1932

Abstract

Half a million species of herbivorous insects have been described. Most of them are diet specialists, using only a few plant species as hosts. Biologists suspect that their specificity is key to their diversity. But why do herbivorous insects tend to be diet specialists? In this review, we catalog a broad range of explanations. We review the evidence for each and suggest lines of research to obtain the evidence we lack. We then draw attention to a second major question, namely how changes in diet breadth affect the rest of a species’ biology. In particular, we know little about how changes in diet breadth feed back on genetic architecture, the population genetic environment, and other aspects of a species’ ecology. Knowing more about how generalists and specialists differ should go a long way toward sorting out potential explanations of specificity, and yield a deeper understanding of herbivorous insect diversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011720-023322
2020-11-02
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-011720-023322.html?itemId=/content/journals/10.1146/annurev-ecolsys-011720-023322&mimeType=html&fmt=ahah

Literature Cited

  1. Agosta SJ, Klemens JA. 2009. Resource specialization in a phytophagous insect: no evidence for genetically based performance trade-offs across hosts in the field or laboratory. J. Evol. Biol. 22:907–12
    [Google Scholar]
  2. Appel HM, Martin MM. 1992. Significance of metabolic load in the evolution of host specificity of Manduca sexta. . Ecology 73:1216–28
    [Google Scholar]
  3. Barton NH, Whitlock MC. 1997. The evolution of metapopulations. Metapopulation Biology I Hanski, ME Gilpin 183–210 Cambridge, MA: Academic
    [Google Scholar]
  4. Bastias DA, Ueno AC, Assefh CRM, Alvarez AE, Young CA, Gundel PE 2017. Metabolism or behavior: explaining the performance of aphids on alkaloid-producing fungal endophytes in annual ryegrass (Lolium multiflorum). Oecologia 185:2245–56
    [Google Scholar]
  5. Bennett AF, Lenski RE. 1993. Evolutionary adaptation to temperature II. Thermal niches of experimental lines of Escherichia coli. . Evolution 47:11–2
    [Google Scholar]
  6. Bernays EA. 2001. Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu. Rev. Entomol. 46:703–27
    [Google Scholar]
  7. Bernays EA, Funk DJ. 1999. Specialists make faster decisions than generalists: experiments with aphids. Proc. R. Soc. B 266:1415151–56
    [Google Scholar]
  8. Bird G, Kaczvinky C, Wilson A, Hardy NB 2019. When do herbivorous insects compete? A phylogenetic meta-analysis. Ecol. Lett. 22:5875–83
    [Google Scholar]
  9. Blows MW, Hoffmann AA. 2005. A reassessment of genetic limits to evolutionary change. Ecology 86:61371–84
    [Google Scholar]
  10. Braga MP, Guimarães PR, Wheat CW, Nylin S, Janz N 2018. Unifying host-associated diversification processes using butterfly-plant networks. Nat. Commun. 9:5155
    [Google Scholar]
  11. Brown JS, Vincent TL. 1992. Organization of predator prey communities as an evolutionary game. Evolution 46:51269–83
    [Google Scholar]
  12. Brucker RM, Bordenstein SR. 2012. Speciation by symbiosis. Trends Ecol. Evol. 27:8443–51
    [Google Scholar]
  13. Carroll SP. 2007. Brave new world: the epistatic foundations of natives adapting to invaders. Genetica 129:2193–204
    [Google Scholar]
  14. Carroll SP, Boyd C. 1992. Host race radiation in the soapberry bug: natural history with the history. Evolution 46:41052–69
    [Google Scholar]
  15. Castañeda LE, Figueroa CC, Fuentes-Contreras E, Niemeyer HM, Nespolo RF 2009. Energetic costs of detoxification systems in herbivores feeding on chemically defended host plants: a correlational study in the grain aphid. Sitobion avenae. J. Exp. Biol. 212:81185–90
    [Google Scholar]
  16. Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ 2004. Is invasion success explained by the enemy release hypothesis. Ecol. Lett. 7:8721–33
    [Google Scholar]
  17. Colwell RK. 1986. Population structure and sexual selection for host fidelity in the speciation of hummingbird flower mites. Evolutionary Processes and Theory S Karlin, E Nevo 475–95 Cambridge, MA: Academic
