1932

Abstract

Integrating knowledge and principles of animal behavior into wildlife conservation and management has led to some concrete successes but has failed to improve conservation outcomes in other cases. Many conservation interventions involve attempts to either attract or repel animals, which we refer to as approach/avoidance issues. These attempts can be reframed as issues of manipulating the decisions animals make, which are driven by their perceptual abilities and attentional biases, as well as the value animals attribute to current stimuli and past learned experiences. These processes all fall under the umbrella of animal cognition. Here, we highlight rules that emerge when considering approach/avoidance conservation issues through the lens of cognitive-based management. For each rule, we review relevant conservation successes and failures to better predict the conditions in which behavior can be manipulated, and we suggest how to avoid future failures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011720-103212
2020-11-02
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-011720-103212.html?itemId=/content/journals/10.1146/annurev-ecolsys-011720-103212&mimeType=html&fmt=ahah

Literature Cited

  1. Addicott MA, Pearson JM, Sweitzer MM, Barack DL, Platt ML 2017. A primer on foraging and the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology 42:101931–39
    [Google Scholar]
  2. Ahlering MA, Arlt D, Betts MG, Fletcher RJ, Nocera JJ, Ward MP 2010. Research needs and recommendations for the use of conspecific-attraction methods in the conservation of migratory songbirds. Condor 112:2252–64
    [Google Scholar]
  3. Appleby R, Smith B, Bernede L, Jones D 2017. Utilising aversive conditioning to manage the behaviour of K'gari (Fraser Island) dingoes (Canis dingo). Pac. Conserv. Biol. 23:4335–58
    [Google Scholar]
  4. Barber JR, Crooks KR, Fristrup KM 2010. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 25:3180–89
    [Google Scholar]
  5. Barrett LP, Stanton LA, Benson-Amram S 2019. The cognition of ‘nuisance’ species. Anim. Behav. 147:167–77
    [Google Scholar]
  6. Bartumeus F, Campos D, Ryu WS, Lloret-Cabot R, Méndez V, Catalan J 2016. Foraging success under uncertainty: search tradeoffs and optimal space use. Ecol. Lett. 19:111299–313
    [Google Scholar]
  7. Bateson M. 2016. Optimistic and pessimistic biases: a primer for behavioural ecologists. Curr. Opin. Behav. Sci. 12:115–21
    [Google Scholar]
  8. Bell BD. 2016. Behavior based management: conservation translocations. Conservation Behavior: Applying Behavioral Ecology to Wildlife Conservation and Management O Berger-Tal, D Saltz 212–46 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  9. Berger-Tal O, Avgar T. 2012. The glass is half-full: Overestimating the quality of a novel environment is advantageous. PLOS ONE 7:4e34578
    [Google Scholar]
  10. Berger-Tal O, Blumstein DT, Swaisgood RR 2020. Conservation translocations: a review of common difficulties and promising directions. Anim. Conserv. 23:121–31
    [Google Scholar]
  11. Berger-Tal O, Greggor AL, Macura B, Adams CA, Blumenthal A et al. 2019. Systematic reviews and maps as tools for applying behavioral ecology to management and policy. Behav. Ecol. 30:11–8
    [Google Scholar]
  12. Berger-Tal O, Mukherjee S, Kotler BP, Brown JS 2010. Complex state-dependent games between owls and gerbils. Ecol. Lett. 13:3302–10
    [Google Scholar]
  13. Berger-Tal O, Nathan J, Meron E, Saltz D 2014. The exploration-exploitation dilemma: a multidisciplinary framework. PLOS ONE 9:4e95693
    [Google Scholar]
