1932

Abstract

The twenty-first century has witnessed an explosion in research on animal migration, in large part due to a technological revolution in tracking and remote-sensing technologies, along with advances in genomics and integrative biology. We now have access to unprecedented amounts of data on when, where, and how animals migrate across various continents and oceans. Among the important advancements, recent studies have uncovered a surprising level of variation in migratory trajectories at the species and population levels with implications for both speciation and the conservation of migratory populations. At the organismal level, studies linking molecular and physiological mechanisms to traits that support migration have revealed a remarkable amount of seasonal flexibility in many migratory animals. Advancements in the theory for why animals migrate have resulted in promising new directions for empirical studies. We provide an overview of the current state of knowledge and promising future avenues of study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-031035
2021-11-03
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-031035.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-031035&mimeType=html&fmt=ahah

Literature Cited

  1. Aikens EO, Mysterud A, Merkle JA, Cagnacci F, Rivrud IM et al. 2020. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30:3444–49
    [Google Scholar]
  2. Åkesson S, Atkinson PW, Bermejo A, de la Puente J, Ferri M et al. 2020. Evolution of chain migration in an aerial insectivorous bird, the common swift Apus apus. Evolution 74:2377–91
    [Google Scholar]
  3. Åkesson S, Helm B 2020. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8:78
    [Google Scholar]
  4. Albert V, Jonsson B, Bernatchez L 2006. Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Mol. Ecol. 15:1903–16
    [Google Scholar]
  5. Altizer S, Bartel R, Han BA 2011. Animal migration and infectious disease risk. Science 331:296–302
    [Google Scholar]
  6. Bairlein F, Norris DR, Nagel R, Bulte M, Voigt CC et al. 2012. Cross-hemisphere migration of a 25 g songbird. Biol. Lett. 8:505–7
    [Google Scholar]
  7. Balstad LJ, Binning SA, Craft ME, Zuk M, Shaw AK. 2020. Parasite intensity and the evolution of migratory behavior. Ecology 102:e03229
    [Google Scholar]
  8. Barçante LM, Vale M, Alves MAS 2017. Altitudinal migration by birds: a review of the literature and a comprehensive list of species. J. Field Ornithol. 88:321–35
    [Google Scholar]
  9. Bauer S, Lisovski S, Hahn S 2016. Timing is crucial for consequences of migratory connectivity. Oikos 125:605–12
    [Google Scholar]
  10. Bazzi G, Ambrosini R, Caprioli M, Constanzo A, Liechti F et al. 2015. Clock gene polymorphism and scheduling of migration: a geolocator study of the barn swallow Hirundo rustica. Sci. Rep. 5:12443
    [Google Scholar]
  11. Bazzi G, Cecere JG, Caprioli M, Gatti E, Gianfranceschi L et al. 2016. Clock gene polymorphism, migratory behaviour and geographic distribution: a comparative study of trans-Saharan migratory birds. Mol. Ecol. 25:6077–91
    [Google Scholar]
  12. Bellier E, Kéry M, Schaub M. 2018. Relationships between vital rates and ecological traits in an avian community. J. Anim. Ecol. 87:1172–81
    [Google Scholar]
  13. Bingman VP, Ewry EM. 2020. On a search for a neurogenomics of cognitive processes supporting avian migration and navigation. Integr. Comp. Biol. 60:967–75
    [Google Scholar]
  14. Bonfil R, Meÿer M, Scholl MC, Johnson R, O'Brien S et al. 2005. Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310:100–3
    [Google Scholar]
  15. Bowlin MS, Bisson IA, Shamoun-Baranes J, Reichard JD, Sapir N et al. 2010. Grand challenges in migration biology. Integr. Comp. Biol. 50:261–79
    [Google Scholar]