    [Google Scholar]
  18. Comeault AA, Soria-Carrasco V, Gompert Z, Farkas TE, Buerkle CA et al. 2014. Genome-wide association mapping of phenotypic traits subject to a range of intensities of natural selection in Timema cristinae. . Am. Nat 183:5711–27
    [Google Scholar]
  19. Cooper VS, Lenski RE. 2000. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:6805736–39
    [Google Scholar]
  20. Crespi B, Nosil P. 2013. Conflictual speciation: species formation via genomic conflict. Trends Ecol. Evol. 28:48–57
    [Google Scholar]
  21. Danner H, Desurmont GA, Cristescu SM, van Dam NM 2018. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol 220:726–38
    [Google Scholar]
  22. Dapporto L, Dennis RLH. 2013. The generalist–specialist continuum: testing predictions for distribution and trends in British butterflies. Biol. Conserv. 157:229–36
    [Google Scholar]
  23. de Almeida LG, De Moraes LAB, Trigo JR, Omoto C, Cônsoli FL 2017. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation. PLOS ONE 12:3e0174754
    [Google Scholar]
  24. de la Paz Celorio-Mancera M, Wheat CW, Huss M, Vezzi F, Neethiraj R et al. 2016. Evolutionary history of host use, rather than plant phylogeny, determines gene expression in a generalist butterfly. BMC Evol. Biol. 16:159
    [Google Scholar]
  25. Egan SP, Ragland GJ, Assour L, Powell TH, Hood GR et al. 2015. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecol. Lett. 18:8817–25
    [Google Scholar]
  26. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608
    [Google Scholar]
  27. Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  28. Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT 2012. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93:5981–91
    [Google Scholar]
  29. Forister ML, Ehmer AG, Futuyma DJ 2007. The genetic architecture of a niche: variation and covariation in host use traits in the Colorado potato beetle. J. Evol. Biol. 20:3985–96
    [Google Scholar]
  30. Forister ML, Jenkins SH. 2017. A neutral model for the evolution of diet breadth. Am. Nat. 190:2E40–54
    [Google Scholar]
  31. Forister ML, Novotny V, Panorska AK, Baje L, Basset Y et al. 2015. The global distribution of diet breadth in insect herbivores. PNAS 112:2442–47
    [Google Scholar]
  32. Fry JD. 1996. The evolution of host specialization: Are trade-offs overrated. Am. Nat. 148:S84–107
    [Google Scholar]
  33. Futuyma DJ, Keese MC, Funk DJ 1995. Genetic constraints on macroevolution: the evolution of host affiliation in the leaf beetle genus Ophraella. . Evolution 49:5797–809
    [Google Scholar]
  34. Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–33
    [Google Scholar]
  35. García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB 2016. ScaleNet: a literature-based model of scale insect biology and systematics. Database 2016.bav118
    [Google Scholar]
  36. Gavrilets S, Vose A. 2007. Case studies and mathematical models of ecological speciation. 2. Palms on an oceanic island. Mol. Ecol. 16:142910–21
    [Google Scholar]
  37. Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA 2015. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525:372–75
    [Google Scholar]
  38. Ghalambor CK, McKay JK, Carroll SP, Reznick DN 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21:394–407
    [Google Scholar]
  39. Gompert Z, Comeault AA, Farkas TE, Feder JL, Parchman TL et al. 2014. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17:3369–79
    [Google Scholar]
  40. Gompert Z, Jahner JP, Scholl CF, Wilson JS, Lucas LK et al. 2015. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol. Ecol. 24:112777–93
    [Google Scholar]
  41. Gompert Z, Messina FJ. 2016. Genomic evidence that resource-based trade-offs limit host-range expansion in a seed beetle. Evolution 70:61249–64
    [Google Scholar]
  42. Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM et al. 2017. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7:11816
    [Google Scholar]
