1932

Abstract

The ecology of fear concerns the population-, community-, and ecosystem-level consequences of the behavioral interactions between predators and prey, i.e., the aggregate impacts of individual responses to life-threatening events. We review new experiments demonstrating that fear itself is powerful enough to affect the population growth rate in free-living wild birds and mammals, and fear of large carnivores—or the human super predator—can cause trophic cascades affecting plant and invertebrate abundance. Life-threatening events like escaping a predator can have enduring, even lifelong, effects on the brain, and new interdisciplinary research on the neurobiology of fear in wild animals is both providing insights into post-traumatic stress (PTSD) and reinforcing the likely commonality of population- and community-level effects of fear in nature. Failing to consider fear thus risks dramatically underestimating the total impact predators can have on prey populations and the critical role predator-prey interactions can play in shaping ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011720-124613
2020-11-02
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-011720-124613.html?itemId=/content/journals/10.1146/annurev-ecolsys-011720-124613&mimeType=html&fmt=ahah

Literature Cited

  1. Algamal M, Ojo JO, Lungmus CP, Muza P, Cammarata C et al. 2018. Chronic hippocampal abnormalities and blunted HPA axis in an animal model of repeated unpredictable stress. Front. Behav. Neurosci. 12:150
    [Google Scholar]
  2. Atkins JL, Long RA, Pansu J, Daskin JH, Potter AB et al. 2019. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364:173–77
    [Google Scholar]
  3. Blumstein DT. 2016. Habituation and sensitization: new thoughts about old ideas. Anim. Behav. 120:255–62
    [Google Scholar]
  4. Bourbeau-Lemieux A, Festa-Bianchet M, Gaillard J-M, Pelletier F 2011. Predator-driven component Allee effects in a wild ungulate. Ecol. Lett. 14:358–63
    [Google Scholar]
  5. Boutin S. 1990. Food supplementation experiments with terrestrial vertebrates: pattern, problems, and the future. Can. J. Zool. 68:203–20
    [Google Scholar]
  6. Bradshaw GA, Schore AN, Brown JL, Poole JH, Moss CJ 2005. Elephant breakdown. Nature 433:807
    [Google Scholar]
  7. Brown JS. 2019. Ecology of fear. In Encyclopedia of Animal Behavior, Vol. 1: JC Choe 196–202 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  8. Brown JS, Laundré JW, Gurung M 1999. The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80:385–99
    [Google Scholar]
  9. Butler O, Herr K, Willmund G, Gallinat J, Zimmermann P, Kühn S 2018. Neural correlates of response bias: Larger hippocampal volume correlates with symptom aggravation in combat-related posttraumatic stress disorder. Psychiatry Res. Neuroimaging 279:1–7
    [Google Scholar]
  10. Cherry MJ, Morgan KE, Rutledge BT, Conner LM, Warren RJ 2016. Can coyote predation risk induce reproduction suppression in white-tailed deer. ? Ecosphere 7:e01481
    [Google Scholar]
  11. Christianson D, Creel S. 2014. Ecosystem scale declines in elk recruitment and population growth with wolf colonization: a before-after-control-impact approach. PLOS ONE 9:e102330
    [Google Scholar]
  12. Clinchy M, Schulkin J, Zanette LY, Sheriff MJ, McGowan PO, Boonstra R 2011. The neurological ecology of fear: insights neuroscientists and ecologists have to offer one another. Front. Behav. Neurosci. 5:21
    [Google Scholar]
  13. Clinchy M, Sheriff MJ, Zanette LY 2013. Predator-induced stress and the ecology of fear. Funct. Ecol. 27:56–65
    [Google Scholar]