  16. Boyle WA, Conway CJ. 2007. Why migrate? A test of the evolutionary precursor hypothesis. Am. Nat. 169:344–59
    [Google Scholar]
  17. Boyle WA, Norris DR, Guglielmo CG 2010. Storms drive altitudinal migration in a tropical bird. Proc. R. Soc. B 277:2511–19
    [Google Scholar]
  18. Briedis M, Bauer S, Adamík P, Alves JA, Costa JS et al. 2019. A full annual perspective on sex-biased migration timing in long-distance migratory birds. Proc. R. Soc. B 286:20182821
    [Google Scholar]
  19. Briedis M, Krist M, Král M, Voigt CC, Adamík P. 2018. Linking events throughout the annual cycle in a migratory bird—non-breeding period buffers accumulation of carry-over effects. Behav. Ecol. Sociobiol. 72:93
    [Google Scholar]
  20. Cagnacci F, Focardi S, Heurich M, Stache A, Hewison AM et al. 2011. Partial migration in roe deer: Migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120:1790–802
    [Google Scholar]
  21. Chapman BB, Bronmark CC, Nilsson JA, Hansson LA. 2011. The ecology and evolution of partial migration. Oikos 120:1764–75
    [Google Scholar]
  22. Chapman BB, Hulthen K, Brodersen J, Nilsson PA, Skov C et al. 2012. Partial migration in fishes: causes and consequences. J. Fish Biol. 81:456–78
    [Google Scholar]
  23. Chapman JW, Reynolds DR, Wilson K 2015. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18:287–302
    [Google Scholar]
  24. Cheng Y, Fiedler W, Wikelski M, Flack A 2019.. “ Closer-to-home” strategy benefits juvenile survival in a long-distance migratory bird. Ecol. Evol. 9:8945–52
    [Google Scholar]
  25. Chesser RT. 2000. Evolution in the high Andes: the phylogenetics of Muscisaxicola ground-tyrants. Mol. Phylogenet. Evol. 15:369–80
    [Google Scholar]
  26. Cohen EB, Rushing CR, Moore FR, Hallworth MT, Hostetler JA. 2019. The strength of migratory connectivity for birds en route to breeding through the Gulf of Mexico. Ecography 42:658–69
    [Google Scholar]
  27. Contina A, Bridge ES, Ross JD, Shipley JR, Kelly JF. 2018. Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine. PLOS ONE 13:e0190859
    [Google Scholar]
  28. Cox GW. 1968. The role of competition in the evolution of migration. Evolution 22:180–92
    [Google Scholar]
  29. Cox GW. 1985. The evolution of avian migration systems between temperate and tropical regions of the New World. Am. Nat. 126:451–74
    [Google Scholar]
  30. Dale CA, Nocera JJ, Franks SE, Kyser TK, Ratcliffe LM. 2019. Correlates of alternative migratory strategies in western bluebirds. J. Avian Biol. 50: https://doi.org/10.1111/jav.02031
    [Crossref] [Google Scholar]
  31. Davidson SC, Bohrer G, Gurarie E, LaPoint S, Mahoney PJ et al. 2020. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370:712–15
    [Google Scholar]
  32. de Zoeten T, Pulido F. 2020. How migratory populations become resident. Proc. R. Soc. B 287:20193011
    [Google Scholar]
  33. Delmore KE, Doren BMV, Conway GJ, Curk T, Garrido-Garduño T et al. 2020. Individual variability and versatility in an eco-evolutionary model of avian migration. Proc. R. Soc. B 287:20201339
    [Google Scholar]
  34. Delmore KE, Toews DP, Germain RR, Owens GL, Irwin DE. 2016. The genetics of seasonal migration and plumage color. Curr. Biol. 26:2167–73
    [Google Scholar]
  35. DeLuca WV, Woodworth BK, Mackenzie SA, Newman AE, Cooke HA et al. 2019. A boreal songbird's 20,000 km migration across North America and the Atlantic Ocean. Bull. Ecol. Soc. Am. 100:1–5
    [Google Scholar]
  36. Dingle H. 2006. Animal migration: Is there a common migratory syndrome?. J. Ornithol. 147:212–20
    [Google Scholar]
  37. Dingle H. 2008. Bird migration in the southern hemisphere: a review comparing continents. Emu 108:341–59
    [Google Scholar]
  38. Dingle H. 2014. Migration: The Biology of Life on the Move Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  39. Dunn RE, Wanless S, Daunt F, Harris MP, Green JA 2020. A year in the life of a north Atlantic seabird: behavioural and energetic adjustments during the annual cycle. Sci. Rep. 10:5993
