1932

Abstract

Sexual selection has the potential to decrease mean fitness in a population through an array of costs to nonsexual fitness. These costs may be offset when sexual selection favors individuals with high nonsexual fitness, causing the alignment of sexual and natural selection. We review the many laboratory experiments that have manipulated mating systems aimed at quantifying the net effects of sexual selection on mean fitness. These must be interpreted in light of population history and the diversity of ways manipulations have altered sexual interactions, sexual conflict, and sexual and natural selection. Theory and data suggest a net benefit is more likely when sexually concordant genetic variation is enhanced and that ecological context can mediate the relative importance of these different effects. Comparative studies have independently examined the consequences of sexual selection for population/species persistence. These provide little indication of a benefit, and interpreting these higher-level responses is challenging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-033324
2021-11-03
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-033324.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-033324&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal AF. 2001. Sexual selection and the maintenance of sexual reproduction. Nature 411:692–95
    [Google Scholar]
  2. Agrawal AF, Whitlock MC. 2012. Mutation load: the fitness of individuals in populations where deleterious alleles are abundant. Annu. Rev. Ecol. Evol. Syst. 43:115–35
    [Google Scholar]
  3. Almbro M, Simmons LW. 2013. Sexual selection can remove an experimentally induced mutation load. Evolution 68:295–300
    [Google Scholar]
  4. Amundsen T, Forsgren E. 2001. Male mate choice selects for female coloration in a fish. PNAS 98:13155–60
    [Google Scholar]
  5. Andersson MB. 1986. Evolution of condition-dependent sex ornaments and mating preferences: sexual selection based on viability differences. Evolution 40:804–16
    [Google Scholar]
  6. Andersson MB. 1994. Sexual Selection Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  7. Arbuthnott D, Dutton EM, Agrawal AF, Rundle HD. 2014. The ecology of sexual conflict: parallel evolution of male harm and female defense in experimental Drosophila melanogaster populations. Ecol. Lett. 17:221–28
    [Google Scholar]
  8. Arbuthnott D, Rundle HD. 2012. Sexual selection is ineffectual or inhibits the purging of deleterious mutations in Drosophila melanogaster: sexual selection and deleterious mutations. Evolution 66:2127–37
    [Google Scholar]
  9. Arnqvist G. 2006. Sensory exploitation and sexual conflict. Philos. Trans. R. Soc. B 361:375–86
    [Google Scholar]
  10. Arnqvist G, Rowe L. 2005. Sexual Conflict Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  11. Bonduriansky R. 2001. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol. Rev. 76:305–39
    [Google Scholar]
  12. Bonduriansky R, Chenoweth SF. 2009. Intralocus sexual conflict. Trends Ecol. Evol. 24:280–88
    [Google Scholar]
  13. Bro-Jørgensen J. 2014. Will their armaments be their downfall? Large horn size increases extinction risk in bovids. Anim. Conserv. 17:80–87
    [Google Scholar]
  14. Cally JG, Stuart-Fox D, Holman L. 2019. Meta-analytic evidence that sexual selection improves population fitness. Nat. Commun. 10:2017
    [Google Scholar]
  15. Candolin U, Heuschele J. 2008. Is sexual selection beneficial during adaptation to environmental change?. Trends Ecol. Evol. 23:446–52
    [Google Scholar]