  14. Berger-Tal O, Polak T, Oron A, Lubin Y, Kotler BP, Saltz D 2011. Integrating animal behavior and conservation biology: a conceptual framework. Behav. Ecol. 22:2236–39
    [Google Scholar]
  15. Berger-Tal O, Saltz D. 2014. Using the movement patterns of reintroduced animals to improve reintroduction success. Curr. Zool. 60:4515–26
    [Google Scholar]
  16. Berger-Tal O, Saltz D. 2016. Conservation Behavior: Applying Behavioral Ecology to Wildlife Conservation and Management Cambridge, UK: Cambridge Univ. Press
  17. Berger-Tal O, Saltz D. 2019. Invisible barriers: anthropogenic impacts on inter- and intra-specific interactions as drivers of landscape-independent fragmentation. Philos. Trans. R. Soc. B 374:20180049
    [Google Scholar]
  18. Biedenweg TA, Parsons MH, Fleming PA, Blumstein DT 2011. Sounds scary? Lack of habituation following the presentation of novel sounds. PLOS ONE 6:1e14549
    [Google Scholar]
  19. Blackwell BF, DeVault TL, Fernández-Juricic E, Gese EM, Gilbert-Norton L, Breck SW 2016. No single solution: application of behavioural principles in mitigating human-wildlife conflict. Anim. Behav. 120:245–54
    [Google Scholar]
  20. Blackwell BF, DeVault TL, Seamans TW, Lima SL, Baumhardt P, Fernández-Juricic E 2012. Exploiting avian vision with aircraft lighting to reduce bird strikes. J. Appl. Ecol. 49:4758–66
    [Google Scholar]
  21. Blackwell BF, Seamans TW, Schmidt PM, DeVault TL, Belant JL et al. 2013. A framework for managing airport grasslands and birds amidst conflicting priorities. Ibis 155:189–93
    [Google Scholar]
  22. Blumstein DT. 2016. Habituation and sensitization: new thoughts about old ideas. Anim. Behav. 120:255–62
    [Google Scholar]
  23. Blumstein DT, Berger-Tal O. 2015. Understanding sensory mechanisms to develop effective conservation and management tools. Curr. Opin. Behav. Sci. 6:13–18
    [Google Scholar]
  24. Blumstein DT, Daniel JC, Griffin AS, Evans CS 2000. Insular tammar wallabies (Macropus eugenii) respond to visual but not acoustic cues from predators. Behav. Ecol. 11:5528–35
    [Google Scholar]
  25. Blumstein DT, Fernández-Juricic E. 2010. A Primer on Conservation Behaviour Sunderland, MA: Sinauer
  26. Bolhuis JJ. 1991. Mechanisms of avian imprinting: a review. Biol. Rev. 66:303–45
    [Google Scholar]
  27. Bomford M, O'Brian PH. 1990. Sonic deterrents in animal damage control: a review of device tests and effectiveness. Wildl. Soc. Bull. 18:411–22
    [Google Scholar]
  28. Brown JS, Kotler BP. 2004. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 7:10999–1014
    [Google Scholar]
  29. Bshary R, Wickler W, Fricke H 2002. Fish cognition: a primate's eye view. Anim. Cogn. 5:11–13
    [Google Scholar]
  30. Can ÖE, D'Cruze N, Garshelis DL, Beecham J, Macdonald DW 2014. Resolving human-bear conflict: a global survey of countries, experts, and key factors. Conserv. Lett. 7:6501–13
    [Google Scholar]
  31. Candolin U, Wong BBM 2012. Behavioural Responses to a Changing World: Mechanisms and Consequences Oxford, UK: Oxford Univ. Press
  32. Carthey AJR, Banks PB. 2016. Naiveté is not forever: responses of a vulnerable native rodent to its long term alien predators. Oikos 125:7918–26
    [Google Scholar]
  33. Chan AAY-H, Blumstein DT. 2011. Attention, noise, and implications for wildlife conservation and management. Appl. Anim. Behav. Sci. 131:1–7
    [Google Scholar]
  34. Chan AAY-H, Giraldo-Perez P, Smith S, Blumstein DT 2010. Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol. Lett. 6:4458–61
    [Google Scholar]
  35. Chittka L, Rossiter SJ, Skorupski P, Fernando C 2012. What is comparable in comparative cognition. ? Philos. Trans. R. Soc. B 367:16032677–85
    [Google Scholar]
