1932

Abstract

Mimicry rings are communities of mimetic organisms that are excellent models for ecological and evolutionary studies because the community composition, the nature of the species interactions, the phenotypes under selection, and the selective agents are well characterized. Here, we review how regional and ecological filtering, density- and frequency-dependent selection, toxicity of prey, and age of mimicry rings shape their assembly. We synthesize findings from theoretical and empirical studies to generate the following hypotheses: () the degree of unpalatability and age of mimicry rings increase mimicry ring size and () the degree of unpalatability, generalization of the aposematic signal, and availability of alternative prey are positively related to the breadth of the protection umbrella for an aposematic signal and negatively related to the degree of mimetic resemblance. We also provide a phylogenetic framework in which key aspects of mimicry ring diversification may be studied.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-024616
2021-11-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-024616.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-024616&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott KR, Sherratt TN. 2013. Optimal sampling and signal detection: unifying models of attention and speed-accuracy trade-offs. Behav. Ecol. 24:605–16
    [Google Scholar]
  2. Alexandrou MA, Oliveira C, Maillard M, McGill RAR, Newton J et al. 2011. Competition and phylogeny determine community structure in Müllerian co-mimics. Nature 469:84–88
    [Google Scholar]
  3. Arbuckle K, Speed MP. 2015. Antipredator defenses predict diversification rates. PNAS 112:13597–602
    [Google Scholar]
  4. Arendt J, Reznick D. 2008. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation?. Trends Ecol. Evol. 23:26–32
    [Google Scholar]
  5. Aubier TG, Elias M. 2020. Positive and negative interactions jointly determine the structure of Müllerian mimetic communities. Oikos 129:983–97
    [Google Scholar]
  6. Aubier TG, Elias M, Llaurens V, Chazot N. 2017. Mutualistic mimicry enhances species diversification through spatial segregation and extension of the ecological niche space. Evolution 71:826–44
    [Google Scholar]
  7. Aubier TG, Sherratt TN. 2015. Diversity in Müllerian mimicry: The optimal predator sampling strategy explains both local and regional polymorphism in prey. Evolution 69:2831–45
    [Google Scholar]
  8. Aubier TG, Sherratt TN. 2020. State-dependent decision-making by predators and its consequences for mimicry. Am. Nat. 196:E127–44
    [Google Scholar]
  9. Balogh ACV, Gamberale-Stille G, Leimar O. 2008. Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Anim. Behav. 76:1591–99
    [Google Scholar]
  10. Barber JR, Conner WE. 2007. Acoustic mimicry in a predator–prey interaction. PNAS 104:9331–34
    [Google Scholar]
  11. Barrios E. 2007. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64:269–85
    [Google Scholar]
  12. Bates HW. 1862. Contributions to an insect fauna of the Amazon Valley (Lepidoptera: Heliconidae). Trans. Linn. Soc. Lond. 23:495–556
    [Google Scholar]
  13. Beccaloni GW. 1997. Ecology, natural history and behaviour of Ithomiine butterflies and their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiinae). Trop. Lepid. 8:103–24
    [Google Scholar]
  14. Birskis-Barros I, Freitas AVL, Guimarães PR. 2021. Habitat generalist species constrain the diversity of mimicry rings in heterogeneous habitats. Sci. Rep. 11:5072
    [Google Scholar]
  15. Bobisud LE. 1978. Optimal time of appearance of mimics. Am. Nat. 112:962–65
    [Google Scholar]
  16. Bond AB. 2007. The evolution of color polymorphism: crypticity, searching images, and apostatic selection. Annu. Rev. Ecol. Evol. Syst. 38:489–514
    [Google Scholar]
  17. Briolat ES, Burdfield-Steel ER, Paul SC, Rönkä KH, Seymoure BM et al. 2019. Diversity in warning coloration: selective paradox or the norm?. Biol. Rev. 94:388–414
    [Google Scholar]
  18. Brodie ED Jr. 1981. Phenological relationships of model and mimic salamanders. Evolution 35:988–94