    [Google Scholar]
  40. Evans DM, Day KR. 2001. Migration patterns and sex ratios of diving ducks wintering in Northern Ireland with specific reference to Lough Neagh. Ringing Migr 20:358–63
    [Google Scholar]
  41. Finch T, Butler SJ, Franco AM, Cresswell W. 2017. Low migratory connectivity is common in long-distance migrant birds. J. Anim. Ecol. 86:662–73
    [Google Scholar]
  42. Franchini P, Irisarri I, Fudickar AM, Schmidt A, Meyer A et al. 2017. Animal tracking meets migration genomics: transcriptomic analyses of a partially migratory bird species. Mol. Ecol. 26:3204–16
    [Google Scholar]
  43. Fudickar AM, Greives TG, Abolins-Abols M, Atwell JW, Meddle SL et al. 2017. Mechanisms associated with an advance in the timing of seasonal reproduction in an urban songbird. Front. Ecol. Evol. 5:85
    [Google Scholar]
  44. Fudickar AM, Greives TG, Atwell JW, Stricker CA, Ketterson ED. 2016a. Reproductive allochrony in seasonally sympatric populations maintained by differential response to photoperiod: implications for population divergence and response to climate change. Am. Nat. 187:436–46
    [Google Scholar]
  45. Fudickar AM, Peterson M, Greives TG, Atwell JW, Bridge ES, Ketterson ED. 2016b. Differential gene expression in seasonal sympatry: mechanisms involved in diverging life histories. Biol. Lett. 12:20160069
    [Google Scholar]
  46. Furey NB, Armstrong JB, Beauchamp DA, Hinch SG. 2018. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2:1846–53
    [Google Scholar]
  47. Gill RE Jr., Piersma T, Hufford G, Servranckx R, Riegen A 2005. Crossing the ultimate ecological barrier: evidence for an 11 000-km-long nonstop flight from Alaska to New Zealand and eastern Australia by bar-tailed godwits. Condor 107:1–20
    [Google Scholar]
  48. Gnanadesikan GE, Pearse WD, Shaw AK. 2017. Evolution of mammalian migrations for refuge, breeding, and food. Ecol. Evol. 7:5891–900
    [Google Scholar]
  49. Gómez-Bahamón V, Márquez R, Jahn AE, Miyaki CY, Tuero DT et al. 2020. Speciation associated with shifts in migratory behavior in an avian radiation. Curr. Biol. 30:1312–21
    [Google Scholar]
  50. Gow EA, Wiebe KL. 2014. Males migrate farther than females in a differential migrant: an examination of the fasting endurance hypothesis. R. Soc. Open Sci. 1:140346
    [Google Scholar]
  51. Greenberg R. 1980. Demographic aspects of long-distance migration. Migrant Birds in the Neotropics: Behavior, Distribution, and Conservation A Keast, ES Morton 493–504 Washington, DC: Smithson. Inst.
    [Google Scholar]
  52. Harringmeyer OS, Woolfolk ML, Hoekstra HE. 2021. Fishing for the genetic basis of migratory behavior. Cell 184:303–5
    [Google Scholar]
  53. Hays GC, Cerritelli G, Esteban N, Rattray A, Luschi P 2020. Open ocean reorientation and challenges of island finding by sea turtles during long-distance migration. Curr. Biol. 30:3236–42
    [Google Scholar]
  54. Hays GC, Ferreira LC, Sequeira AMM, Meekan MG, Duarte CM et al. 2016. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31:463–75
    [Google Scholar]
  55. Hedenström A, Norevik G, Warfvinge K, Andersson A, Bäckman J, Åkesson S. 2016. Annual 10-month aerial life phase in the common swift Apus apus. Curr. Biol. 26:3066–70
    [Google Scholar]
  56. Helm B, Gwinner E. 2006. Migratory restlessness in an equatorial nonmigratory bird. PLOS Biol 4:e110
    [Google Scholar]
  57. Hewson CM, Thorup K, Pearce-Higgins JW, Atkinson PW. 2016. Population decline is linked to migration route in the Common Cuckoo. Nat. Commun. 7:12296
    [Google Scholar]
  58. Hobson KA, Jinguji H, Ichikawa Y, Kusack JW, Anderson RC. 2020. Long-distance migration of the globe skimmer dragonfly to Japan revealed using stable hydrogen (δ2H) isotopes. Environ. Entomol. 50:247–55
