1932

Abstract

Beyond the better-studied carbohydrates and the macronutrients nitrogen and phosphorus, a remaining 20 or so elements are essential for life and have distinct geographical distributions, making them of keen interest to ecologists. Here, I provide a framework for understanding how shortfalls in micronutrients like iodine, copper, and zinc can regulate individual fitness, abundance, and ecosystem function. With a special focus on sodium, I show how simple experiments manipulating biogeochemistry can reveal why many of the variables that ecologists study vary so dramatically from place to place. I conclude with a discussion of how the Anthropocene's changing temperature, precipitation, and atmospheric CO levels are contributing to nutrient dilution (decreases in the nutrient quality at the base of food webs).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-090118
2021-11-03
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-090118.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-090118&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Dahhan J, Jannoun L, Haycock G. 2002. Effect of salt supplementation of newborn premature infants on neurodevelopmental outcome at 10–13 years of age. Arch. Dis. Child. Fetal Neonatal 86:F120–23
    [Google Scholar]
  2. Anderson-Teixeira KJ, Vitousek PM, Brown JH 2008. Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai'i. PNAS 105:228–33
    [Google Scholar]
  3. Appling AP, Heffernan JB. 2014. Nutrient limitation and physiology mediate the fine-scale (de)coupling of biogeochemical cycles. Am. Nat. 184:384–406
    [Google Scholar]
  4. Arms K, Feeny P, Lederhouse RC. 1974. Sodium: stimulus for puddling behavior by tiger swallowtail butterflies, Papilio glaucus. Science 185:372–74
    [Google Scholar]
  5. Baines SB, Twining BS, Vogt S, Balch WM, Fisher NS, Nelson DM. 2011. Elemental composition of equatorial Pacific diatoms exposed to additions of silicic acid and iron. Deep Sea Res. Part II: Topical Stud. Oceanography 58:512–23
    [Google Scholar]
  6. Bairoch A. 2000. The ENZYME database in 2000. Nucleic Acids Res 28:304–5
    [Google Scholar]
  7. Barron A, Wurzburger N, Bellenger J, Wright S, Kraepiel A, Hedin L. 2008. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat. Geoscience 2:42–45
    [Google Scholar]
  8. Begon M, Harper JL, Townsend CR. 1996. Ecology: Individuals, Populations and Communities Oxford, UK: Blackwell Sci, 3rd ed..
    [Google Scholar]
  9. Berg B, Johansson M-B, Ekbohm G, McClaugherty C, Rutigliano F, Santo AVD. 1996. Maximum decomposition limits of forest litter types: a synthesis. Can. J. Bot. 74:659–72
    [Google Scholar]
  10. Black RE, Allen LH, Bhutta ZA, Caulfield LE, De Onis M et al. 2008. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–60
    [Google Scholar]
  11. Borer ET, Lind EM, Firn J, Seabloom EW, Anderson TM et al. 2019. More salt, please: global patterns, responses and impacts of foliar sodium in grasslands. Ecol. Lett. 22:1136–44
    [Google Scholar]
  12. Boyd P, Watson A, Law C, Abraham E, Trull T et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702
    [Google Scholar]
  13. Burger J, Gochfeld M, Shukla T, Jeitner C, Burke S et al. 2007. Heavy metals in Pacific cod (Gadus macrocephalus) from the Aleutians: location, age, size, and risk. J. Toxicol. Environ. Health, Part A 70:1897–911
    [Google Scholar]