  16. Charlesworth B. 1994. Evolution in Age-Structured Populations Cambridge, UK: Cambridge Univ. Press, 2nd ed..
    [Google Scholar]
  17. Chenoweth SF, Appleton NC, Allen SL, Rundle HD 2015. Genomic evidence that sexual selection impedes adaptation to a novel environment. Curr. Biol. 25:1860–66
    [Google Scholar]
  18. Chippindale AK, Gibson JR, Rice WR. 2001. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. PNAS 98:1671–75
    [Google Scholar]
  19. Colpitts J, Williscroft D, Sekhon HS, Rundle HD. 2017. The purging of deleterious mutations in simple and complex mating environments. Biol. Lett. 13:20170518
    [Google Scholar]
  20. Connallon T, Clark AG 2012. A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation. Genetics 190:1477–89
    [Google Scholar]
  21. Connallon T, Clark AG 2014. Evolutionary inevitability of sexual antagonism. Proc. R. Soc. B 281:20132123
    [Google Scholar]
  22. Cotton S, Small J, Pomiankowski A. 2006. Sexual selection and condition-dependent mate preferences. Curr. Biol. 16:R755–65
    [Google Scholar]
  23. Crow JF, Kimura M. 1970. An Introduction to Population Genetics Theory New York: Harper and Row
    [Google Scholar]
  24. Dale J, Dey CJ, Delhey K, Kempenaers B, Valcu M 2015. The effects of life history and sexual selection on male and female plumage colouration. Nature 527:367–70
    [Google Scholar]
  25. Darwin C 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London: John Murray, 1st ed..
    [Google Scholar]
  26. Darwin C 1871. The Descent of Man and Selection in Relation to Sex London: John Murray, 1st ed..
    [Google Scholar]
  27. De Lisle SP. 2019. Understanding the evolution of ecological sex differences: integrating character displacement and the Darwin-Bateman paradigm. Evol. Lett. 3:434–47
    [Google Scholar]
  28. De Lisle SP, Rowe L. 2015. Independent evolution of the sexes promotes amphibian diversification. Proc. R. Soc. B 282:20142213
    [Google Scholar]
  29. Doherty PF, Sorci G, Royle JA, Hines JE, Nichols JD, Boulinier T 2003. Sexual selection affects local extinction and turnover in bird communities. PNAS 100:5858–62
    [Google Scholar]
  30. Donze J, Moulton MP, Labisky RF, Jetz W 2004. Sexual plumage differences and the outcome of game bird (Aves: Galliformes) introductions on oceanic islands. Evol. Ecol. Res. 6:595–606
    [Google Scholar]
  31. Duncan RP, Blackburn TM, Rossinelli S, Bacher S 2014. Quantifying invasion risk: the relationship between establishment probability and founding population size. Methods Ecol. Evol. 5:1255–63
    [Google Scholar]
  32. Edward DA, Chapman T 2011. The evolution and significance of male mate choice. Trends Ecol. Evol. 26:647–54
    [Google Scholar]
  33. Ellegren H. 2007. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. R. Soc. B 274:1–10
    [Google Scholar]
  34. Emlen S, Oring L. 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197:215–23
    [Google Scholar]
  35. Fawcett TW, Johnstone RA. 2003. Mate choice in the face of costly competition. Behav. Ecol. 14:771–79
    [Google Scholar]
  36. Ferriere R, Legendre S. 2018. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Philos. Trans. R. Soc. B 368:20120081
    [Google Scholar]
  37. Fisher RA. 1919. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52:399–433
    [Google Scholar]
  38. Fowler K, Partridge L 1989. A cost of mating in female fruitflies. Nature 338:760–61
    [Google Scholar]
  39. Fricke C, Arnqvist G. 2007. Rapid adaptation to a novel host in a seed beetle (Callosobruchus maculatus): the role of sexual selection. Evolution 61:440–54
    [Google Scholar]
  40. Fricke C, Perry J, Chapman T, Rowe L. 2009. The conditional economics of sexual conflict. Biol. Lett. 5:671–74
    [Google Scholar]
  41. Gibson Vega A, Kennington WJ, Tomkins JL, Dugand RJ 2020. Experimental evidence for accelerated adaptation to desiccation through sexual selection on males. J. Evol. Biol. 33:1060–67