  14. Clinchy M, Zanette L, Boonstra R, Wingfield JC, Smith JNM 2004. Balancing food and predator pressure induces chronic stress in songbirds. Proc. R. Soc. B 271:2473–79
    [Google Scholar]
  15. Clinchy M, Zanette LY, Roberts D, Suraci JP, Buesching CD et al. 2016. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27:1826–32
    [Google Scholar]
  16. Creel S. 2018. The control of risk hypothesis: reactive versus proactive antipredator responses and stress-mediated versus food-mediated costs of response. Ecol. Lett. 21:947–56
    [Google Scholar]
  17. Creel S, Becker M, Dröge E, M'soka J, Matandiko W et al. 2019. What explains variation in the strength of behavioral responses to predation risk? A standardized test with large carnivore and ungulate guilds in three ecosystems. Biol. Conserv. 232:164–72
    [Google Scholar]
  18. Creel S, Christianson D. 2008. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23:194–201
    [Google Scholar]
  19. Creel S, Christianson D, Liley S, Winnie JA Jr 2007. Predation risk affects reproductive physiology and demography of elk. Science 315:960
    [Google Scholar]
  20. Crook RJ, Dickson K, Hanlon RT, Walters ET 2014. Nociceptive sensitization reduces predation risk. Curr. Biol. 24:1121–25
    [Google Scholar]
  21. Dantzer B, Newman AEM, Boonstra R, Palme R, Boutin S et al. 2013. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340:1215–17
    [Google Scholar]
  22. Darimont CT, Fox CH, Bryan HM, Reimchen TE 2015. The unique ecology of human predators. Science 349:858–60
    [Google Scholar]
  23. Darwin C. 1839. Journal of Researches into the Geology and Natural History of the Various Countries Visited by H.M.S. Beagle London: Colburn
  24. Daskalakis NP, Yehuda R, Diamond DM 2013. Animal models in translational studies of PTSD. Psychoneuroendocrinology 38:1895–911
    [Google Scholar]
  25. Deecke VB, Slater PJB, Ford JKB 2002. Selective habituation shapes acoustic predator recognition in harbour seals. Nature 420:171–73
    [Google Scholar]
  26. Dehn MM, Ydenberg RC, Dill LM 2017. Experimental addition of cover lowers the perception of danger and increases reproduction in meadow voles (Microtus pennsylvanicus). Can. J. Zool. 95:463–72
    [Google Scholar]
  27. Deslauriers J, Toth M, Der-Avakian A, Risbrough VB 2018. Current status of animal models of posttraumatic stress disorder: behavioral and biological phenotypes, and future challenges in improving translation. Biol. Psychiatry 83:895–907
    [Google Scholar]
  28. DeWitt PD, Schuler MS, Visscher DR, Thiel RP 2017. Nutritional state reveals complex consequences of risk in a wild predator–prey community. Proc. R. Soc. B 284:20170757
    [Google Scholar]
  29. Diamond DD, Zoladz PR. 2016. Dysfunctional or hyperfunctional? The amygdala in posttraumatic stress disorder is the bull in the evolutionary china shop. J. Neurosci. Res. 94:437–44
    [Google Scholar]
  30. Dillon KG, Conway CJ. 2018. Nest predation risk explains variation in avian clutch size. Behav. Ecol. 29:301–11
    [Google Scholar]
  31. Doligez B, Clobert J. 2003. Clutch size reduction as a response to increased nest predation rate in the Collared Flycatcher. Ecology 84:2582–88
    [Google Scholar]
  32. Dudeck BP, Clinchy M, Allen MC, Zanette LY 2018. Fear affects parental care, which predicts juvenile survival and exacerbates the total cost of fear on demography. Ecology 99:127–35
    [Google Scholar]
  33. Dulude-de Broin F, Hamel S, Mastromonaco GF, Côté SD 2020. Predation risk and mountain goat reproduction: evidence for stress-induced breeding suppression in a wild ungulate. Funct. Ecol. 34:1003–14