  14. Cataldo D, Wildung R. 1978. Soil and plant factors influencing the accumulation of heavy metals by plants. Environ. Health Perspect. 27:149–59
    [Google Scholar]
  15. Chaucheyras-Durand F, Ossa F 2014. The rumen microbiome: composition, abundance, diversity, and new investigative tools. Prof. Anim. Sci. 30:1–12
    [Google Scholar]
  16. Clay NA, Donoso DA, Kaspari M. 2014a. Urine as an important source of sodium increases decomposition in an inland but not coastal tropical forest. Oecologia 177:571–79
    [Google Scholar]
  17. Clay NA, Yanoviak SP, Kaspari M. 2014b. Short-term sodium inputs attract microbi-detritivores and their predators. Soil Biol. Biochem. 75:248–53
    [Google Scholar]
  18. Cohen AC. 2004. Insect Diets: Science and Technology Boca Raton, FL: CRC
    [Google Scholar]
  19. de Benoist B, McLean E, Egli I, Cogswell Meds. 2008. Worldwide prevalence of anaemia 1993–2005: WHO global database of anaemia World Health Organization Geneva: https://apps.who.int/iris/handle/10665/43894
    [Google Scholar]
  20. Droop M. 1974. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. UK 54:825–55
    [Google Scholar]
  21. Dudley R, Kaspari M, Yanoviak SP. 2012. Lust for salt in the western Amazon. Biotropica 44:6–9
    [Google Scholar]
  22. Dupont CL, Yang S, Palenik B, Bourne PE 2006. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. PNAS 103:17822–27
    [Google Scholar]
  23. Elser J, Bracken M, Cleland E, Gruner D, Harpole W et al. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10:1135–42
    [Google Scholar]
  24. Elser J, Fagan W, Kerkhoff A, Swenson N, Enquist B. 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol. 186:593–608
    [Google Scholar]
  25. Emanuel K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–88
    [Google Scholar]
  26. Enquist BJ, Niklas KJ. 2002. Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–20
    [Google Scholar]
  27. Ericsson G, Wallin K, Ball JP, Broberg M. 2001. Age-related reproductive effort and senescence in free-ranging moose, Alces alces. Ecology 82:1613–20
    [Google Scholar]
  28. Fan M-S, Zhao F-J, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP. 2008. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 22:315–24
    [Google Scholar]
  29. Fay PA, Prober SM, Harpole WS, Knops JM, Bakker JD et al. 2015. Grassland productivity limited by multiple nutrients. Nat. Plants 1:15080
    [Google Scholar]
  30. Feyrer J, Politi D, Weil DN. 2017. The cognitive effects of micronutrient deficiency: evidence from salt iodization in the United States. J. Eur. Econ. Assoc. 15:355–87
    [Google Scholar]
  31. Filipiak M. 2019. Key pollen host plants provide balanced diets for wild bee larvae: a lesson for planting flower strips and hedgerows. J. Appl. Ecol. 56:1410–18
    [Google Scholar]
  32. Filipiak M, Weiner J. 2014. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory. PLOS ONE 9:e115104A thoughtful exploration of ecological ionomics.
    [Google Scholar]
  33. Filipiak M, Weiner J. 2017. Plant–insect interactions: the role of ecological stoichiometry. Acta Agrobot 70:1710
    [Google Scholar]
  34. Foy C, Chaney RT, White M. 1978. The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29:511–66
    [Google Scholar]
  35. Frausto da Silva JJR, Williams RJP. 2001. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life Oxford, UK: Oxford Univ. PressAuthoritative guide to the functioning of ionomes, with a biochemical perspective.