    [Google Scholar]
  42. Godwin JL, Lumley AJ, Michalczyk Ł, Martin OY, Gage MJG 2020. Mating patterns influence vulnerability to the extinction vortex. Glob. Change Biol. 26:4226–39
    [Google Scholar]
  43. Gonzalez-Voyer A, Fitzpatrick JL, Kolm N. 2008. Sexual selection determines parental care patterns in cichlid fishes. Evolution 62:2015–26
    [Google Scholar]
  44. Grieshop K, Stångberg J, Martinossi-Allibert I, Arnqvist G, Berger D 2016. Strong sexual selection in males against a mutation load that reduces offspring production in seed beetles. J. Evol. Biol. 29:1201–10
    [Google Scholar]
  45. Griffin RM, Dean R, Grace JL, Rydén P, Friberg U 2013. The shared genome is a pervasive constraint on the evolution of sex-biased gene expression. Mol. Biol. Evol. 30:92168–76
    [Google Scholar]
  46. Haldane JBS. 1932. The Causes of Evolution London: Harper
    [Google Scholar]
  47. Hardin G. 1968. The tragedy of the commons. Science 162:1243–48
    [Google Scholar]
  48. Holland B. 2002. Sexual selection fails to promote adaptation to a new environment. Evolution 56:721–30
    [Google Scholar]
  49. Holland B, Rice WR. 1999. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. PNAS 96:5083–88
    [Google Scholar]
  50. Hollis B, Fierst JL, Houle D. 2009. Sexual selection accelerates the elimination of a deleterious mutant in Drosophila melanogaster. . Evolution 63:324–33
    [Google Scholar]
  51. Hollis B, Houle D 2011. Populations with elevated mutation load do not benefit from the operation of sexual selection. J. Evol. Biol. 24:1918–26
    [Google Scholar]
  52. Hollis B, Koppik M, Wensing KU, Ruhmann H, Genzoni E et al. 2019. Sexual conflict drives male manipulation of female postmating responses in Drosophila melanogaster. PNAS 16:8437–44
    [Google Scholar]
  53. Houle D, Kondrashov AS. 2002. Coevolution of costly mate choice and condition-dependent display of good genes. Proc. R. Soc. B 269:97–104
    [Google Scholar]
  54. Hunt G, Martins MJF, Puckett TM, Lockwood R, Swaddle JP et al. 2017. Sexual dimorphism and sexual selection in cytheroidean ostracodes from the Late Cretaceous of the U.S. Coastal Plain. Paleobiology 43:620–41
    [Google Scholar]
  55. Iwasa Y, Pomiankowski A, Nee S 1991. The evolution of costly mate preferences II. The “handicap” principle. Evolution 45:1431–42
    [Google Scholar]
  56. Jacomb F, Marsh J, Holman L 2016. Sexual selection expedites the evolution of pesticide resistance. Evolution 70:2746–51
    [Google Scholar]
  57. Janicke T, Marie-Orleach L, Aubier TG, Perrier C, Morrow EH. 2019. Assortative mating in animals and its role for speciation. Am. Nat. 194:865–75
    [Google Scholar]
  58. Jarzebowska M, Radwan J. 2010. Sexual selection counteracts extinction of small populations of the bulb mites. Evolution 64:1283–89
    [Google Scholar]
  59. Jeschke JM, Strayer DL. 2006. Determinants of vertebrate invasion success in Europe and North America. Glob. Chang. Biol. 12:1608–19
    [Google Scholar]
  60. Kasimatis K, Nelson TC, Phillips PC 2017. Genomic signatures of sexual conflict. J. Heredity 108:780–90
    [Google Scholar]
  61. Kirkpatrick M, Ryan MJ. 1991. The evolution of mating preferences and the paradox of the lek. Nature 350:33–38
    [Google Scholar]
  62. Kodric-Brown A, Brown JH. 1987. Anisogamy, sexual selection, and the evolution and maintenance of sex. Evol. Ecol. 1:95–105
    [Google Scholar]
  63. Kokko H, Brooks R. 2003. Sexy to die for? Sexual selection and the risk of extinction. Ann. Zool. Fenn. 40:207–19
    [Google Scholar]
  64. Kokko H, Jennions MD. 2008. Parental investment, sexual selection and sex ratios. J. Evol. Biol. 21:919–48
    [Google Scholar]
  65. Lande R. 1980. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34:292–305
    [Google Scholar]