    [Google Scholar]
  59. Horton WJ, Jensen M, Sebastian A, Praul CA, Albert I, Bartell PA 2019. Transcriptome analyses of heart and liver reveal novel pathways for regulating songbird migration. Sci. Rep. 15:6058
    [Google Scholar]
  60. Hostetler JA, Sillett TS, Marra PP. 2015. Full-annual-cycle population models for migratory birds. Auk 132:433–49
    [Google Scholar]
  61. Iiams SE, Lugena AB, Zhang Y, Hayden AN, Merlin C 2019. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. PNAS 116:25214–21
    [Google Scholar]
  62. Jahn AE, Cueto VR, Fontana CS, Guaraldo AC, Levey DJ et al. 2020. Bird migration within the Neotropics. Auk 137:ukaa033
    [Google Scholar]
  63. Jahn AE, Levey DJ, Hostetler JA, Mamani AM. 2010. Determinants of partial bird migration in the Amazon Basin. J. Anim. Ecol. 79:983–92
    [Google Scholar]
  64. Joly K, Gurarie E, Sorum MS, Kaczensky P, Cameron MD et al. 2019. Longest terrestrial migrations and movements around the world. Sci. Rep. 9:15333
    [Google Scholar]
  65. Kays R, Crofoot MC, Jetz W, Wikelski M 2015. Terrestrial animal tracking as an eye on life and planet. Science 348:6240aaa2478
    [Google Scholar]
  66. Ketterson ED, Nolan V. 1976. Geographic variation and its climatic correlates in the sex ratio of eastern-wintering dark-eyed juncos (Junco hyemalis hyemalis). Ecology 57:679–93
    [Google Scholar]
  67. Ketterson ED, Nolan V. 1983. The evolution of differential bird migration. Current Ornithology RF Johnston 357–402 New York: Springer
    [Google Scholar]
  68. Knight EC, Harrison AL, Scarpignato AL, Van Wigenburg SL, Bayne EM et al. 2021. Comprehensive estimation of spatial and temporal migratory connectivity across the annual cycle to direct conservation efforts. Ecography 44:66579
    [Google Scholar]
  69. Knight SM, Pitman GM, Flockhart DTT, Norris DR. 2019. Radio-tracking reveals how wind and temperature influence the pace of daytime insect migration. Biol. Lett. 15:20190327
    [Google Scholar]
  70. Kokko H, Gunnarsson TG, Morrell LJ, Gill JA. 2006. Why do female migratory birds arrive later than males?. J. Anim. Ecol. 75:1293–303
    [Google Scholar]
  71. Levey DJ, Stiles FG. 1992. Evolutionary precursors of long-distance migration: resource availability and movement patterns in Neotropical landbirds. Am. Nat. 140:447–76
    [Google Scholar]
  72. Liedvogel M, Åkesson S, Bensch S. 2011. The genetics of migration on the move. Trends Ecol. Evol. 26:561–69
    [Google Scholar]
  73. Lok T, Overdijk O, Piersma T. 2015. The cost of migration: Spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett. 11:20140944
    [Google Scholar]
  74. Louchart A. 2008. Emergence of long-distance bird migrations: a new model integrating global climate changes. Naturwissenschaften 95:1109–19
    [Google Scholar]
  75. Lundberg M, Liedvogel M, Larson K, Sigeman H, Grahn M et al. 2017. Genetic differences between willow warbler migratory phenotypes are few and cluster in large haplotype blocks. Evol. Lett. 1:155–68
    [Google Scholar]
  76. Mansfield KL, Mendilaharsu ML, Putman NF, dei Marcovaldi MA, Sacco AE et al. 2017. First satellite tracks of South Atlantic sea turtle ‘lost years’: seasonal variation in trans-equatorial movement. Proc. R. Soc. B 284:20171730
    [Google Scholar]
  77. Marra PP, Cohen EB, Loss SR, Rutter JE, Tonra CM. 2015. A call for full annual cycle research in animal ecology. Biol. Lett. 11:20150552
    [Google Scholar]
  78. McGlothlin JW, Ketterson ED. 2008. Hormone-mediated suites as adaptations and evolutionary constraints. Phil. Trans. R. Soc. B 363:1611–20
    [Google Scholar]
  79. Menz MHM, Reynolds DR, Gao B, Hu G, Chapman JW, Wotton KR. 2019. Mechanisms and consequences of partial migration in insects. Front. Ecol. Evol. 7:403
    [Google Scholar]