    [Google Scholar]
  19. Brodie ED Jr., Brodie ED III 1980. Differential avoidance of mimetic salamanders by free-ranging birds. Science 208:181–82
    [Google Scholar]
  20. Brower JVZ. 1960. Experimental studies of mimicry. IV. The reactions of starlings to different proportions of models and mimics. Am. Nat. 94:271–82
    [Google Scholar]
  21. Brower LP, Brower JVZ. 1962. The relative abundance of model and mimic butterflies in natural populations of the Battus philenor mimicry complex. Ecology 43:154–58
    [Google Scholar]
  22. Brower LP, Brower JVZ. 1972. Parallelism, convergence, divergence, and the new concept of advergence in the evolution of mimicry. Trans. Connect. Acad. Arts Sci. 44:59–67
    [Google Scholar]
  23. Brower LP, Brower JVZ, Collins CT. 1963. Experimental studies of mimicry. VII. Relative palatability and Müllerian mimicry among Neotropical butterflies of the subfamily Heliconiinae. Zoologica 48:65–83
    [Google Scholar]
  24. Brower LP, Brower JVZ, Westcott PW. 1960. Experimental studies of mimicry. 5. The reactions of toads (Bufo terrestris) to bumblebees (Bombus americanorum) and their robberfly mimics (Mallophora bomboides), with a discussion of aggressive mimicry. Am. Nat. 94:343–55
    [Google Scholar]
  25. Brower LP, Pough FH, Meck HR. 1970. Theoretical investigations of automimicry. I. Single trial learning. PNAS 66:1059–66
    [Google Scholar]
  26. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12:693–715
    [Google Scholar]
  27. Chamberlain NL, Hill RI, Kapan DD, Gilbert LE, Kronforst MR 2009. Polymorphic butterfly reveals the missing link in ecological speciation. Science 326:847–50
    [Google Scholar]
  28. Chazot N, Willmott KR, Condamine FL, De-Silva DL, Freitas AVL et al. 2016. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol. Ecol. 25:5765–84
    [Google Scholar]
  29. Chazot N, Willmott KR, Santacruz Endara PG, Toporov A, Hill RI et al. 2014. Mutualistic mimicry and filtering by altitude shape the structure of Andean butterfly communities. Am. Nat. 183:26–39
    [Google Scholar]
  30. Chouteau M, Arias M, Joron M. 2016. Warning signals are under positive frequency-dependent selection in nature. PNAS 113:2164–69
    [Google Scholar]
  31. Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. 2018. Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks. WIREs Dev. Biol. 7:e291
    [Google Scholar]
  32. Deshmukh R, Lakhe D, Kunte K 2020. Tissue-specific developmental regulation and isoform usage underlie the role of doublesex in sex differentiation and mimicry in Papilio swallowtails. R. Soc. Open Sci. 7:200792
    [Google Scholar]
  33. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3:961–68
    [Google Scholar]
  34. Dumbacher JP, Fleischer RC. 2001. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds?. Proc. R. Soc. B. 268:1971–76
    [Google Scholar]
  35. Elias M, Gompert Z, Jiggins CD, Willmott KR. 2008. Mutualistic interactions drive ecological niche convergence in a diverse butterfly community. PLOS Biol 6:e300
    [Google Scholar]
  36. Elias M, Gompert Z, Willmott KR, Jiggins C 2009. Phylogenetic community ecology needs to take positive interactions into account: insights from colourful butterflies. Commun. Integr. Biol. 2:113–16
    [Google Scholar]
  37. Emerson BC, Gillespie RG. 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23:619–30
    [Google Scholar]
  38. Finkbeiner SD, Briscoe AD, Mullen SP. 2017. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies. Evolution 71:949–59
    [Google Scholar]
  39. Finkbeiner SD, Salazar PA, Nogales S, Rush CE, Briscoe AD et al. 2018. Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry. Proc. R. Soc. B. 285:20172786
    [Google Scholar]
  40. Franks DW, Noble J. 2004. Batesian mimics influence mimicry ring evolution. Proc. R. Soc. B. 271:191–96
    [Google Scholar]
  41. Gallant JR, Imhoff VE, Martin A, Savage WK, Chamberlain NL et al. 2014. Ancient homology underlies adaptive mimetic diversity across butterflies. Nat. Commun. 5:4817
    [Google Scholar]