  66. Lande R. 1988. Genetics and demography in biological conservation. Science 241:1455–60
    [Google Scholar]
  67. Lande R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142:911–27
    [Google Scholar]
  68. Lande R, Engen S, Sæther B-E. 2017. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations. PNAS 114:11582–90
    [Google Scholar]
  69. Le Galliard JF, Fitz PS, Ferriere R, Clobert J 2005. Sex ratio bias, male aggression, and population collapse in lizards. PNAS 102:18231–36
    [Google Scholar]
  70. Long TAF, Agrawal AF, Rowe L. 2012. The effect of sexual selection on offspring fitness depends on the nature of genetic variation. Curr. Biol. 22:204–8
    [Google Scholar]
  71. Long TAF, Pischedda A, Stewart AD, Rice WR. 2009. A cost of sexual attractiveness to high-fitness females. PLOS Biol 7:e1000254
    [Google Scholar]
  72. Lorch P, Proulx S, Rowe L, Day T 2003. Condition-dependent sexual selection can accelerate adaptation. Evol. Ecol. Res. 5:867–81
    [Google Scholar]
  73. Louca S, Pennell MW. 2020. Extant time trees are consistent with a myriad of diversification histories. Nature 580:502–5
    [Google Scholar]
  74. Lumley AJ, Michalczyk Ł, Kitson JJN, Spurgin LG, Morrison CA et al. 2015. Sexual selection protects against extinction. Nature 522:470–73
    [Google Scholar]
  75. Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akçakaya HR et al. 2008. Quantification of extinction risk: IUCN's system for classifying threatened species. Conserv. Biol. 22:1424–42
    [Google Scholar]
  76. MacLellan K, Whitlock MC, Rundle HD. 2009. Sexual selection against deleterious mutations via variable male search success. Biol. Lett. 6:6795–97 2010. Biol. Lett. 6:862
    [Google Scholar]
  77. MacPherson A, Yun L, Barrera TS, Agrawal AF, Rundle HD. 2018. The effects of male harm vary with female quality and environmental complexity in Drosophila melanogaster. Biol. Lett. 14:20180443
    [Google Scholar]
  78. Mallet MA, Bouchard JM, Kimber CM, Chippindale AK 2011. Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females. BMC Evol. Biol. 11:156
    [Google Scholar]
  79. Mallet MA, Chippindale AK. 2011. Inbreeding reveals stronger net selection on Drosophila melanogaster males: implications for mutation load and the fitness of sexual females. Heredity 106:994–1002
    [Google Scholar]
  80. Mank JE. 2017. Population genetics of sexual conflict in the genomic era. Nat. Rev. Genet. 18:721–30
    [Google Scholar]
  81. Martínez-Ruiz C, Knell RJ. 2017. Sexual selection can both increase and decrease extinction probability: reconciling demographic and evolutionary factors. J. Anim. Ecol. 86:117–27
    [Google Scholar]
  82. Martins MJF. 2019. Adult sex-ratio in ostracods and its implications for sexual selection. Invertebr. Reprod. Dev. 63:178–88
    [Google Scholar]
  83. Martins MJF, Hunt G, Thompson CM, Lockwood R, Swaddle JP, Puckett TM. 2020. Shifts in sexual dimorphism across a mass extinction in ostracods: implications for sexual selection as a factor in extinction risk. Proc. R. Soc. B 287:20200730
    [Google Scholar]
  84. Martins MJF, Puckett TM, Lockwood R, Swaddle JP, Hunt G 2018. High male sexual investment as a driver of extinction in fossil ostracods. Nature 556:366–69
    [Google Scholar]
  85. McGuigan K, Petfield D, Blows MW 2011. Reducing mutation load through sexual selection on males. Evolution 65:2816–29
    [Google Scholar]
  86. McLain DK, Moulton MP, Redfearn TP. 1995. Sexual selection and the risk of extinction of introduced birds on oceanic islands. Oikos 74:27–34
    [Google Scholar]
  87. McLain DK, Moulton MP, Sanderson JG. 1999. Sexual selection and extinction: the fate of plumage-dimorphic and plumage-monomorphic birds introduced onto islands. Evol. Ecol. Res. 1:549–65
    [Google Scholar]
  88. Metz J, Mylius S, Diekmann O 2008. When does evolution optimize?. Evol. Ecol. Res. 10:629–54