    [Google Scholar]
  36. Freeland W, Calcott P, Geiss D. 1985. Allelochemicals, minerals and herbivore population size. Biochem. Syst. Ecol 13:195–206
    [Google Scholar]
  37. Gherardi LA, Sala OE. 2019. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25:269–76
    [Google Scholar]
  38. Gillooly J, Allen A, Brown J, Elser J, del Rio C et al. 2005. The metabolic basis of whole-organism RNA and phosphorus content. PNAS 102:11923–27
    [Google Scholar]
  39. González AL, Céréghino R, Dézerald O, Farjalla VF, Leroy C et al. 2018. Ecological mechanisms and phylogeny shape invertebrate stoichiometry: a test using detritus-based communities across Central and South America. Funct. Ecol. 32:2448–63
    [Google Scholar]
  40. Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH. 2011. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 14:788–96
    [Google Scholar]
  41. Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET et al. 2011. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14:852–62
    [Google Scholar]
  42. Harpole WS, Tilman D. 2007. Grassland species loss resulting from reduced niche dimension. Nature 446:791–93
    [Google Scholar]
  43. Hassler C, Schoemann V, Nichols C, Butler E, Boyd P 2011. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. PNAS 108:1076–81
    [Google Scholar]
  44. Heil M, Baumann B, Krüger R, Linsenmair KE. 2004. Main nutrient compounds in food bodies of Mexican Acacia ant-plants. Chemoecology 14:45–52
    [Google Scholar]
  45. Hermoso de Mendoza García M, Moreno DH, Rodríguez FS, Beceiro AL, Álvarez LEF, López MP. 2011. Sex-and age-dependent accumulation of heavy metals (Cd, Pb and Zn) in liver, kidney and muscle of roe deer (Capreolus capreolus) from NW Spain. J. Environ. Sci. Health, Part A 46:109–16
    [Google Scholar]
  46. Hutchinson GE. 1948. On living in the biosphere. Sci. Mon. 67:393–97
    [Google Scholar]
  47. Jeppesen E, Jensen JP, Jensen C, Faafeng B, Hessen DO et al. 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6:313–25
    [Google Scholar]
  48. Jeyasingh PD, Goos JM, Lind PR, Chowdhury PR, Sherman RE. 2020. Phosphorus-supply driven shifts in the quotas of multiple elements in algae and Daphnia: ionomic basis of stoichiometric constraints. Ecol. Lett. 23:1064–72Experimental test of serial colimitation and how macronutrients drive demand for micronutrients.
    [Google Scholar]
  49. Joern A, Provin T, Behmer ST. 2012. Not just the usual suspects: insect herbivore populations and communities are associated with multiple plant nutrients. Ecology 93:1002–15A great example of using the comparative method to explore micronutrient limitation.
    [Google Scholar]
  50. Jones RL, Hanson HC. 1985. Mineral Licks, Geophagy, and Biogeochemistry of North American Ungulates Ames, IA: Iowa State PressA little-known wonder: an encyclopedic review of micronutrient limitation from a wildlife perspective.
    [Google Scholar]
  51. Judd TM, Magnus RM, Fasnacht MP. 2010. A nutritional profile of the social wasp Polistes metricus: differences in nutrient levels between castes and changes within castes during the annual life cycle. J. Insect Physiol. 56:42–56
    [Google Scholar]
  52. Kaspari M. 2020. The seventh macronutrient: how sodium shortfall ramifies through populations, food webs and ecosystems. Ecol. Lett. 23:1153–68Everything you have ever wanted to know about sodium limitation in ecological systems.
    [Google Scholar]
  53. Kaspari M, Bujan J, Weiser MD, Ning D, Michaletz ST et al. 2017. Biogeochemistry drives diversity in the prokaryotes, fungi, and invertebrates of a Panama forest. Ecology 98:2019–28
    [Google Scholar]
  54. Kaspari M, Chang C, Weaver J. 2010. Salted roads and sodium limitation in a northern forest ant community. Ecol. Entomol. 35:543–48
    [Google Scholar]
  55. Kaspari M, Clay NA, Donoso DA, Yanoviak SP. 2014. Sodium fertilization increases termites and enhances decomposition in an Amazonian forest. Ecology 95:795–800
    [Google Scholar]
  56. Kaspari M, de Beurs KM, Welti EAR. 2021. How and why plant ionomes vary across North American grasslands and its implications for herbivore abundance. Ecology In press. https://doi.org/10.1002/ecy.3459
