar]
  181. Schwartz MD. 1998. Green-wave phenology. Nature 394:839–40 [Google Scholar]
  182. Schwartz MD. 1999. Advancing to full bloom: planning phenological research for the 21st century. Int. J. Biometeorol 42:113–18 [Google Scholar]
  183. Scriber JM, Lederhouse RC. 1992. The thermal environment as a resource dictating geographic patterns of feeding specialization of insect herbinores. In Effects of Resource Distribution on Plant-Animal Interactions ed. MR Hunter, T Ohgushi, PW Price pp 429–66 New York: Academic [Google Scholar]
  184. Severnty DL. 1977. The use of data on the distribution of birds to monitor climatic changes. Emu 77:162–66 [Google Scholar]
  185. Shoo LP, Williams SE, Hero JM. 2006. Detecting climate change induces range shifts: Where and how should we be looking. Aust. Ecol 31:22–29 [Google Scholar]
  186. Singer MC. 1972. Complex components of habitat suitability within a butterfly colony. Science 176:75–77 [Google Scholar]
  187. Singer MC, Ehrlich PR. 1979. Population dynamics of the checkerspot butterfly Euphydryas editha. Fortschr. Zool 25:53–60 [Google Scholar]
  188. Singer MC, Thomas CD. 1996. Evolutionary responses of a butterfly metapopulation to human and climate-caused environmental variation. Am. Nat 148:S9–39 [Google Scholar]
  189. Smith AT. 1974. The distribution and dispersal of pikas: influences of behavior and climate. Ecology 55:1368–76 [Google Scholar]
  190. Smith RC, Ainley D, Kaber K, Domack E, Emslie S. et al. 1999. Marine ecosystem sensitivity to historical climate change in the Antarctic Peninsula. BioScience 49:393–404 [Google Scholar]
  191. Smith RIL. 1994. Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–28 [Google Scholar]
  192. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ. et al. 2005. Climate-driven regime shifts in the biological communities of Arctic lakes. Proc. Natl. Acad. Sci. USA 102:4397–402 [Google Scholar]
  193. Southward AJ, Hawkins SJ, Burrows MT. 1995. Seventy years' observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Therm. Biol 20:127–55 [Google Scholar]
  194. Southward AJ, Langmead O, Hardman-Mountford NJ, Aiken J, Boalch GT. et al. 2005. Long-term oceanographic and ecological research in the western English Channel. Adv. Mar. Biol. 47:1–105 [Google Scholar]
  195. Sparks TH, Menzel A. 2002. Observed changes in seasons, an overview. Int. J. Climatol 22:1715–26 [Google Scholar]
  196. Sparks TH, Yates TJ. 1997. The effect of spring temperature on the appearance dates of British butterflies 1883–1993. Ecography 20:368–74 [Google Scholar]
  197. Spear LB, Ainley DG. 1999. Migration routes of sooty shearwaters in the Pacific Ocean. Condor 101:205–18 [Google Scholar]
  198. Stefanescu C, Peñuelas J, Filella I. 2003. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Change Biol 9:1494 [Google Scholar]
  199. Stirling I. 2002. Polar bears and seals in the eastern Beaufort Sea and Amundsen Gulf: a synthesis of population trends and ecological relationships over three decades. Arctic 55:59–76 [Google Scholar]
  200. Stirling I, Lunn NJ, Iacozza J. 1999. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic 52:294–306 [Google Scholar]
  201. Sturm M, Racine C, Tape K. 2001. Increasing shrub abundance in the Arctic. Nature 411:546–47 [Google Scholar]
  202. Sturm M, Schimel J, Mechaelson G, Welker JM, Oberbauer SF. et al. 2005. Winter biological processes could help convert Arctic tundra to shrubland. BioScience 55:17–26 [Google Scholar]
  203. Swetnam TW, Betancourt JL. 1998. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J. Clim 11:3128–47 [Google Scholar]