    [Google Scholar]
  89. Morrow EH, Fricke C. 2004. Sexual selection and the risk of extinction in mammals. Proc. R. Soc. B 271:2395–401
    [Google Scholar]
  90. Morrow EH, Pitcher TE. 2003. Sexual selection and the risk of extinction in birds. Proc. R. Soc. B 270:1793–99
    [Google Scholar]
  91. Parker G 1979. Sexual selection and sexual conflict. Sexual Selection and Reproductive Competition in Insects M Blum, N Blum 123–66 New York: Academic
    [Google Scholar]
  92. Parrett JM, Knell RJ. 2018. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. R. Soc. B 285:20180303
    [Google Scholar]
  93. Parrett JM, Mann DJ, Chung AYC, Slade EM, Knell RJ 2019. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. 22:1629–37
    [Google Scholar]
  94. Partridge L. 1980. Mate choice increases a component of offspring fitness in fruit flies. Nature 283:290–91
    [Google Scholar]
  95. Perry JC, Rowe L. 2015. The evolution of sexually antagonistic phenotypes. Cold Spring Harb. Perspect. Biol. 7:a017558
    [Google Scholar]
  96. Pischedda A, Chippindale AK. 2006. Intralocus sexual conflict diminishes the benefits of sexual selection. PLOS Biol 4:e356
    [Google Scholar]
  97. Pischedda A, Friberg U, Stewart AD, Miller PM, Rice WR. 2015. Sexual selection has minimal impact on effective population sizes in species with high rates of random offspring mortality: an empirical demonstration using fitness distributions. Evolution 69:2638–47
    [Google Scholar]
  98. Plesnar A, Konior M, Radwan J. 2011. The role of sexual selection in purging the genome of induced mutations in the bulb mite (Rhizoglyphus robini). Evol. Ecol. Res. 13:209–16
    [Google Scholar]
  99. Plesnar-Bielak A, Skrzynecka AM, Prokop ZM, Radwan J. 2012. Mating system affects population performance and extinction risk under environmental challenge. Proc. R. Soc. B 279:4661–67
    [Google Scholar]
  100. Poissant J, Wilson AJ, Coltman DW. 2010. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64:97–107
    [Google Scholar]
  101. Pomiankowski A. 1987. The costs of choice in sexual selection. J. Theor. Biol. 128:195–218
    [Google Scholar]
  102. Power DJ, Holman L. 2015. Assessing the alignment of sexual and natural selection using radiomutagenized seed beetles. J. Evol. Biol. 28:1039–48
    [Google Scholar]
  103. Prasad NG, Bedhomme S, Day T, Chippindale AK. 2007. An evolutionary cost of separate genders revealed by male-limited evolution. Am. Nat. 169:29–37
    [Google Scholar]
  104. Prinzing A, Brändle M, Pfeifer R, Brandl R. 2002. Does sexual selection influence population trends in European birds?. Evol. Ecol. Res. 4:49–60
    [Google Scholar]
  105. Promislow DE, Smith EA, Pearse L 1998. Adult fitness consequences of sexual selection in Drosophila melanogaster. PNAS 95:10687–92
    [Google Scholar]
  106. Proulx SR. 2002. Niche shifts and expansion due to sexual selection. Evol. Ecol. Res. 4:351–69
    [Google Scholar]
  107. Queller DC. 1997. Why do females care more than males?. Proc. R. Soc. B 264:1555–57
    [Google Scholar]
  108. Radwan J. 2004. Effectiveness of sexual selection in removing mutations induced with ionizing radiation. Ecol. Lett. 7:1149–54
    [Google Scholar]
  109. Radwan J, Unrug J, Śnigórska K, Gawrońska K 2004. Effectiveness of sexual selection in preventing fitness deterioration in bulb mite populations under relaxed natural selection. J. Evol. Biol. 17:94–99
    [Google Scholar]
  110. Rankin DJ, Dieckmann U, Kokko H. 2011. Sexual conflict and the tragedy of the commons.. Am. Nat. 177:780–91
    [Google Scholar]
  111. Redding DW, Pigot AL, Dyer EE, Şekercioğlu ÇH, Kark S, Blackburn TM 2019. Location-level processes drive the establishment of alien bird populations worldwide. Nature 571:103–6
    [Google Scholar]
  112. Rice WR. 1998. Requisite mutational load, pathway epistasis and deterministic mutation accumulation in sexual versus asexual populations. Genetica 102–103:71–81