  80. Merkle JA, Sawyer H, Monteith KL, Dwinnell SPH, Fralick GL, Kauffman MJ. 2019. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecol. Lett. 22:1797–805
    [Google Scholar]
  81. Merlin C, Iiams SE, Lugena AB. 2020. Monarch butterfly migration moving into the genetic era. Trends Genet 36:689–701
    [Google Scholar]
  82. Merlin C, Liedvogel M 2019. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J. Exp. Biol. 222:jeb191890
    [Google Scholar]
  83. Milner-Gulland EJ, Fryxell JM, Sinclair AR 2011. Animal Migration: A Synthesis Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  84. Morrison CA, Alves JA, Gunnarsson TG, Þórisson B, Gill JA. 2019. Why do earlier-arriving migratory birds have better breeding success?. Ecol. Evol. 9:8856–64
    [Google Scholar]
  85. Nathan R, Giuggioli L 2013. A milestone for movement ecology research. Mov. Ecol. 1:1
    [Google Scholar]
  86. Newton I. 2008. The Migration Ecology of Birds London: Elsevier
    [Google Scholar]
  87. Noonan MJ, Fleming CH, Akre TS, Drescher-Lehman J, Gurarie E et al. 2019. Scale-insensitive estimation of speed and distance traveled from animal tracking data. Mov. Ecol. 7:35
    [Google Scholar]
  88. Patrick SC, Weimerskirch H. 2017. Reproductive success is driven by local site fidelity despite stronger specialisation by individuals for large-scale habitat preference. J. Anim. Ecol. 86:674–82
    [Google Scholar]
  89. Perdeck AC. 1958. Two types of orientation in migrating starlings, Sturnus vulgaris L., and chaffinches, Fringilla coelebs L., as revealed by displacement experiments. Ardea 46:1–37
    [Google Scholar]
  90. Peterson MP, Abolins-Abols M, Atwell JW, Rice RJ, Milá B, Ketterson ED. 2013. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research 2:115
    [Google Scholar]
  91. Piersma T, Loonstra AJ, Verhoeven MA, Oudman T. 2020. Rethinking classic starling displacement experiments: evidence for innate or for learned migratory directions?. J. Avian. Biol. 51: https://doi.org/10.1111/jav.02337
    [Crossref] [Google Scholar]
  92. Piersma T, Pérez-Tris J, Mouritsen H, Bauchinger U, Bairlein F. 2005. Is there a “Migratory Syndrome” common to all migrant birds?. Ann. N. Y. Acad. Sci. 1046:282–93
    [Google Scholar]
  93. Piersma T, van Gils JA. 2011. The Flexible Phenotype: A Body-Centered Integration of Ecology, Physiology, and Behaviour Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  94. Price T. 2008. Speciation in Birds Greenwood Village, CO: Roberts & Co.
    [Google Scholar]
  95. Price T, Kirkpatrick M, Arnold SJ. 1988. Directional selection and the evolution of breeding dates in birds. Science 240:798–99
    [Google Scholar]
  96. Pulido F. 2011. Evolutionary genetics of partial migration–the threshold model of migration revis(it)ed. Oikos 120:1776–83
    [Google Scholar]
  97. Pulido F, Berthold P. 2010. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. PNAS 107:7341–46
    [Google Scholar]
  98. Pulido F, Berthold P, Van Noordwijk AJ. 1996. Frequency of migrants and migratory activity are genetically correlated in a bird population: evolutionary implications. PNAS 93:14642–47
    [Google Scholar]
  99. Ralston J, Lorenc L, Montes M, Deluca WV, Kirchman JJ et al. 2019. Length polymorphisms at two candidate genes explain variation of migratory behaviors in blackpoll warblers (Setophaga striata). Ecol. Evol. 9:8840–55
    [Google Scholar]
  100. Riekkola L, Andrews-Goff V, Friedlaender A, Zerbini AN, Constantine R. 2020. Longer migration not necessarily the costliest strategy for migrating humpback whales. Aquat. Conserv. 30:937–48
    [Google Scholar]
  101. Roberts BJ, Catterall CP, Eby P, Kanowski J. 2012. Long-distance and frequent movements of the flying-fox Pteropus poliocephalus: implications for management. PLOS ONE 7:e42532
    [Google Scholar]