    [Crossref] [Google Scholar]
  57. Kaspari M, Powers JS. 2016. Biogeochemistry and geographical ecology: embracing all twenty-five elements required to build organisms. Am. Nat. 188:S62–73
    [Google Scholar]
  58. Kaspari M, Wright J, Yavitt J, Harms K, Garcia M, Santana M. 2008a. Multiple nutrients regulate litterfall and decomposition in a tropical forest. Ecol. Lett. 11:35–43
    [Google Scholar]
  59. Kaspari M, Yanoviak SP. 2009. Biogeochemistry and the structure of tropical brown food webs. Ecology 90:3342–51
    [Google Scholar]
  60. Kaspari M, Yanoviak SP, Dudley R 2008b. On the biogeography of salt limitation: a study of ant communities. PNAS 105:17848–51
    [Google Scholar]
  61. Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA 2009. Sodium shortage as a constraint on the carbon cycle in an inland tropical forest. PNAS 106:19405–9
    [Google Scholar]
  62. Kingsolver JG, Huey RB. 2008. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10:251–68
    [Google Scholar]
  63. Knapp AK, Blair JM, Briggs JM, Collins SL, Hartnett DC et al. 1999. The keystone role of bison in North American tallgrass prairie: Bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. BioScience 49:39–50
    [Google Scholar]
  64. Liebig JV. 1855. Principles of Agricultural Chemistry with Special Reference to the Late Researches Made in England London: Dowden, Hutchinson & Ross
    [Google Scholar]
  65. Liu A, Hamel C, Hamilton R, Ma B, Smith D 2000. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–36
    [Google Scholar]
  66. Loladze I. 2014. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3:e02245A definitive review of nutrient dilution in the human food supply.
    [Google Scholar]
  67. Love AG, Davenport CB. 1919. Defects Found in Drafted Men: Statistical Information Compiled from the Draft Records Showing the Physical Condition of the Men Registered and Examined in Pursuance of the Requirements of the Selective-Service Act Washington, DC: US Government Printing Office
    [Google Scholar]
  68. Lucas JM, Gora E, Salzberg A, Kaspari M. 2019. Antibiotics as chemical warfare across multiple taxonomic domains and trophic levels in brown food webs. Proc. R. Soc. B 286:20191536
    [Google Scholar]
  69. Maurice N, Erdei L 2018. Termite gut microbiome. Termites and Sustainable Management: Volume 1 – Biology, Social Behaviour and Economic Importance MA Khan, W Ahmad 69–99 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  70. McDowell LR 2003a. Iodine. Minerals in Animal and Human Nutrition LR McDowell 305–34 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  71. McDowell LR 2003b. Minerals in Animal and Human Nutrition Amsterdam: Elsevier
    [Google Scholar]
  72. McNaughton SJ, Banyikwa FF, McNaughton MM. 1997. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278:1798–800A beautiful linkage of biogeochemistry and community ecology in the African megafauna.
    [Google Scholar]
  73. Medvedev N. 1999. Levels of heavy metals in Karelian wildlife, 1989–91. Environ. Monit. Assess 56:177–93
    [Google Scholar]
  74. Milewski AV, Diamond RE. 2000. Why are very large herbivores absent from Australia? A new theory of micronutrients. J. Biogeogr. 27:957–78A scholarly compendium of micronutrient limitation with Australia as the focus.
    [Google Scholar]
  75. Munroe J. 2020. Soil Fertility Handbook Publ. 611, Ontario Minist. Agric. Food Rural Aff., Guelph Canada:. , 3rd ed..
    [Google Scholar]
  76. NADP (Natl. Atmos. Depos. Program) 2021. National Atmospheric Deposition Program (NRSP-3). Dataset, NADP Program Office: Illinois State Water Survey, Champaign, IL. http://nadp.slh.wisc.edu/data/
  77. Natl. Res. Counc 2005. Mineral Tolerance of Animals Washington, DC: Natl. Acad. Press, 2nd ed..
    [Google Scholar]
  78. Orians GH, Milewski AV. 2007. Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol. Rev. 82:393–423A big picture, extraordinarily creative review of how biogeochemistry predicts the unique ecology of Australia.