  42. Getty T. 1985. Discriminability and the sigmoid functional response: How optimal foragers could stabilize model-mimic complexes. Am. Nat. 125:239–56
    [Google Scholar]
  43. Gilbert LE 2003. Adaptive novelty through introgression in Heliconius wing patterns: evidence for a shared genetic “toolbox” from synthetic hybrid zones and a theory of diversification. Butterflies: Ecology and Evolution Taking Flight CL Boggs, WB Watt, PR Ehrlich 281–318 Chicago: Univ. Chicago Press
    [Google Scholar]
  44. Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC et al. 2020. Comparing adaptive radiations across space, time, and taxa. J. Hered. 111:1–20
    [Google Scholar]
  45. Gordon IJ, Edmunds M, Edgar JA, Lawrence J, Smith DAS 2010. Linkage disequilibrium and natural selection for mimicry in the Batesian mimic Hypolimnas misippus (L.) (Lepidoptera: Nymphalidae) in the Afrotropics. Biol. J. Linn. Soc. 100:180–94
    [Google Scholar]
  46. Graham CH, Storch D, Machac A. 2018. Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 27:175–87
    [Google Scholar]
  47. Harper GR, Pfennig DW. 2007. Mimicry on the edge: Why do mimics vary in resemblance to their model in different parts of their geographical range?. Proc. R. Soc. B. 274:1955–61
    [Google Scholar]
  48. Harper GR Jr., Pfennig DW. 2008. Selection overrides gene flow to break down maladaptive mimicry. Nature 451:1103–6
    [Google Scholar]
  49. Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG et al. 2007. Ecosystem engineering in space and time. Ecol. Lett. 10:153–64
    [Google Scholar]
  50. Heliconius Genome Consort 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98
    [Google Scholar]
  51. Hembry DH, Yoder JB, Goodman KR. 2014. Coevolution and the diversification of life. Am. Nat. 184:425–38
    [Google Scholar]
  52. Hetz M, Slobodchikoff CN. 1988. Predation pressure on an imperfect Batesian mimicry complex in the presence of alternative prey. Oecologia 76:570–73
    [Google Scholar]
  53. Hines HM, Counterman BA, Papa R, de Moura PA, Cardoso MZ et al. 2011. Wing patterning gene redefines the mimetic history of Heliconius butterflies. PNAS 108:19666–71
    [Google Scholar]
  54. Hines J. 2019. Ecosystem functioning: How much system is needed to explain function?. Curr. Biol. 29:R1072–74
    [Google Scholar]
  55. Howarth B, Edmunds M. 2000. The phenology of Syrphidae (Diptera): Are they Batesian mimics of Hymenoptera?. Biol. J. Linn. Soc. 71:437–57
    [Google Scholar]
  56. Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography Princeton, New Jersey: Princeton Univ. Press
  57. Huheey JE. 1976. Studies in warning coloration and mimicry. VII. Evolutionary consequences of a Batesian-Müllerian spectrum: a model for Müllerian mimicry. Evolution 30:86–93
    [Google Scholar]
  58. Huheey JE. 1980. The question of synchrony or “temporal sympatry” in mimicry. Evolution 34:614–16
    [Google Scholar]
  59. Huheey JE. 1988. Mathematical models of mimicry. Am. Nat. 131:S22–41
    [Google Scholar]
  60. Ihalainen E, Lindstrom L, Mappes J. 2007. Investigating Müllerian mimicry: predator learning and variation in prey defences. J. Evol. Biol. 20:780–91
    [Google Scholar]
  61. Jiggins CD, Naisbit RE, Coe RL, Mallet J. 2001. Reproductive isolation caused by colour pattern mimicry. Nature 411:302–5
    [Google Scholar]
  62. Joron M, Mallet JLB. 1998. Diversity in mimicry: paradox or paradigm?. Trends Ecol. Evol. 13:461–66
    [Google Scholar]
  63. Joshi J, Prakash A, Kunte K. 2017. Evolutionary assembly of communities in butterfly mimicry rings. Am. Nat. 189:E58–76
    [Google Scholar]
  64. Kikuchi DW, Pfennig DW. 2010. High-model abundance may permit the gradual evolution of Batesian mimicry: an experimental test. Proc. R. Soc. B. 277:1041–48
    [Google Scholar]
  65. Kikuchi DW, Seymoure BM, Pfennig DW. 2014. Mimicry's palette: widespread use of conserved pigments in the aposematic signals of snakes. Evol. Dev. 16:61–67
    [Google Scholar]
  66. Kikuchi DW, Sherratt TN. 2015. Costs of learning and the evolution of mimetic signals. Am. Nat. 186:321–32
    [Google Scholar]