  36. Chivers DP, Smith RJF. 1994. The role of experience and chemical alarm signalling in predator recognition by fathead minnows. Pimephales promelas. J. Fish Biol. 44:273–85
    [Google Scholar]
  37. Davis JM, Stamps JA. 2004. The effect of prenatal experience on habitat preferences. Trends Ecol. Evol. 19:8411–16
    [Google Scholar]
  38. de Azevedo CS, Young RJ 2006. Do captive-born greater rheas Rheaamericana Linnaeus (Rheiforrmes, Rheidae) remember antipredator training. ? Rev. Bras. Zool. 23:1194–201
    [Google Scholar]
  39. Donnelly CA, Woodroffe R, Cox DR, Bourne FJ, Cheeseman CL et al. 2006. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439:7078843–46
    [Google Scholar]
  40. Drewitt AL, Langston RHW. 2008. Collision effects of wind-power generators and other obstacles on birds. Ann. N.Y. Acad. Sci. 1134:233–66
    [Google Scholar]
  41. Ehrlich PR, Blumstein DT. 2018. The great mismatch. Bioscience 68:11844–46
    [Google Scholar]
  42. Ellins SR, Catalano SM, Schechinger SA 1977. Conditioned taste aversion: a field application to coyote predation on sheep. Behav. Biol. 20:191–95
    [Google Scholar]
  43. Emery NJ, Clayton NS. 2004. The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:57031903–7
    [Google Scholar]
  44. Fawcett TW, Fallenstein B, Higginson AD, Houston AI, Mallpress DEW et al. 2014. The evolution of decision rules in complex environments. Trends Cogn. Sci. 18:3153–61
    [Google Scholar]
  45. Fay RR. 1988. Hearing in Vertebrates: A Psychophysics Databook Winnetka, IL: Hill-Fay Assoc.
  46. Fernandez-Juricic E. 2016. The role of animal sensory perception in behavior-based management. Conservation Behavior: Applying Behavioral Ecology to Wildlife Conservation and Management O Berger-Tal, D Saltz 149–75 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  47. Ferrari MCO, Horn ME, Chivers DP 2019. Cognitive resonance: when information carry-over constrains cognitive plasticity. Funct. Ecol. 33:4703–11
    [Google Scholar]
  48. Ferrari MCO, Lysak KR, Chivers DP 2010. Turbidity as an ecological constraint on learned predator recognition and generalization in a prey fish. Anim. Behav. 79:2515–19
    [Google Scholar]
  49. Ferrari MCO, Messier F, Chivers DP 2008. Can prey exhibit threat-sensitive generalization of predator recognition? Extending the Predator Recognition Continuum Hypothesis. Proc. R. Soc. B 275:16441811–16
    [Google Scholar]
  50. Finlay BL, Darlington RB, Nicastro N 2001. Developmental structure in brain evolution. Behav. Brain Sci. 24:263308
    [Google Scholar]
  51. Forthman Quick DL, Gustavson CR, Rusiniak KW 1985. Coyote control and taste aversion. Appetite 6:3253–64
    [Google Scholar]
  52. Found R 2019. Influences of personality on ungulate migration and management. Front. Ecol. Evol. 7:438
    [Google Scholar]
  53. Garcia J, Ervin FR, Koelling RA 1966. Learning with prolonged delay of reinforcement. Psychon. Sci. 5:3121–22
    [Google Scholar]
  54. Götz T, Janik VM. 2010. Aversiveness of sounds in phocid seals: psycho-physiological factors, learning processes and motivation. J. Exp. Biol. 213:91536–48
    [Google Scholar]
  55. Götz T, Janik VM. 2011. Repeated elicitation of the acoustic startle reflex leads to sensitisation in subsequent avoidance behaviour and induces fear conditioning. BMC Neurosci 12:30
    [Google Scholar]
  56. Götz T, Janik VM. 2013. Acoustic deterrent devices to prevent pinniped depredation: efficiency, conservation concerns and possible solutions. Mar. Ecol. Prog. Ser. 492:285–302
    [Google Scholar]
  57. Greggor AL, Berger-Tal O, Blumstein DT, Angeloni L, Bessa-Gomes C et al. 2016. Research priorities from animal behaviour for maximising conservation progress. Trends Ecol. Evol. 31:12953–64