    [Google Scholar]
  79. Ozment K, Welti EAR, Shaffer M, Kaspari M. 2021. Tracking nutrients in space and time: Interactions between grazing lawns and drought drive abundances of tallgrass prairie grasshoppers. Ecol. Entomol. 11:5413–23
    [Google Scholar]
  80. Paul A, Frederich M, Uyttenbroeck R, Hatt S, Malik P et al. 2016. Grasshoppers as a food source? A review. Biotechnol. Agron. Soc. Environ. 20:337–52
    [Google Scholar]
  81. Penuelas J, Fernández-Martínez M, Vallicrosa H, Maspons J, Zuccarini P et al. 2020. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Biol. 3:125
    [Google Scholar]
  82. Peterson T, Welti EAR, Kaspari M. 2021. Dietary sodium levels affect grasshopper growth and performance. Ecosphere 12:e03392
    [Google Scholar]
  83. Pivnick KA, McNeil JN. 1987. Puddling in butterflies: Sodium affects reproductive success in Thymelicus lineola. Physiol. Entomol. 12:461–72
    [Google Scholar]
  84. Power ME. 1992. Top-down and bottom-up forces in food webs: Do plants have primacy?. Ecology 73:733–46
    [Google Scholar]
  85. Powers JS, Salute S. 2011. Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation. Plant Soil 346:245–57
    [Google Scholar]
  86. Prather CM, Laws AN, Cuellar JF, Reihart RW, Gawkins KM, Pennings SC. 2018a. Seeking salt: Herbivorous prairie insects can be co-limited by macronutrients and sodium. Ecol. Lett. 21:1467–76
    [Google Scholar]
  87. Prather RM, Castillioni K, Kaspari M, Souza L, Prather CM et al. 2020. Micronutrients enhance macronutrient effects in a meta-analysis of grassland arthropod abundances. Glob. Ecol. Biogeogr. 29:2273–88A timely meta-analysis revealing the importance of micronutrients limiting herbivores more than the plants they eat.
    [Google Scholar]
  88. Prather RM, Roeder KA, Sanders NJ, Kaspari M. 2018b. Using metabolic and thermal ecology to predict temperature dependent ecosystem activity: a test with prairie ants. Ecology 99:2113–21
    [Google Scholar]
  89. Reihart RW, Angelos KP, Gawkins KM, Hurst SE, Montelongo DC et al. 2021. Crazy ants craving calcium: Macronutrients and micronutrients can limit and stress an invaded grassland brown food web. Ecology 102:e03263
    [Google Scholar]
  90. Ricklefs RE. 2010. Life-history connections to rates of aging in terrestrial vertebrates. PNAS 107:10314–19
    [Google Scholar]
  91. Rico-Gray V, Oliveira PS 2007. The Ecology and Evolution of Ant-Plant Interactions Chicago: Univ. Chicago Press
    [Google Scholar]
  92. Rosenthal GA, Janzen DH. 1979. Herbivores: Their Interactions with Secondary Plant Metabolites New York: Academic
    [Google Scholar]
  93. Ruytinx J, Kafle A, Usman M, Coninx L, Zimmermann SD, Garcia K. 2020. Micronutrient transport in mycorrhizal symbiosis; zinc steals the show. Fungal Biol. Rev. 34:1–9
    [Google Scholar]
  94. Salt DE, Baxter I, Lahner B. 2008. Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol. 59:709–33
    [Google Scholar]
  95. Scharnagl K, Scharnagl A, von Wettberg E. 2017. Nature's potato chip: the role of salty fungi in a changing world. Am. J. Bot. 104:641–44
    [Google Scholar]
  96. Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J et al. 2019. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574:671–74
    [Google Scholar]
  97. Sharma CP. 2006. Plant Micronutrients Boca Raton, FL: CRC Press
    [Google Scholar]
  98. Smith JCJ. 1987. Methods of trace element research. Trace Elements in Human and Animal Nutrition W Mertz 21–56 San Diego, CA: Academic
    [Google Scholar]
  99. Snell-Rood EC, Espeset A, Boser CJ, White WA, Smykalski R 2014. Anthropogenic changes in sodium affect neural and muscle development in butterflies. PNAS 111:10221–26An elegant demonstration of developmental effects of nutrient shortfall.