    [Google Scholar]
  34. Dunlap KD, Keane G, Ragazzi M, Lasky E, Salazar VL 2017. Simulated predator stimuli reduce brain cell proliferation in two electric fish species, Brachyhypopomus gauderio and Apteronotus leptorhynchus. . J. Exp. Biol 220:2328–34
    [Google Scholar]
  35. Dunlap KD, Tran A, Ragazzi MA, Krahe R, Salazar VL 2016. Predators inhibit brain cell proliferation in natural populations of electric fish. Brachyhypopomus occidentalis. Proc. R. Soc. B 283:20152113
    [Google Scholar]
  36. Eggers S, Griesser M, Nystrand M, Ekman J 2006. Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proc. R. Soc. B 273:701–6
    [Google Scholar]
  37. Errington PL. 1956. Factors limiting higher vertebrate populations. Science 124:304–7
    [Google Scholar]
  38. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J et al. 2011. Trophic downgrading of planet Earth. Science 333:301–6
    [Google Scholar]
  39. Fanselow MS. 2018. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24:44–49
    [Google Scholar]
  40. Fležar U, le Roux E, Kerley GIH, Kuijper DPJ, te Beest M et al. 2019. Simulated elephant-induced habitat changes can create dynamic landscapes of fear. Biol. Conserv. 237:267–79
    [Google Scholar]
  41. Fontaine JJ, Martin TE. 2006. Parent birds assess nest predation risk and adjust their reproductive strategies. Ecol. Lett. 9:428–34
    [Google Scholar]
  42. Ford AT, Goheen JR. 2015. Trophic cascades by large carnivores: a case for strong inference and mechanism. Trends Ecol. Evol. 30:725–35
    [Google Scholar]
  43. Ford AT, Goheen JR, Otieno TO, Bidner L, Isbell LA et al. 2014. Large carnivores make savanna tree communities less thorny. Science 346:346–49
    [Google Scholar]
  44. Frankland PW, Köhler S, Josselyn SA 2013. Hippocampal neurogenesis and forgetting. Trends Neurosci 36:497–503
    [Google Scholar]
  45. Fuelling O, Halle S. 2004. Breeding suppression in free-ranging grey-sided voles under the influence of predator odour. Oecologia 138:151–59
    [Google Scholar]
  46. Gaillard J-M, Pontier D, Allainé D, Lebreton JD, Trouvilliez J, Clobert J 1989. An analysis of demographic tactics in birds and mammals. Oikos 56:59–76
    [Google Scholar]
  47. Gaynor KM, Branco PS, Long RA, Gonçalves DD, Granli PK, Poole JH 2018a. Effects of human settlement and roads on diel activity patterns of elephants (Loxodonta africana). Afr. J. Ecol. 56:872–81
    [Google Scholar]
  48. Gaynor KM, Brown JS, Middleton AD, Power ME, Brashares JS 2019. Landscapes of fear: spatial patterns of risk perception and response. Trends Ecol. Evol. 34:355–68
    [Google Scholar]
  49. Gaynor KM, Hojnowski CE, Carter NH, Brashares JS 2018b. The influence of human disturbance on wildlife nocturnality. Science 360:1232–35
    [Google Scholar]
  50. Ghalambor CK, Martin TE. 2001. Fecundity-survival trade-offs and parental risk-taking in birds. Science 292:494–97
    [Google Scholar]
  51. Gross CT, Canteras NS. 2012. The many paths to fear. Nat. Rev. Neurosci. 13:651–58
    [Google Scholar]
  52. Güntürkün O, Bugnyar T. 2016. Cognition without cortex. Trends Cogn. Sci. 20:291–303
    [Google Scholar]
  53. Hawlena D, Schmitz OJ. 2010. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176:537–56
    [Google Scholar]
  54. Heller AS. 2019. From conditioning to emotion: translating animal models of learning to human psychopathology. Neuroscientist 26:43–56
    [Google Scholar]
  55. Hill JE, DeVault TL, Belant JL 2019. Cause‐specific mortality of the world's terrestrial vertebrates. Glob. Ecol. Biogeogr. 28:680–89
    [Google Scholar]