  43. Govind G, Mittapalli O, Griebel T, Allmann S, Böcker S, Baldwin IT 2010. Unbiased transcriptional comparisons of generalist and specialist herbivores feeding on progressively defenseless Nicotiana attenuata plants. PLOS ONE 5:e8735
    [Google Scholar]
  44. Gripenberg S, Mayhew PJ, Parnell M, Roslin T 2010. A meta-analysis of preference-performance relationships in phytophagous insects. Ecol. Lett. 13:383–93
    [Google Scholar]
  45. Griswold CK. 2006. Pleiotropic mutation, modularity and evolvability. Evol. Dev. 8:181–93
    [Google Scholar]
  46. Grosman AH, Molina-Rugama AJ, Mendes-Dias R, Sabelis MW, Menken SBJ et al. 2015. No adaptation of a herbivore to a novel host but loss of adaptation to its native host. Sci. Rep. 5:16211
    [Google Scholar]
  47. Hairston NG, Smith FE, Slobodkin LB 1960. Community structure, population control, and competition. Am. Nat. 94:879421–25
    [Google Scholar]
  48. Haller BC, Messer PW. 2019. SLiM 3: forward genetic simulations beyond the Wright–Fisher model. Mol. Biol. Evol. 36:3632–37
    [Google Scholar]
  49. Hansen TF. 2006. The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst. 37:123–57
    [Google Scholar]
  50. Hardy NB. 2017. Do plant-eating insect lineages pass through phases of host-use generalism during speciation and host switching? Phylogenetic evidence. Evolution 71:82100–9
    [Google Scholar]
  51. Hardy NB, Gullan PJ, Henderson RC, Cook LG 2008. Relationships among felt scale insects (Hemiptera: Coccoidea: Eriococcidae) of southern beech, Nothofagus (Nothofagaceae), with the first descriptions of Australian species of the Nothofagus-feeding genus Madarococcus Hoy. Invertebr. Syst. 22:3365–405
    [Google Scholar]
  52. Hardy NB, Otto SP. 2014. Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proc. R. Soc. B 281:179520132960
    [Google Scholar]
  53. Hardy NB, Peterson DA, Normark BB 2015. Scale insect host ranges are broader in the tropics. Biol. Lett. 11:1220150924
    [Google Scholar]
  54. Hardy NB, Peterson DA, Normark BB 2016. Nonadaptive radiation: pervasive diet specialization by drift in scale insects. Evolution 70:102421–28
    [Google Scholar]
  55. Hawthorne DJ, Via S. 2001. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–7
    [Google Scholar]
  56. Hill MG, Mauchline NA, Jones MK, Sutherland PW 2011. The response of resistant kiwifruit (Actinidia chinensis) to armoured scale insect (Diaspididae) feeding. Arthropod Plant Interact 5:2149–61
    [Google Scholar]
  57. Hoang K, Matzkin LM, Bono JM 2015. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations. Mol. Ecol. 24:205186–99
    [Google Scholar]
  58. Holm S, Javoiš J, Õunap E, Davis RB, Kaasik A et al. 2018. Reproductive behaviour indicates specificity in resource use: phylogenetic examples from temperate and tropical insects. Oikos 127:81113–24
    [Google Scholar]
  59. Holt RD. 1977. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12:2197–229
    [Google Scholar]
  60. Holt RD, Gaines MS. 1992. Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol. Ecol. 6:5433–447
    [Google Scholar]
  61. Jaenike J. 1990. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 21:243–73
    [Google Scholar]
  62. Janson EM, Stireman JO, Singer MS, Abbot P 2008. Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62:5997–1012
    [Google Scholar]
  63. Janz N, Nyblom K, Nylin S 2001. Evolutionary dynamics of host‐plant specialization: a case study of the tribe Nymphalini. Evolution 55:4783–96
    [Google Scholar]
  64. Janzen DH. 1981. The peak in North American ichneumonid species richness lies between 38 degrees and 42 degrees N. Ecology 62:3532–37
    [Google Scholar]
  65. Joshi A, Thompson JN. 1995. Trade-offs and the evolution of host specialization. Evol. Ecol. 9:182–92
    [Google Scholar]
  66. Joshi J, Vrieling K. 2005. The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol. Lett. 8:704–14
    [Google Scholar]
  67. Kaczvinsky C, Hardy NB. 2020. Do major host shifts spark species diversification in butterflies. Evol. Ecol. 10:83636–46
    [Google Scholar]
  68. Kaplan I, Denno RF. 2007. Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol. Lett. 10:10977–94