  204. Taylor RH, Wilson PR. 1990. Recent increase and southern expansion of Adelie penguin populations in the Ross Sea, Antarctica, related to climatic warming. N.Z. J. Ecol 14:25–29 [Google Scholar]
  205. Thomas C. 2005. Recent evolutionary effects of climate change. See Lovejoy & Hannah 2005 pp. 75–90
  206. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG. et al. 2001. Ecological and evolutionary processes at expanding range margins. Nature 411:577–81 [Google Scholar]
  207. Thomas CD, Lennon JJ. 1999. Birds extend their ranges northwards. Nature 399:213 [Google Scholar]
  208. Thomas CD, Singer MC, Boughton D. 1996. Catastrophic extinction of population sources in a butterfly metapopulation. Am. Nat 148:957–75 [Google Scholar]
  209. Travis J, Futuyma DJ. 1993. Global change: lessons from and for evolutionary biology. See Karieva et al. 1993 pp. 234–50
  210. Uvarov BP. 1931. Insects and climate. R. Entomol. Soc. London 79:174–86 [Google Scholar]
  211. van Herk CM, Aptroot A, van Dobben HF. 2002. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–54 [Google Scholar]
  212. Van Nouhuys S, Lei G. 2004. Parasitoid-host metapopulation dynamics: the causes and consequences of phenological asynchrony. J. Anim. Ecol 73:526–35 [Google Scholar]
  213. Visser ME, Both C. 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B 272:2561–69 [Google Scholar]
  214. Walther GR, Hughes L, Vitousek P, Stenseth NC. 2005. Consensus on climate change. Trends Ecol. Evol 20:648–49 [Google Scholar]
  215. Walther GR, Post E, Convery P, Menzel A, Parmesan C. et al. 2002. Ecological responses to recent climate change. Nature 416:389–95 [Google Scholar]
  216. Wardle P, Coleman MC. 1992. Evidence for rising upper limits of four native New Zealand forest trees. N.Z. J. Bot 30:303–14 [Google Scholar]
  217. Warren MS. 1992. The conservation of British butterflies. In The Ecology of Butterflies in Britain ed. RLH Dennis pp. 246–74 Oxford, UK: Oxford Univ. Press [Google Scholar]
  218. Webb T III, Bartlein PJ. 1992. Global changes during the last 3 million years: climatic controls and biotic responses. Annu. Rev. Ecol. Syst 23:141–73 [Google Scholar]
  219. Weiser W. ed. 1973. Effects of Temperature on Ectothermic Organisms New York: Springer-Verlag [Google Scholar]
  220. Weiss SB, Murphy DD, White RR. 1988. Sun, slope and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–96 [Google Scholar]
  221. White MA, Nemani RR, Thornton PE, Running SW. 2002. Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems 5:260–73 [Google Scholar]
  222. White MA, Running SW, Thornton PE. 1999. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol 42:139–45 [Google Scholar]
  223. Wilkinson CR. ed. 2000. Global Coral Reef Monitoring Network: Status of Coral Reefs of the World in 2000 Townsville, Qld: Aust. Inst. Mar. Sci. [Google Scholar]
  224. Williamson K. 1975. Birds and climatic change. Bird Study 22:143–64 [Google Scholar]
  225. Wilson JW, Gutiérrez D, Martinez D, Agudo R, Monserrat VJ. 2005. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett 8:1138–46 [Google Scholar]
  226. Wilson PR, Ainley DG, Nur N, Jacobs SS, Barton KJ. et al. 2001. Adélie penguin population change in the pacific sector of Antarctica: relation to sea-ice extent and the Antarctic Circumpolar Current. Mar. Ecol. Prog. Ser. 213:301–9 [Google Scholar]
  227. Winder M, Schindler DE. 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–6 [Google Scholar]
  228. Woodward FI. 1987. Climate and Plant Distribution Cambridge, UK: Cambridge Univ. Press [Google Scholar]
/content/journals/10.1146/annurev.ecolsys.37.091305.110100
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error