  56. Hua F, Sieving KE, Fletcher RJ Jr., Wright CA 2014. Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance. Behav. Ecol. 25:509–19
    [Google Scholar]
  57. Ibáñez-Álamo JD, Magrath RD, Oteyza JC, Chalfoun AD, Haff TM et al. 2015. Nest predation research: recent findings and future perspectives. J. Ornithol. 156:S247–62
    [Google Scholar]
  58. Julliard R, McCleery RH, Clobert J, Perrins CM 1997. Phenotypic adjustment of clutch size due to nest predation in the Great Tit. Ecology 78:394–404
    [Google Scholar]
  59. Karels TJ, Byrom AE, Boonstra R, Krebs CJ 2000. The interactive effects of food and predators on reproduction and overwinter survival of arctic ground squirrels. J. Anim. Ecol. 69:235–47
    [Google Scholar]
  60. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA et al. 2018. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23:25–30
    [Google Scholar]
  61. Krebs CJ, Boonstra R, Boutin S 2018. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87:87–100
    [Google Scholar]
  62. Krebs CJ, Boutin S, Boonstra R, Sinclair ARE, Smith JNM et al. 1995. Impact of food and predation on the snowshoe hare cycle. Science 269:1112–15
    [Google Scholar]
  63. LaManna JA, Martin TE. 2016. Costs of fear: Behavioral and life-history responses to risk and their demographic consequences vary across species. Ecol. Lett. 19:403–13
    [Google Scholar]
  64. Laundré JW, Hernández L, Altendorf KB 2001. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Can. J. Zool. 79:1401–9
    [Google Scholar]
  65. Lavers JL, Wilcox C, Donlan CJ 2010. Bird demographic responses to predator removal programs. Biol. Invasions 12:3839–59
    [Google Scholar]
  66. le Roux E, Kerley GIH, Cromsigt JPGM 2018. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28:2493–99
    [Google Scholar]
  67. le Roux E, Marneweck DG, Clinning G, Druce DJ, Kerley GIH, Cromsigt JPGM 2019. Top–down limits on prey populations may be more severe in larger prey species, despite having fewer predators. Ecography 42:1115–23
    [Google Scholar]
  68. LeDoux JE. 2017. Semantics, surplus meaning, and the science of fear. Trends Cogn. Sci. 21:303–6
    [Google Scholar]
  69. LeDoux JE, Pine DS. 2016. Using neuroscience to help understand fear and anxiety: a two-system framework. Am. J. Psychiatry 173:1083–93
    [Google Scholar]
  70. Leopold MF, Begeman L, van Bleijswijk JDL, IJsseldijk LL, Witte HJ, Gröne A 2015. Exposing the grey seal as a major predator of harbour porpoises. Proc. R. Soc. B 282:20142429
    [Google Scholar]
  71. Lima SL, Dill LM. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68:619–40
    [Google Scholar]
  72. MacDonald IF, Kempster B, Zanette L, MacDougall-Shackleton SA 2006. Nutritional stress impairs development of song-control brain regions in juvenile male and female song sparrows (Melospiza melodia). Proc. R. Soc. B 273:2559–64
    [Google Scholar]
  73. Malone KM, Powell AC, Hua F, Sieving KE 2017. Bluebirds perceive prey switching by Cooper's hawks across an urban gradient and adjust reproductive effort. Écoscience 24:21–31
    [Google Scholar]
  74. Marshall AD, Bennett MB. 2010. The frequency and effect of shark-inflicted bite injuries to the reef manta ray Manta alfredi. Afr. J. Mar. Sci 32:573–80
    [Google Scholar]
  75. Marzluff JM, Miyaoka R, Minoshima S, Cross DJ 2012. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces. PNAS 109:15912–17
    [Google Scholar]
  76. McComb K, Shannon G, Durant SM, Sayialel K, Slotow R et al. 2011. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B 278:3270–76
    [Google Scholar]
  77. McComb K, Shannon G, Sayialel KN, Moss C 2014. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. PNAS 111:5433–38