    [Google Scholar]
  113. Rice WR, Stewart AD, Morrow EH, Linder JE, Orteiza N, Byrne PG. 2006. Assessing sexual conflict in the Drosophila melanogaster laboratory model system. Philos. Trans. R. Soc. B 361:287–99
    [Google Scholar]
  114. Rostant WG, Mason JS, de Coriolis J-C, Chapman T. 2020. Resource-dependent evolution of female resistance responses to sexual conflict. Evol. Lett. 4:54–64
    [Google Scholar]
  115. Rowe L, Arnqvist G, Sih A, Krupa JJ. 1994. Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system. Trends Ecol. Evol. 9:289–93
    [Google Scholar]
  116. Rowe L, Chenoweth SF, Agrawal AF. 2018. The genomics of sexual conflict. Am. Nat. 192:274–86
    [Google Scholar]
  117. Rowe L, Houle D 1996. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. B 263:1415–21
    [Google Scholar]
  118. Rundle HD, Chenoweth SF, Blows MW. 2006. The roles of natural and sexual selection during adaptation to a novel environment. Evolution 60:2218–25
    [Google Scholar]
  119. Ruzicka F, Hill MS, Pennell TM, Flis I, Ingleby FC et al. 2019. Genome-wide sexually antagonistic variants reveal longstanding constraints on sexual dimorphism in the fruit fly. PLOS Biol 17:e3000244
    [Google Scholar]
  120. Schoener TW 1978. Competition and the niche. Biology of the Reptilia, Vol. 7 C Gans, DW Tinkle 35–136 New York: Academic
    [Google Scholar]
  121. Sharp NP, Agrawal AF. 2009. Sexual selection and the random union of gametes: testing for a correlation in fitness between mates in Drosophila melanogaster. Am. Nat. 174:613–22
    [Google Scholar]
  122. Sharp NP, Agrawal AF. 2013. Male-biased fitness effects of spontaneous mutations in Drosophila melanogaster. . Evolution 67:1189–95
    [Google Scholar]
  123. Sharp NP, Whitlock MC. 2019. No evidence of positive assortative mating for genetic quality in fruit flies. Proc. R. Soc. B 286:20191474
    [Google Scholar]
  124. Singh A, Agrawal AF, Rundle HD. 2017. Environmental complexity and the purging of deleterious alleles. Evolution 71:2714–20
    [Google Scholar]
  125. Sorci G, Møller AP, Clobert J. 1998. Plumage dichromatism of birds predicts introduction success in New Zealand. J. Anim. Ecol. 67:263–69
    [Google Scholar]
  126. Svensson EI, Connallon T. 2019. How frequency-dependent selection affects population fitness, maladaptation and evolutionary rescue. Evol. Appl. 12:1243–58
    [Google Scholar]
  127. Svensson EI, Waller JT. 2013. Ecology and sexual selection: evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism and speciation. Am. Nat. 182:E174–95
    [Google Scholar]
  128. Webb C. 2003. A complete classification of Darwinian extinction in ecological interactions. Am. Nat. 161:181–205
    [Google Scholar]
  129. Whitlock MC. 2000. Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evolution 54:1855–61
    [Google Scholar]
  130. Whitlock MC, Agrawal AF. 2009. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63:569–82
    [Google Scholar]
  131. Wigby S, Chapman T. 2005. Sex peptide causes mating costs in female Drosophila melanogaster. Curr. Biol. 15:316–21
    [Google Scholar]
  132. Yun L, Bayoumi M, Yang S, Chen PJ, Rundle HD, Agrawal AF. 2019. Testing for local adaptation in adult male and female fitness among populations evolved under different mate competition regimes. Evolution 73:1604–16
    [Google Scholar]
  133. Yun L, Chen PJ, Kwok KE, Angell CS, Rundle HD, Agrawal AF. 2018. Competition for mates and the improvement of nonsexual fitness. PNAS 115:6762–67
    [Google Scholar]
  134. Yun L, Chen PJ, Singh A, Agrawal AF, Rundle HD. 2017. The physical environment mediates male harm and its effect on selection in females. Proc. R. Soc. B 284:20170424
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-033324
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error