  67. Koch BP, Behnecke B, Weigmann-Lenz M, Ffrench-Constant RH. 2000. Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus. Pigment Cell Res 13:Suppl. 854–58
    [Google Scholar]
  68. Komata S, Lin C-P, Iijima T, Fujiwara H, Sota T. 2016. Identification of doublesex alleles associated with the female-limited Batesian mimicry polymorphism in Papilio memnon. Sci. Rep. 6:34782
    [Google Scholar]
  69. Kronforst MR, Young LG, Kapan DD, McNeely C, O'Neill RJ, Gilbert LE. 2006. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. PNAS 103:6575–80
    [Google Scholar]
  70. Kunte K. 2009a. Female-limited mimetic polymorphism: a review of theories and a critique of sexual selection as balancing selection. Anim. Behav. 78:1029–36
    [Google Scholar]
  71. Kunte K. 2009b. The diversity and evolution of Batesian mimicry in Papilio swallowtail butterflies. Evolution 63:2707–16
    [Google Scholar]
  72. Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A et al. 2014. doublesex is a mimicry supergene. Nature 507:229–32
    [Google Scholar]
  73. Lindström L, Alatalo RV, Lyytinen A, Mappes J 2001. Strong antiapostatic selection against novel rare aposematic prey. PNAS 98:9181–84
    [Google Scholar]
  74. Lindström L, Alatalo RV, Lyytinen A, Mappes J 2004. The effect of alternative prey on the dynamics of imperfect Batesian and Müllerian mimicries. Evolution 58:1294–1302
    [Google Scholar]
  75. Lindström L, Alatalo R V, Mappes J. 1997. Imperfect Batesian mimicry—the effects of the frequency and the distastefulness of the model. Proc. R. Soc. B. 264:149–53
    [Google Scholar]
  76. Long EC, Edwards KF, Shapiro AM. 2015. A test of fundamental questions in mimicry theory using long-term datasets. Biol. J. Linn. Soc. 116:487–94
    [Google Scholar]
  77. Luedeman JK, McMorris FR, Warner DD. 1981. Predators encountering a model-mimic system with alternative prey. Am. Nat. 117:1040–48
    [Google Scholar]
  78. MacArthur RH, Wilson EO. 1967. The Theory of Island Biogeography Princeton, NJ: Princeton Univ. Press
  79. Mallet J, Joron M. 1999. Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation. Annu. Rev. Ecol. Syst. 30:201–33
    [Google Scholar]
  80. Mappes J, Kokko H, Ojala K, Lindström L. 2014. Seasonal changes in predator community switch the direction of selection for prey defences. Nat. Commun. 5:5016
    [Google Scholar]
  81. Marek PE, Bond JE. 2009. A Müllerian mimicry ring in Appalachian millipedes. PNAS 106:9755–60
    [Google Scholar]
  82. Marples NM, Speed MP, Thomas RJ. 2018. An individual-based profitability spectrum for understanding interactions between predators and their prey. Biol. J. Linn. Soc. 125:1–13
    [Google Scholar]
  83. Martin A, McCulloch KJ, Patel NH, Briscoe AD, Gilbert LE, Reed RD 2014. Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. EvoDevo 5:7
    [Google Scholar]
  84. Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA et al. 2012. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. PNAS 109:12632–37
    [Google Scholar]
  85. Martin A, Reed RD 2014. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev. Biol. 395:367–78
    [Google Scholar]
  86. Mathis KA, Bronstein JL. 2020. Our current understanding of commensalism. Annu. Rev. Ecol. Evol. Syst. 51:167–89
    [Google Scholar]
  87. McClure M, Clerc C, Desbois C, Meichanetzoglou A, Cau M et al. 2019a. Why has transparency evolved in aposematic butterflies? Insights from the largest radiation of aposematic butterflies, the Ithomiini. Proc. R. Soc. B. 286:20182769
    [Google Scholar]
  88. McClure M, Mahrouche L, Houssin C, Monllor M, Le Poul Y et al. 2019b. Does divergent selection predict the evolution of mate preference and reproductive isolation in the tropical butterfly genus Melinaea (Nymphalidae: Ithomiini)?. J. Anim. Ecol. 88:940–52
    [Google Scholar]
  89. Merrill RM, Chia A, Nadeau NJ 2014. Divergent warning patterns contribute to assortative mating between incipient Heliconius species. Ecol. Evol. 4:911–17
    [Google Scholar]
  90. Merrill RM, Wallbank RWR, Bull V, Salazar PCA, Mallet J et al. 2012. Disruptive ecological selection on a mating cue. Proc. R. Soc. B. 279:4907–13
    [Google Scholar]