  102. Rockwell SM, Wunderle JM, Sillett TS, Bocetti CI, Ewert DN et al. 2017. Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation. Oecologia 183:715–26
    [Google Scholar]
  103. Rolland J, Jiguet F, Jonsson KA, Condamine FL, Morlon H. 2014. Settling down of seasonal migrants promotes bird diversification. Proc. R. Soc. B 281:20140473
    [Google Scholar]
  104. Rolshausen G, Segelbacher G, Hobson KA, Schaefer HM. 2009. Contemporary evolution of reproductive isolation and phenotypic divergence in sympatry along a migratory divide. Curr. Biol. 19:2097–101
    [Google Scholar]
  105. Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC et al. 2019. Decline of the North American avifauna. Science 366:120–24
    [Google Scholar]
  106. Rotics S, Kaatz M, Turjeman S, Zurell D, Wikelski M 2018. Early arrival at breeding grounds: causes, costs and a trade-off with overwintering latitude. J. Anim. Ecol. 87:1627–38
    [Google Scholar]
  107. Ruegg KC, Anderson EC, Paxton KL, Apkenas V, Lao S et al. 2014. Mapping migration in a songbird using high-resolution genetic markers. Mol. Ecol. 23:5726–39
    [Google Scholar]
  108. Rushing CS, Hostetler JA, Sillett TS, Marra PP, Rotenberg JA, Ryder TB. 2017. Spatial and temporal drivers of avian population dynamics across the annual cycle. Ecology 98:2837–50
    [Google Scholar]
  109. Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F 2018. Genetics of dispersal. Biol. Rev. 93:574–99
    [Google Scholar]
  110. Saino N, Ambrosini R, Albetti B, Caprioli M, De Giorgio B et al. 2017. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow. Sci. Rep. 7:45412
    [Google Scholar]
  111. Schmaljohann H. 2019. The start of migration correlates with arrival timing, and the total speed of migration increases with migration distance in migratory songbirds: a cross-continental analysis. Mov. Ecol. 7:25
    [Google Scholar]
  112. Schmaljohann H. 2020. Radar aeroecology – a missing piece of the puzzle for studying the migration ecology of animals. Ecography 43:236–38
    [Google Scholar]
  113. Servedio MR, Doorn GSV, Kopp M, Frame AM, Nosil P. 2011. Magic traits in speciation: ‘magic’ but not rare?. Trends Ecol. Evol. 26:389–97
    [Google Scholar]
  114. Sharma A, Singh D, Malik S, Gupta NJ, Rani S, Kumar V 2018. Difference in control between spring and autumn migration in birds: insight from seasonal changes in hypothalamic gene expression in captive buntings. Proc. R. Soc. B 285:20181531
    [Google Scholar]
  115. Sheard C, Neate-Clegg MH, Alioravainen N, Jones SE, Vincent C et al. 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Comm. 11:2463
    [Google Scholar]
  116. Singh D, Montoure J, Ketterson ED 2021. Exposure to artificial light at night accelerates but does not override latitude-dependent seasonal reproductive response in a North American songbird. Environ. Pollut 279:116867
    [Google Scholar]
  117. Singh D, Reed SM, Kimmitt KA, Alford KA, Stricker CA et al. 2021. Breeding at higher latitude is associated with higher photoperiodic threshold and delayed reproductive development in a songbird. Horm. Behav. 128:104907
    [Google Scholar]
  118. Somveille M, Rodrigues AS, Manica A. 2015. Why do birds migrate? A macroecological perspective. Global Ecol. Biogeogr. 24:664–74
    [Google Scholar]
  119. Teitelbaum CS, Mueller T. 2019. Beyond migration: causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34:569–81
    [Google Scholar]
  120. Thompson NF, Anderson EC, Clemento AJ, Campbell MA, Pearse DE et al. 2020. A complex phenotype in salmon controlled by a simple change in migratory timing. Science 370:609–13
    [Google Scholar]
  121. Thorup K, Bisson IA, Bowlin MS, Holland RA, Wingfield JC, Ramenofsky M, Wikelski M 2007. Evidence for a navigational map stretching across the continental US in a migratory songbird. PNAS 104:18115–19
    [Google Scholar]