    [Google Scholar]
  69. Kassen R, Bell G. 1998. Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity 80:6732–41
    [Google Scholar]
  70. Kawecki TJ. 1998. Red Queen meets Santa Rosalia: arms races and the evolution of host specialization in organisms with parasitic lifestyles. Am. Nat. 152:4635–51
    [Google Scholar]
  71. Kawecki TJ, Barton NH, Fry JD 1997. Mutational collapse of fitness in marginal habitats and the evolution of ecological specialisation. J. Evol. Biol. 10:3407–29
    [Google Scholar]
  72. Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP et al. 2009. Relaxed selection in the wild. Trends Ecol. Evol. 24:9487–96
    [Google Scholar]
  73. Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559
    [Google Scholar]
  74. Levins R, MacArthur R. 1969. An hypothesis to explain the incidence of monophagy. Ecology 50:5910–11
    [Google Scholar]
  75. Li X, Baudry J, Berenbaum MR, Schuler MA 2004. Structural and functional divergence of insect CYP6B proteins: from specialist to generalist cytochrome P450. PNAS 101:92939–44
    [Google Scholar]
  76. Liu H, Stiling P. 2006. Testing the enemy release hypothesis: a review and meta-analysis. Biol. Invasions 8:1535–45
    [Google Scholar]
  77. Lynch M, Bobay L-M, Catania F, Gout J-F, Rho M 2011. The repatterning of eukaryotic genomes by random genetic drift. Annu. Rev. Genom. Hum. Genet. 12:347–66
    [Google Scholar]
  78. Lynch M, Conery JS. 2003. The origins of genome complexity. Science 302:56491401–4
    [Google Scholar]
  79. MacArthur RH, Diamond JM, Karr JR 1972. Density compensation in island faunas. Ecology 53:2330–42
    [Google Scholar]
  80. Maynard Smith JM, Hoekstra R 1980. Polymorphism in a varied environment: How robust are the models. Genet. Res. 35:14557
    [Google Scholar]
  81. Neal JJ. 1987. Metabolic costs of mixed‐function oxidase induction in Heliothis zea. Entomol. . Exp. Appl 43:2175–79
    [Google Scholar]
  82. Neher RA. 2013. Genetic draft, selective interference, and population genetics of rapid adaptation. Annu. Rev. Ecol. Evol. Syst. 44:195–215
    [Google Scholar]
  83. Normark BB, Johnson NA. 2011. Niche explosion. Genetica 139:5551–64
    [Google Scholar]
  84. Nosil P. 2002. Transition rates between specialization and generalization in phytophagous insects. Evolution 56:81701–6
    [Google Scholar]
  85. Nosil P, Crespi BJ. 2006. Experimental evidence that predation promotes divergence in adaptive radiation. PNAS 103:9090–95
    [Google Scholar]
  86. Nosil P, Flaxman SM. 2011. Conditions for mutation-order speciation. Proc. R. Soc. B 278:1704399–407
    [Google Scholar]
  87. Nylin S, Janz N. 2009. Butterfly host plant range: an example of plasticity as a promoter of speciation. Evol. Ecol. 23:1137–46
    [Google Scholar]
  88. Oppenheim SJ, Gould F, Hopper KR 2018. The genetic architecture of ecological adaptation: intraspecific variation in host plant use by the lepidopteran crop pest Chloridea virescens. . Heredity 120:3234–50
    [Google Scholar]
  89. Orr HA. 2009. Fitness and its role in evolutionary genetics. Nat. Rev. Genet. 10:531–39
    [Google Scholar]
  90. Paaby AB, Rockman MV. 2013. The many faces of pleiotropy. Trends Genet 29:266–73
    [Google Scholar]
  91. Peterson DA, Hardy NB, Morse GE, Itioka T, Wei J, Normark BB 2020. Non-adaptive host-use specificity in tropical armored scale insects. Authorea https://doi.org/10.22541/au.159112665.50767244
    [Crossref] [Google Scholar]
  92. Peterson DA, Hardy NB, Morse GE, Stocks IC, Okusu A, Normark BB 2015. Phylogenetic analysis reveals positive correlations between adaptations to diverse hosts in a group of pathogen-like herbivores. Evolution 69:101–8
    [Google Scholar]
  93. Peterson DA, Hardy NB, Normark BB 2016. Micro- and macroevolutionary trade-offs in plant-feeding insects. Am. Nat. 188:6640–50
    [Google Scholar]
  94. Poisot T, Bever JD, Nemri A, Thrall PH, Hochberg ME 2011. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14:9841–51
    [Google Scholar]