    [Google Scholar]
  58. Greggor AL, Clayton NS, Phalan B, Thornton A 2014. Comparative cognition for conservationists. Trends Ecol. Evol. 29:9489–95
    [Google Scholar]
  59. Greggor AL, Thornton A, Clayton NS 2017. Harnessing learning biases is essential for applying social learning in conservation. Behav. Ecol. Sociobiol. 71:16
    [Google Scholar]
  60. Greggor AL, Trimmer PC, Barrett BJ, Sih A 2019. Challenges of learning to escape evolutionary traps. Front. Ecol. Evol. 7:408
    [Google Scholar]
  61. Griffin AS, Blumstein DT, Evans CS 2000. Training captive-bred or translocated animals to avoid predators. Conserv. Biol. 14:51317–26
    [Google Scholar]
  62. Griffin AS, Evans CS, Blumstein DT 2001. Learning specificity in acquired predator recognition. Anim. Behav. 62:3577–89
    [Google Scholar]
  63. Griffin AS, Evans CS, Blumstein DT 2002. Selective learning in a marsupial. Ethology 108:121103–14
    [Google Scholar]
  64. Gwynne DT, Rentz DCF. 1983. Beetles on the bottle: male buprestids mistake stubbies for females (Coleoptera). J. Aust. Entomol. Soc. 22:179–80
    [Google Scholar]
  65. Hale R, Blumstein D, MacNally R, Swearer S 2020. Harnessing knowledge of animal behavior to improve habitat restoration outcomes. Ecosphere 11:4e03104
    [Google Scholar]
  66. Hale R, Swearer SE. 2017. When good animals love bad restored habitats: how maladaptive habitat selection can constrain restoration. J. Appl. Ecol. 54:51478–86
    [Google Scholar]
  67. Hasan MR, Crane AL, Ferrari MCO, Chivers DP 2018. A cross-modal effect of noise: the disappearance of the alarm reaction of a freshwater fish. Anim. Cogn. 21:3419–24
    [Google Scholar]
  68. Haselton M, Nettle D, Murray D 2016. The evolution of cognitive bias. Handbook of Evolutionary Psychology D Buss 968–87 Hoboken, NJ: Wiley, 2nd ed..
    [Google Scholar]
  69. Heyes C. 2012. What's social about social learning. ? J. Comp. Psychol. 126:2193–202
    [Google Scholar]
  70. Homstol L. 2011. Applications of learning theory to human-bear conflict: the efficacy of aversive conditioning and conditioned taste aversion MS Thesis, Univ. Alberta Edmonton:
  71. Jefferson A. 2017. Born to be biased? Unrealistic optimism and error management theory. Philos. Psychol. 30:81159–75
    [Google Scholar]
  72. Johnson DDP, Blumstein DT, Fowler JH, Haselton MG 2013. The evolution of error: error management, cognitive constraints, and adaptive decision-making biases. Trends Ecol. Evol. 28:8474–81
    [Google Scholar]
  73. Kembro JM, Lihoreau M, Garriga J, Raposo EP, Bartumeus F 2019. Bumblebees learn foraging routes through exploitation-exploration cycles. J. R. Soc. Interface 16:15620190103
    [Google Scholar]
  74. King LE, Douglas-Hamilton I, Vollrath F 2007. African elephants run from the sound of disturbed bees. Curr. Biol. 17:19R832–33
    [Google Scholar]
  75. King LE, Lawrence A, Douglas-Hamilton I, Vollrath F 2009. Beehive fence deters crop-raiding elephants. Afr. J. Ecol. 47:2131–37
    [Google Scholar]
  76. Leavell BC, Bernal XE. 2019. The cognitive ecology of stimulus ambiguity: a predator–prey perspective. Trends Ecol. Evol. 34:111048–60
    [Google Scholar]
  77. Lindstrom L, Alatalo RV, Lyytinen A, Mappes J 2004. The effect of alternative prey on the dyamics of imperfect Batesian and Mullerian mimicries. Evolution 58:61294–302
    [Google Scholar]
  78. MacKay JWB, Russell JC, Murphy EC 2007. Eradicating house mice from islands: successes, failures, and the way forward. Managing Vertebrate Invasive Species: Proceedings of an International Symposium GW Witmer, WC Pitt, KA Fagerstone 294–304 Fort Collins, CO: USDA APHIS Wildl. Serv.