    [Google Scholar]
  100. Sperfeld E, Raubenheimer D, Wacker A. 2015. Bridging factorial and gradient concepts of resource co-limitation: towards a general framework applied to consumers. Ecol. Lett. 19:201–15
    [Google Scholar]
  101. Steinauer EM, Collins SL. 1995. Effects of urine deposition on small-scale patch structure in prairie vegetation. Ecology 76:1195–205
    [Google Scholar]
  102. Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere Princeton, NJ: Princeton Univ. PressThe book that started it all; required reading by two giants in the field.
    [Google Scholar]
  103. Sunda W, Huntsman S. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–92
    [Google Scholar]
  104. Swanson EM, Espeset A, Mikati I, Bolduc I, Kulhanek R et al. 2016. Nutrition shapes life-history evolution across species. Proc. R. Soc. B 283:20152764
    [Google Scholar]
  105. Swift M, Heal O, Andersen J. 1979. Decomposition in Terrestrial Ecosystems Berkeley: Univ. Calif. Press
    [Google Scholar]
  106. Teotia P, Kumar M, Prasad R, Kumar V, Tuteja N, Varma A 2017. Mobilization of micronutrients by mycorrhizal fungi. Mycorrhiza – Function, Diversity, State of the Art A Varma, R Prasad, N Tuteja 9–26 London: Springer
    [Google Scholar]
  107. Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD 2010. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. PNAS 107:5887–92
    [Google Scholar]
  108. Twining BS, Baines SB. 2013. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5:191–215
    [Google Scholar]
  109. Vitousek P. 1982. Nutrient cycling and nutrient use efficiency. Am. Nat. 119:553–72
    [Google Scholar]
  110. Wäckers F. 2004. Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biol. Control 29:307–14
    [Google Scholar]
  111. Waldron K, Robinson N 2009. How do bacterial cells ensure that metalloproteins get the correct metal?. Nat. Rev. Microbiol. 7:25–35
    [Google Scholar]
  112. Wardle DA, Walker LR, Bardgett RD. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–13
    [Google Scholar]
  113. Welti EAR, Kaspari M. 2021. Sodium addition increases leaf herbivory and fungal damage across four grasslands. Funct. Ecol. 35:1212–21
    [Google Scholar]
  114. Welti EAR, Roeder KA, de Beurs KM, Joern A, Kaspari M 2020. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. PNAS 117:7271–75An authoritative case study of how nutrient dilution drives insect declines, particularly of herbivores.
    [Google Scholar]
  115. Welti EAR, Sanders NJ, de Beurs KM, Kaspari M. 2019. A distributed experiment demonstrates widespread sodium limitation in grassland food webs. Ecology 100:e02600
    [Google Scholar]
  116. Wepprich T, Adrion JR, Ries L, Wiedmann J, Haddad NM. 2019. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLOS ONE 14:e0216270
    [Google Scholar]
  117. Wertz M. 1987. Trace Elements in Human and Animal Nutrition San Diego, CA: Academic
    [Google Scholar]
  118. White T. 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33:71–86
    [Google Scholar]
  119. Woodroffe G, Lawton J, Davidson W 1990. Patterns in the production of latrines by water voles (Arvicola terrestris) and their use as indices of abundance in population surveys. J. Zool. 220:439–45
    [Google Scholar]
  120. Woods H, Fagan W, Elser J, Harrison J. 2004. Allometric and phylogenetic variation in insect phosphorus content. Funct. Ecol. 18:103–9
    [Google Scholar]
  121. Wright SJ, Turner BL, Yavitt JB, Harms KE, Kaspari M et al. 2018. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 99:1129–38
    [Google Scholar]
  122. Wurtsbaugh WA, Paerl HW, Dodds WK. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 6:e1373
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-090118
Loading
/content/journals/10.1146/annurev-ecolsys-012021-090118
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error