    [Google Scholar]
  78. Mitra R. 2019. Neuronal plasticity in the amygdala following predator stress exposure. Front. Behav. Neurosci. 13:25
    [Google Scholar]
  79. Moore MP, Martin RA. 2019. On the evolution of carry‐over effects. J. Anim. Ecol. 88:1832–44
    [Google Scholar]
  80. Okuyama T, Bolker BM. 2007. On quantitative measures of indirect interactions. Ecol. Lett. 10:264–71
    [Google Scholar]
  81. Packer C, Ruttan L. 1988. The evolution of cooperative hunting. Am. Nat. 132:159–98
    [Google Scholar]
  82. Pfaff JA, Zanette L, MacDougall-Shackleton SA, MacDougall-Shackleton EA 2007. Song repertoire size varies with HVC volume and is indicative of male quality in song sparrows (Melospiza melodia). Proc. R. Soc. B 274:2035–40
    [Google Scholar]
  83. Preisser EL, Bolnick DI, Benard MF 2005. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86:501–9
    [Google Scholar]
  84. Pringle RM, Kartzinel TR, Palmer TM, Thurman TJ, Fox-Dobbs K et al. 2019. Predator-induced collapse of niche structure and species coexistence. Nature 570:58–64
    [Google Scholar]
  85. Reid JM, Arcese P, Cassidy ALEV, Hiebert SL, Smith JNM et al. 2005. Fitness correlates of song repertoire size in free-living song sparrows (Melospiza melodia). Am. Nat. 165:299–310
    [Google Scholar]
  86. Riginos C. 2015. Climate and the landscape of fear in an African savanna. J. Anim. Ecol. 84:124–33
    [Google Scholar]
  87. Ripple WJ, Beschta RL. 2004. Wolves and the ecology of fear: Can predation risk structure ecosystems. ? BioScience 54:755–66
    [Google Scholar]
  88. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG et al. 2014. Status and ecological effects of the world's largest carnivores. Science 343:1241484
    [Google Scholar]
  89. Royle NJ, Smiseth PT, Kölliker M 2012. The Evolution of Parental Care Oxford, UK: Oxford Univ. Press
  90. Salo P, Banks PB, Dickman CR, Korpimäki E 2010. Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey. Ecol. Monogr. 80:531–46
    [Google Scholar]
  91. Say-Sallaz E, Chamaillé-Jammes S, Fritz H, Valeix M 2019. Non-consumptive effects of predation in large terrestrial mammals: mapping our knowledge and revealing the tip of the iceberg. Biol. Conserv. 235:36–52
    [Google Scholar]
  92. Scheuerlein A, Van't Hof TJ, Gwinner E 2001. Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris). Proc. R. Soc. B 268:1575–82
    [Google Scholar]
  93. Schmitz OJ, Beckerman AP, O'Brien KM 1997. Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78:1388–99
    [Google Scholar]
  94. Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA 2017. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol. Psychiatry 82:914–23
    [Google Scholar]
  95. Shannon G, Slotow R, Durant SM, Sayialel KN, Poole J et al. 2013. Effects of social disruption in elephants persist decades after culling. Front. Zool. 10:62
    [Google Scholar]
  96. Sibly RM, Hone J. 2002. Population growth rate and its determinants: an overview. Philos. Trans. R. Soc. B 357:1153–70
    [Google Scholar]
  97. Sih A. 1980. Optimal behavior: Can foragers balance two conflicting demands. ? Science 210:1041–43
    [Google Scholar]
  98. Smith JA, Suraci JP, Clinchy M, Crawford A, Roberts D et al. 2017. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. B 284:20170433
    [Google Scholar]
  99. Smith JA, Wang Y, Wilmers CC 2015. Top carnivores increase their kill rates on prey as a response to human-induced fear. Proc. R. Soc. B 282:20142711
    [Google Scholar]
  100. Strauss MKL, Packer C. 2013. Using claw marks to study lion predation on giraffes of the Serengeti. J. Zool. 289:134–42