  122. Toews DP, Taylor SA, Streby HM, Kramer GR, Lovette IJ. 2019. Selection on VPS13A linked to migration in a songbird. PNAS 116:18272–74
    [Google Scholar]
  123. Tsai PY, Ko CJ, Chia SY, Lu YJ, Tuanmu MN. 2021. New insights into the patterns and drivers of avian altitudinal migration from a growing crowdsourcing data source. Ecography 44:75–86
    [Google Scholar]
  124. Turbek SP, Scordato ESC, Safran RJ. 2018. The role of seasonal migration in population divergence and reproductive isolation. Trends Ecol. Evol. 33:164–75
    [Google Scholar]
  125. Velten BP, Welch KC, Ramenofsky M 2016. Altered expression of pectoral myosin heavy chain isoforms corresponds to migration status in the white-crowned sparrow (Zonotrichia leucophrys gambelii). R. Soc. Open Sci. 3:160775
    [Google Scholar]
  126. Voelker G, Bowie RC, Klicka J. 2013. Gene trees, species trees and earth history combine to shed light on the evolution of migration in a model avian system. Mol. Ecol. 22:3333–44
    [Google Scholar]
  127. Waples RS, Naish KA, Primmer CR. 2020. Conservation and management of salmon in the age of genomics. Annu. Rev. Anim. Biosci. 8:117–43
    [Google Scholar]
  128. Watts HE, Cornelius JM, Fudickar AM, Pérez J, Ramenofsky M. 2018. Understanding variation in migratory movements: a mechanistic approach. Gen. Comp. Endocrin. 256:112–22
    [Google Scholar]
  129. Winger BM, Auteri GG, Pegan TM, Weeks BC. 2019. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94:737–52
    [Google Scholar]
  130. Winger BM, Barker FK, Ree RH. 2014. Temperate origins of long-distance seasonal migration in New World songbirds. PNAS 111:12115–20
    [Google Scholar]
  131. Winger BM, Lovette IJ, Winkler DW. 2012. Ancestry and evolution of seasonal migration in the Parulidae. Proc. R. Soc. B 279:610–18
    [Google Scholar]
  132. Winger B, Pegan TM. 2020. The evolution of seasonal migration and the slow-fast continuum of life history in birds. bioRxiv 2020.06.27.175539. https://doi.org/10.1101/2020.06.27.175539
    [Crossref]
  133. Winker K. 2010. On the Origin of Species through Heteropatric Differentiation: A Review and a Model of Speciation in Migratory Animals Ornithol. Monogr. 69 Berkeley, CA: Univ. Calif. Press
    [Google Scholar]
  134. Winkler DW, Gandoy FA, Areta JI, Iliff MJ, Rakhimberdiev E et al. 2017. Long-distance range expansion and rapid adjustment of migration in a newly established population of Barn Swallows breeding in Argentina. Curr. Biol. 27:1080–84
    [Google Scholar]
  135. Wood CC, Bickham JW, Nelson RJ, Foote CJ, Patton JC. 2008. Recurrent evolution of life history ecotypes in sockeye salmon: implications for conservation and future evolution. Evol. App. 1:207–21
    [Google Scholar]
  136. Zera AJ, Brisson JA 2012. Quantitative, physiological, and molecular genetics of dispersal/migration. Dispersal Ecology and Evolution J Clobert, M Baguette, TG Benton, JM Bullock 63–82 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  137. Zhan S, Zhang W, Niitepõld K, Hsu J, Haeger JF et al. 2014. The genetics of monarch butterfly migration and warning colouration. Nature 514:317–21
    [Google Scholar]
  138. Zhang CX, Brisson JA, Xu HJ. 2019. Molecular mechanisms of wing polymorphism in insects. Annu. Rev. Entomol. 64:297–314
    [Google Scholar]
  139. Zhang Y, Markert MJ, Groves SC, Hardin PE, Merlin C. 2017. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. PNAS 114:E7516–25
    [Google Scholar]
  140. Zink RM. 2011. The evolution of avian migration. Biol. J. Linn. Soc. 104:237–50
    [Google Scholar]
  141. Zink RM, Gardner AS. 2017. Glaciation as a migratory switch. Sci. Adv. 3:e1603133
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-031035
Loading
/content/journals/10.1146/annurev-ecolsys-012021-031035
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error