    [Google Scholar]
  79. Marino L. 2002. Convergence of complex cognitive abilities in cetaceans and primates. Brain. Behav. Evol. 59:1–221–32
    [Google Scholar]
  80. Marques AT, Batalha H, Rodrigues S, Costa H, Pereira MJR et al. 2014. Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179:40–52
    [Google Scholar]
  81. Marsh RE, Erickson WA, Salmon TP 1992. Scarecrows and predator models for frightening birds from specific areas. Proceedings of the Fifteenth Vertebrate Pest Conference JE Borrecco, RE Marsh 112–14 Davis, CA: Univ. Calif. Davis
    [Google Scholar]
  82. Marshall JAR, Trimmer PC, Houston AI, McNamara JM 2013. On evolutionary explanations of cognitive biases. Trends Ecol. Evol. 28:8469–73
    [Google Scholar]
  83. Martin GR. 2011. Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–54
    [Google Scholar]
  84. Mazur R, Seher V. 2008. Socially learned foraging behaviour in wild black bears. Ursus americanus. Anim. Behav. 75:41503–8
    [Google Scholar]
  85. Mehlhorn K, Newell BR, Todd PM, Lee M, Morgan K et al. 2017. Unpacking the exploration-exploitation tradeoff: a synthesis of human and animal literatures. Neuropsychopharmacology 42:1931–39
    [Google Scholar]
  86. Merrick MJ, Koprowski JL. 2017. Should we consider individual behavior differences in applied wildlife conservation studies. ? Biol. Conserv. 209:34–44
    [Google Scholar]
  87. Mitchell AM, Wellicome TI, Brodie D, Cheng KM 2011. Captive-reared burrowing owls show higher site-affinity, survival, and reproductive performance when reintroduced using a soft-release. Biol. Conserv. 144:51382–91
    [Google Scholar]
  88. Moseby KE, Blumstein DT, Letnic M 2016. Harnessing natural selection to tackle the problem of prey naïveté. Evol. Appl. 9:334–43
    [Google Scholar]
  89. Nocera JJ, Forbes GJ, Giraldeau LA 2006. Inadvertent social information in breeding site selection of natal dispersing birds. Proc. R. Soc. B 273:1584349–55
    [Google Scholar]
  90. O'Donnell S, Webb JK, Shine R 2010. Conditioned taste aversion enhances the survival of an endangered predator imperilled by a toxic invader. J. Appl. Ecol. 47:558–65
    [Google Scholar]
  91. O'Farrell S, Sanchirico JN, Spiegel O, Depalle M, Haynie AC et al. 2019. Disturbance modifies payoffs in the explore-exploit trade-off. Nat. Commun. 10:3363
    [Google Scholar]
  92. Owen MA, Swaisgood RR, Blumstein DT 2017. Contextual influences on animal decision-making: significance for behavior-based wildlife conservation and management. Integr. Zool. 12:132–48
    [Google Scholar]
  93. Parris R, Stringer I. 2010. Establishing a second population of flax snail in New Zealand. Global Reintroduction Perspectives: Additional Case-Studies from Around the Globe PS Soorae 12–16 Abu Dhabi, UAE: IUCN/SSN Re-introd. Spec. Group
    [Google Scholar]
  94. Parsons MH, Apfelbach R, Banks PB, Cameron EZ, Dickman CR et al. 2018. Biologically meaningful scents: a framework for understanding predator-prey research across disciplines. Biol. Rev. 93:198–114
    [Google Scholar]
  95. Parsons MH, Blumstein DT. 2010. Familiarity breeds contempt: kangaroos persistently avoid areas with experimentally deployed dingo scents. PLOS ONE 5:5e10403
    [Google Scholar]
  96. Patten MA, Kelly JF. 2010. Habitat selection and the perceptual trap. Ecol. Appl. 20:82148–56
    [Google Scholar]
  97. Plotnik JM, Shaw RC, Brubaker DL, Tiller LN, Clayton NS 2014. Thinking with their trunks: Elephants use smell but not sound to locate food and exclude nonrewarding alternatives. Anim. Behav. 88:91–98
    [Google Scholar]