    [Google Scholar]
  101. Suraci JP, Clinchy M, Dill LM, Roberts D, Zanette LY 2016. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7:10698
    [Google Scholar]
  102. Suraci JP, Clinchy M, Zanette LY, Currie CMA, Dill LM 2014. Mammalian mesopredators on islands directly impact both terrestrial and marine communities. Oecologia 176:1087–100
    [Google Scholar]
  103. Suraci JP, Clinchy M, Zanette LY, Wilmers CC 2019a. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22:1578–86
    [Google Scholar]
  104. Suraci JP, Smith JA, Clinchy M, Zanette LY, Wilmers CC 2019b. Humans, but not their dogs, displace pumas from their kills: an experimental approach. Sci. Rep. 9:12214
    [Google Scholar]
  105. Tanapat P, Hastings NB, Rydel TA, Galea LAM, Gould E 2001. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J. Comp. Neurol. 437:496–504
    [Google Scholar]
  106. Terborgh J, Estes JA. 2010. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature Washington, DC: Island
  107. Tovote P, Fadok JP, Lüthi A 2015. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16:317–31
    [Google Scholar]
  108. Travers M, Clinchy M, Zanette L, Boonstra R, Williams TD 2010. Indirect predator effects on clutch size and the cost of egg production. Ecol. Lett. 13:980–88
    [Google Scholar]
  109. Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Moorter BV et al. 2018. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359:466–69
    [Google Scholar]
  110. Vermeij GJ. 1982. Unsuccessful predation and evolution. Am. Nat. 120:701–20
    [Google Scholar]
  111. Vignisse J, Sambon M, Gorlova A, Pavlov D, Caron N et al. 2017. Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels. Mol. Cell. Neurosci. 82:126–36
    [Google Scholar]
  112. Wang Y, Allen ML, Wilmers CC 2015. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol. Conserv. 190:23–33
    [Google Scholar]
  113. Wu YP, Gao HY, Ouyang SH, Kurihara H, He RR, Li YF 2019. Predator stress-induced depression is associated with inhibition of hippocampal neurogenesis in adult male mice. Neural Regen. Res. 14:298–305
    [Google Scholar]
  114. Yin J, Zhou M, Lin Z, Li QQ, Zhang Y-Y 2019. Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol. Lett. 22:1976–86
    [Google Scholar]
  115. Zanette L, Clinchy M, Smith JNM 2006a. Combined food and predator effects on songbird nest survival and annual reproductive success: results from a bi-factorial experiment. Oecologia 147:632–40
    [Google Scholar]
  116. Zanette L, Clinchy M, Smith JNM 2006b. Food and predators affect egg production in song sparrows. Ecology 87:2459–67
    [Google Scholar]
  117. Zanette LY, Hobbs EC, Witterick LE, MacDougall-Shackleton SA, Clinchy M 2019. Predator-induced fear causes PTSD-like changes in the brains and behaviour of wild animals. Sci. Rep. 9:11474
    [Google Scholar]
  118. Zanette LY, Hobson KA, Clinchy M, Travers M, Williams TD 2013. Food use is affected by the experience of nest predation: implications for indirect predator effects on clutch size. Oecologia 172:1031–39
    [Google Scholar]
  119. Zanette L, Smith JNM, van Oort H, Clinchy M 2003. Synergistic effects of food and predators on annual reproductive success in song sparrows. Proc. R. Soc. B 270:799–803
    [Google Scholar]
  120. Zanette LY, White AF, Allen MC, Clinchy M 2011. Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334:1398–401
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011720-124613
Loading
/content/journals/10.1146/annurev-ecolsys-011720-124613
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error