  91. Mittelbach GG, McGill BJ. 2019. Community Ecology Oxford, UK: Oxford Univ. Press, 2nd ed..
  92. Motyka M, Kusy D, Masek M, Bocek M, Li Y et al. 2021. Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions. Sci. Rep. 11:5961
    [Google Scholar]
  93. Müller F. 1879. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879:20–29
    [Google Scholar]
  94. Outomuro D, Ángel-Giraldo P, Corral-Lopez A, Realpe E. 2016. Multitrait aposematic signal in Batesian mimicry. Evolution 70:1596–608
    [Google Scholar]
  95. Pekár S, Petráková L, Bulbert MW, Whiting MJ, Herberstein ME 2017. The golden mimicry complex uses a wide spectrum of defence to deter a community of predators. eLife 6:e22089
    [Google Scholar]
  96. Penney HD, Hassall C, Skevington JH, Abbott KR, Sherratt TN 2012. A comparative analysis of the evolution of imperfect mimicry. Nature 483:461–64
    [Google Scholar]
  97. Pfennig DW, Harcombe WR, Pfennig KS. 2001. Frequency-dependent Batesian mimicry. Nature 410:323
    [Google Scholar]
  98. Pfennig DW, Harper G, Brumo A, Harcombe W, Pfennig KS. 2007. Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behav. Ecol. Sociobiol. 61:505–11
    [Google Scholar]
  99. Pfennig DW, Mullen SP. 2010. Mimics without models: causes and consequences of allopatry in Batesian mimicry complexes. Proc. R. Soc. B. 277:2577–85
    [Google Scholar]
  100. Pough FH, Brower LP, Meck HR, Kessell SR. 1973. Theoretical investigations of automimicry: multiple trial learning and the palatability spectrum. PNAS 70:2261–65
    [Google Scholar]
  101. Rabosky ARD, Cox CL, Rabosky DL, Title PO, Holmes IA et al. 2016. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Commun. 7:11484
    [Google Scholar]
  102. Raška J, Štys P, Exnerová A. 2018. Perception of olfactory aposematic signals by jumping spiders. Ethology 124:773–76
    [Google Scholar]
  103. Reed RD, Papa R, Martin A, Hines HM, Counterman BA et al. 2011. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333:1137–41
    [Google Scholar]
  104. Reynolds RG, Fitzpatrick BM. 2007. Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution 61:2253–59
    [Google Scholar]
  105. Ries L, Mullen SP. 2008. A rare model limits the distribution of its more common mimic: a twist on frequency-dependent Batesian mimicry. Evolution 62:1798–1803
    [Google Scholar]
  106. Ritland DB. 1994. Variation in palatability of queen butterflies (Danaus gilippus) and implications regarding mimicry. Ecology 75:732–46
    [Google Scholar]
  107. Rönkä K, Valkonen JK, Nokelainen O, Rojas B, Gordon S et al. 2020. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23:1654–63
    [Google Scholar]
  108. Rowland HM, Hoogesteger T, Ruxton GD, Speed MP, Mappes J. 2010a. A tale of two signals: signal mimicry between aposematic species enhances predator avoidance learning. Behav. Ecol. 21:851–60
    [Google Scholar]
  109. Rowland HM, Ihalainen E, Lindström L, Mappes J, Speed MP 2007. Co-mimics have a mutualistic relationship despite unequal defences. Nature 448:64–67
    [Google Scholar]
  110. Rowland HM, Mappes J, Ruxton GD, Speed MP. 2010b. Mimicry between unequally defended prey can be parasitic: evidence for quasi-Batesian mimicry. Ecol. Lett. 13:1494–1502
    [Google Scholar]
  111. Rundle HD, Nosil P. 2005. Ecological speciation. Ecol. Lett. 8:336–52
    [Google Scholar]
  112. Rutowski RL, Macedonia JM, Morehouse N, Taylor-Taft L. 2005. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc. R. Soc. B. 272:2329–35