  98. Price CJ, Banks PB. 2012. Exploiting olfactory learning in alien rats to protect birds’ eggs. PNAS 109:4719304–9
    [Google Scholar]
  99. Proppe DS, McMillan N, Congdon JV, Sturdy CB 2016. Mitigating road impacts on animals through learning principles. Anim. Cogn. 20:119–31
    [Google Scholar]
  100. Putman BJ, Blumstein DT. 2019. What is the effectiveness of using conspecific or heterospecific acoustic playbacks for the attraction of animals for wildlife management? A systematic review protocol. Environ. Evid. 8:6
    [Google Scholar]
  101. Radford AN, Kerridge E, Simpson SD 2014. Acoustic communication in a noisy world: Can fish compete with anthropogenic noise. ? Behav. Ecol. 25:51022–30
    [Google Scholar]
  102. Rendell L, Fogarty L, Hoppitt WJE, Morgan TJH, Webster MM, Laland KN 2011. Cognitive culture: theoretical and empirical insights into social learning strategies. Trends Cogn. Sci. 15:268–76
    [Google Scholar]
  103. Robertson BA, Blumstein DT. 2019. How to disarm an evolutionary trap. Conserv. Sci. Pract. 1:11e116
    [Google Scholar]
  104. Robertson BA, Campbell D-R, Durovich C, Hetterich I, Les J, Horváth G 2017. The interface of ecological novelty and behavioral context in the formation of ecological traps. Behav. Ecol. 28:41166–75
    [Google Scholar]
  105. Robertson BA, Rehage JS, Sih A 2013. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28:9552–60
    [Google Scholar]
  106. Schakner ZA, Blumstein DT. 2013. Behavioral biology of marine mammal deterrents: a review and prospectus. Biol. Conserv. 167:380–89
    [Google Scholar]
  107. Schakner ZA, Buhnerkempe MG, Tennis MJ, Stansell RJ, Van Der Leeuw BK et al. 2016. Epidemiological models to control the spread of information in marine mammals. Proc. R. Soc. B 283:184420162037
    [Google Scholar]
  108. Schakner ZA, Götz T, Janik VM, Blumstein DT 2017. Can fear conditioning repel California sea lions from fishing activities. ? Anim. Conserv. 20:5425–32
    [Google Scholar]
  109. Schakner ZA, Lunsford C, Straley J, Eguchi T, Mesnick SL 2014. Using models of social transmission to examine the spread of longline depredation behavior among sperm whales in the Gulf of Alaska. PLOS ONE 9:10e109079
    [Google Scholar]
  110. Schofield LN, Loffland HL, Siegel RB, Stermer CJ, Mathewson HA 2018. Using conspecific broadcast for willow flycatcher restoration. Avian Conserv. Ecol. 13:123
    [Google Scholar]
  111. Shamoon H, Maor R, Saltz D, Dayan T 2018. Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biol. Conserv. 226:32–41
    [Google Scholar]
  112. Shettleworth S. 2010. Cognition, Evolution, and Behaviour New York: Oxford Univ. Press
  113. Shier DM. 2016. Manipulating animal behavior to ensure reintroduction success. Conservation Behavior: Applying Behavioral Ecology to Wildlife Conservation and Management O Berger-Tal, D Saltz 275–304 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  114. Sih A, Trimmer PC, Ehlman SM 2016. A conceptual framework for understanding behavioral responses to HIREC. Curr. Opin. Behav. Sci. 12:109–14
    [Google Scholar]
  115. Silk MJ, Croft DP, Delahay RJ, Hodgson DJ, Boots M et al. 2017. Using social network measures in wildlife disease ecology, epidemiology, and management. Bioscience 67:3245–57
    [Google Scholar]
  116. Smith ME, Linnell JDC, Odden J, Swenson JE 2000. Review of methods to reduce livestock depredation II. Aversive conditioning, deterrents and repellents. Acta Agric. Scand. A Anim. Sci. 50:4304–15
    [Google Scholar]
  117. Snijders L, Blumstein DT, Stanley CR, Franks DW 2017. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32:567–77