  95. Ragland GJ, Almskaar K, Vertacnik KL, Gough HM, Feder JL et al. 2015. Differences in performance and transcriptome-wide gene expression associated with Rhagoletis (Diptera: Tephritidae) larvae feeding in alternate host fruit environments. Mol. Ecol. 24:112759–76
    [Google Scholar]
  96. Rainey PB, Buckling A, Kassen R, Travisano M 2000. The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol. Evol. 15:6243–47
    [Google Scholar]
  97. Ravigné V, Dieckmann U, Olivieri I 2009. Live where you thrive: Joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am. Nat. 174:4E14169
    [Google Scholar]
  98. Reboud X, Bell G. 1997. Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity 78:5507–14
    [Google Scholar]
  99. Remold S. 2012. Understanding specialism when the jack of all trades can be the master of all. Proc. R. Soc. B 279:17494861–69
    [Google Scholar]
  100. Rhainds M. 2010. Female mating failures in insects. Entomol. Exp. Appl. 136:211–26
    [Google Scholar]
  101. Richmond CE, Breitburg DL, Rose KA 2005. The role of environmental generalist species in ecosystem function. Ecol. Model. 188:2–4279–95
    [Google Scholar]
  102. Ross L, Hardy NB, Okusu A, Normark BB 2013. Large population size predicts the distribution of asexuality in scale insects. Evolution 67:1196–206
    [Google Scholar]
  103. Rothwell EM, Holeski LM. 2020. Phytochemical defences and performance of specialist and generalist herbivores: a meta-analysis. Ecol. Entomol. 45:3396–405
    [Google Scholar]
  104. Rowen E, Kaplan I. 2016. Eco‐evolutionary factors drive induced plant volatiles: a meta‐analysis. New Phytol 210:1284–94
    [Google Scholar]
  105. Sandoval CP. 1994. The effects of relative geographical scales of gene flow and selection on morph frequencies in the walking‐stick Timema cristinae. . Evolution 48:61866–79
    [Google Scholar]
  106. Sanmartín I, Wanntorp L, Winkworth RC 2007. West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event‐based tree fitting. J. Biogeol. 34:3398–416
    [Google Scholar]
  107. Sgrò CM, Hoffmann AA. 2004. Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–48
    [Google Scholar]
  108. Simpson EH. 1949. Measurement of diversity. Nature 163:4148688
    [Google Scholar]
  109. Singer MS, Stireman JO. 2005. The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol. Lett. 8:1247–55
    [Google Scholar]
  110. Smilanich AM, Fincher RM, Dyer LA 2016. Does plant apparency matter? Thirty years of data provide limited support but reveal clear patterns of the effects of plant chemistry on herbivores. New Phytol 210:1044–57
    [Google Scholar]
  111. Stern DL. 2013. The genetic causes of convergent evolution. Nat. Rev. Genet. 14:751–64
    [Google Scholar]
  112. Stireman JO. 2005. The evolution of generalization? Parasitoid flies and the perils of inferring host range evolution from phylogenies. J. Evol. Biol. 18:2325–36
    [Google Scholar]
  113. Tingley R, Vallinoto M, Sequeira F, Kearney MR 2014. Realized niche shift during a global biological invasion. PNAS 111:2810233–38
    [Google Scholar]
  114. Van Tienderen PH. 1991. Evolution of generalists and specialists in spatially heterogeneous environments. Evolution 45:61317–31
    [Google Scholar]
  115. Vertacnik KL, Linnen CR. 2017. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Ann. N. Y. Acad. Sci. 1389:186–212
    [Google Scholar]
  116. Vidal MC, Murphy SM. 2018. Bottom-up versus top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21:138–50
    [Google Scholar]
  117. Whitlock MC. 1996. The Red Queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148:S65–77
    [Google Scholar]
  118. Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L et al. 2010. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23:1581–96
    [Google Scholar]
  119. Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P 2012. Parallel molecular evolution in an herbivore community. Science 337:61021634–37
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011720-023322
Loading
/content/journals/10.1146/annurev-ecolsys-011720-023322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error