    [Google Scholar]
  113. Ruttenberg DM, VanKuren NW, Nallu S, Yen S-H, Peggie D et al. 2021. The evolution and genetics of sexually dimorphic ‘dual’ mimicry in the butterfly Elymnias hypermnestra. Proc. R. Soc. B. 288:20202192
    [Google Scholar]
  114. Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P. 2011. Magic traits in speciation: “magic” but not rare?. Trends Ecol. Evol. 26:389–97
    [Google Scholar]
  115. Sherratt TN. 2006. Spatial mosaic formation through frequency-dependent selection in Müllerian mimicry complexes. J. Theor. Biol. 240:165–74
    [Google Scholar]
  116. Speed MP, Turner JRG. 1999. Learning and memory in mimicry: II. Do we understand the mimicry spectrum?. Biol. J. Linn. Soc. 67:281–312
    [Google Scholar]
  117. Stavenga DG, Leertouwer HL, Wilts BD. 2014. Coloration principles of nymphaline butterflies – thin films, melanin, ommochromes and wing scale stacking. J. Exp. Biol. 217:2171–80
    [Google Scholar]
  118. Su S, Lim M, Kunte K. 2015. Prey from the eyes of predators: color discriminability of aposematic and mimetic butterflies from an avian visual perspective. Evolution 69:2985–94
    [Google Scholar]
  119. Svennungsen TO, Holen ØH. 2007. The evolutionary stability of automimicry. Proc. R. Soc. B. 274:2055–62
    [Google Scholar]
  120. Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45:471–93
    [Google Scholar]
  121. Timmermans MJTN, Srivathsan A, Collins S, Meier R, Vogler AP 2020. Mimicry diversification in Papilio dardanus via a genomic inversion in the regulatory region of engrailed–invected. Proc. R. Soc. B. 287:20200443
    [Google Scholar]
  122. Turner JRG 1984. Mimicry: the palatability spectrum and its consequences. The Biology of Butterflies RI Vane-Wright, PR Ackery 141–61 London: Academic
    [Google Scholar]
  123. Turner JRG, Kearney EP, Exton LS. 1984. Mimicry and the Monte Carlo predator: the palatability spectrum, and the origins of mimicry. Biol. J. Linn. Soc. 23:247–68
    [Google Scholar]
  124. Valdovinos FS. 2019. Mutualistic networks: moving closer to a predictive theory. Ecol. Lett. 22:1517–34
    [Google Scholar]
  125. Waldbauer GP. 1988. Asynchrony between Batesian mimics and their models. Am. Nat. 131:Suppl.S103–21
    [Google Scholar]
  126. Wallace AR. 1876. The Geographical Distribution of Animals, with a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth's Surface. Vol I & II London: Macmillan and Co.
  127. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33:475–505
    [Google Scholar]
  128. Willmott KR, Mallet J. 2004. Correlations between adult mimicry and larval host plants in ithomiine butterflies. Proc. R. Soc. B 271:Suppl. 5S266–69
    [Google Scholar]
  129. Willmott KR, Robinson Willmott JC, Elias M, Jiggins CD 2017. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B 284:20170744
    [Google Scholar]
  130. Wilson JS, Jahner JP, Forister ML, Sheehan ES, Williams KA, Pitts JP 2015. North American velvet ants form one of the world's largest known Müllerian mimicry complexes. Curr. Biol. 25:R704–6
    [Google Scholar]
  131. Wilson JS, Pan AD, Limb ES, Williams KA. 2018. Comparison of African and North American velvet ant mimicry complexes: another example of Africa as the ‘odd man out.’. PLOS ONE 13:e0189482
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-024616
Loading
/content/journals/10.1146/annurev-ecolsys-012021-024616
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error