    [Google Scholar]
  118. Snijders L, Greggor AL, Hilderink F, Doran C 2019. Effectiveness of animal conditioning interventions in reducing human-wildlife conflict: a systematic map protocol. Environ. Evid. 8:10
    [Google Scholar]
  119. Spainer E. 1980. The use of distress calls to repel night herons (Nycticorax nycticorax) from fish ponds. J. Appl. Ecol. 17:287–94
    [Google Scholar]
  120. St. Clair CC, Backs J, Friesen A, Gangadharan A, Gilhooly P et al. 2019. Animal learning may contribute to both problems and solutions for wildlife–train collisions. Philos. Trans. R. Soc. B 374:20180050
    [Google Scholar]
  121. St. Clair CC, Bélisle M, Desrochers A, Hannon S. 1998. Winter responses of forest birds to habitat corridors and gaps. Conserv. Ecol. 2:213
    [Google Scholar]
  122. Stamps JA, Swaisgood RR. 2007. Someplace like home: experience, habitat selection and conservation biology. Appl. Anim. Behav. Sci. 102:392–409
    [Google Scholar]
  123. Swaddle JP, Moseley DL, Hinders MK, Smith EP 2016. A sonic net excludes birds from an airfield: implications for reducing bird strike and crop losses. Ecol. Appl. 26:2339–45
    [Google Scholar]
  124. Swaisgood RR, Ruiz-Miranda C. 2018. Moving animals in the right direction: making conservation translocation an effective tool. International Wildlife Management: Conservation Challenges in a Changing World J Koprowski, P Krausman 141–56 Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  125. Swan GJF, Redpath SM, Bearhop S, McDonald RA 2017. Ecology of problem individuals and the efficacy of selective wildlife management. Trends Ecol. Evol. 32:7518–30
    [Google Scholar]
  126. Thornton A, Isden J, Madden JR 2014. Toward wild psychometrics: linking individual cognitive differences to fitness. Behav. Ecol. 25:61299–301
    [Google Scholar]
  127. Trimmer PC. 2016. Optimistic and realistic perspectives on cognitive biases. Curr. Opin. Behav. Sci. 12:199237–43
    [Google Scholar]
  128. Truscott Z, Booth DT, Limpus CJ 2017. The effect of on-shore light pollution on sea-turtle hatchlings commencing their off-shore swim. Wildl. Res. 44:127–34
    [Google Scholar]
  129. Tversky A, Kahneman D. 1974. Judgement under uncertainty: heuristics and biases. Science 185:1121–31
    [Google Scholar]
  130. Van Dyck H. 2012. Changing organisms in rapidly changing anthropogenic landscapes: the significance of the ‘Umwelt’-concept and functional habitat for animal conservation. Evol. Appl. 5:2144–53
    [Google Scholar]
  131. von Uexküll J. 1909. Umwelt und Innenwelt der Tiere Berlin: Springer
  132. Ward MP, Benson TJ, Semel B, Herkert JR 2010. The use of social cues in habitat selection by wetland birds. Condor 112:2245–51
    [Google Scholar]
  133. Ware HE, McClure CJW, Carlisle JD, Barber JR, Daily GC 2015. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. PNAS 112:3912105–9
    [Google Scholar]
  134. Wilcox C, Van Sebille E, Hardesty BD 2015. Threat of plastic pollution to seabirds is global, pervasive, and increasing. PNAS 112:3811899–904
    [Google Scholar]
  135. Wong BBM, Candolin U. 2015. Behavioral responses to changing environments. Behav. Ecol. 26:3665–73
    [Google Scholar]
  136. Woodroffe R, Donnelly CA, Cox DR, Bourne FJ, Cheeseman CL et al. 2006. Effects of culling on badger Meles meles spatial organization: implications for the control of bovine tuberculosis. J. Appl. Ecol. 43:11–10
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011720-103212
Loading
/content/journals/10.1146/annurev-ecolsys-011720-103212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error