1932

Abstract

Past biological invasions have contributed to shaping our present day biodiversity. For many island ecosystems, they are the only source of terrestrial life. At the same time, biological invasions, in particular when caused by human activity, are a major concern for the conservation of native species. It is therefore essential to understand the drivers of biological invasions as well as the role invasions have played in different ecosystems. Molecular tools have provided valuable data to reconstruct biological invasions, their drivers, and their impacts. Recent technological developments have further increased the potential of molecular tools to track past shifts in biodiversity. Here, we provide a perspective on how such molecular tools have influenced our understanding of past biological invasions and discuss how they may further help to shape our understanding and management of biological invasions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-100938
2021-11-03
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-100938.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-100938&mimeType=html&fmt=ahah

Literature Cited

  1. Allentoft ME, Heller R, Oskam CL, Lorenzen ED, Hale ML et al. 2014. Extinct New Zealand megafauna were not in decline before human colonization. PNAS 111:134922–27
    [Google Scholar]
  2. Austin CC. 1999. Lizards took express train to Polynesia. Nature 397:6715113–14
    [Google Scholar]
  3. Balme J, O'Connor S 2016. Dingoes and Aboriginal social organization in Holocene Australia. J. Archaeol. Sci. Rep. 7:775–81
    [Google Scholar]
  4. Banks JC, Mitchell AD, Waas JR, Paterson AM. 2002. An unexpected pattern of molecular divergence within the blue penguin (Eudyptula minor) complex. Notornis 49:129–38
    [Google Scholar]
  5. Baudouin L, Lebrun P. 2009. Coconut (Cocos nucifera L.) DNA studies support the hypothesis of an ancient Austronesian migration from Southeast Asia to America. Genet. Resour. Crop Evol. 56:2257–62
    [Google Scholar]
  6. Bellamy D. 1990. Moa's Ark: The Voyage of New Zealand New York: Viking
    [Google Scholar]
  7. Birks HJB, Birks HH. 2016. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras?. New Phytol 209:2499–506
    [Google Scholar]
  8. Boessenkool S, Austin JJ, Worthy TH, Scofield P, Cooper A et al. 2009. Relict or colonizer? Extinction and range expansion of penguins in southern New Zealand. Proc. R. Soc. B 276: 1658.815–21
    [Google Scholar]
  9. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N et al. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–97
    [Google Scholar]
  10. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N et al. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:7370506–10
    [Google Scholar]
  11. Bulmer S 2001. Lapita dogs and singing dogs and the history of the dog in New Guinea. The Archaeology of Lapita Dispersal in Oceania: Papers from the Fourth Lapita Conference, June 2000, Canberra, Australia GR Clark, AJ Anderson, T Vunidilo 183–201 Canberra, Aust: Pandanus Books
    [Google Scholar]
  12. Bunce M, Szulkin M, Lerner HRL, Barnes I, Shapiro B et al. 2005. Ancient DNA provides new insights into the evolutionary history of New Zealand's extinct giant eagle. PLOS Biol 3:1e9
    [Google Scholar]
  13. Burney DA, Flannery TF. 2005. Fifty millennia of catastrophic extinctions after human contact. Trends Ecol. Evol. 20:7395–401
    [Google Scholar]
  14. Chang D, Knapp M, Enk J, Lippold S, Kircher M et al. 2017. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Sci. Rep. 7:44585
    [Google Scholar]
  15. Clarke AC. 2009. The origins and dispersals of the sweet potato and bottle gourd in Oceania: implications for prehistoric human mobility PhD Thesis, Massey Univ., Palmerston North New Zealand:
    [Google Scholar]
  16. Clarkson C, Jacobs Z, Marwick B, Fullagar R, Wallis L et al. 2017. Human occupation of northern Australia by 65,000 years ago. Nature 547:7663306–10
    [Google Scholar]
  17. Collins CJ, Rawlence NJ, Prost S, Anderson CNK, Knapp M et al. 2014. Extinction and recolonization of coastal megafauna following human arrival in New Zealand. Proc. R. Soc. B 281:20140097
    [Google Scholar]
  18. Collins CJ, Rawlence NJ, Worthy TH, Scofield RP, Tennyson AJD et al. 2013. Pre-human New Zealand sea lion (Phocarctos hookeri) rookeries on mainland New Zealand. J. R. Soc. New Zeal. 44:11–16
    [Google Scholar]
  19. Comas I, Coscolla M, Luo T, Borrell S, Holt KE et al. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45:101176–82
    [Google Scholar]
  20. Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A et al. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. PNAS 110:15758–63
    [Google Scholar]
  21. Dannemann M, Andrés AM, Kelso J. 2016. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human Toll-like receptors. Am. J. Hum. Genet. 98:122–33
    [Google Scholar]
  22. Debruyne R, Chu G, King CE, Bos K, Kuch M et al. 2008. Out of America: ancient DNA evidence for a New World origin of Late Quaternary woolly mammoths. Curr. Biol. 18:171320–26
    [Google Scholar]
  23. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLOS Biol 4:5699–710
    [Google Scholar]
  24. Flannery TF, White JP 1991. Animal translocation. Res. Explor. 7:196–113
    [Google Scholar]
  25. Gage KL, Kosoy MY. 2005. Natural history of plague: perspectives from more than a century of research. Annu. Rev. Entomol. 50:505–28
    [Google Scholar]
  26. Gage KL, Kosoy MY 2006. Recent trends in plague ecology. Recovery of the Black-Footed Ferret: Progress and Continuing Challenges JE Roelle, BJ Miller, JL Godbey, DE Biggins 213–31 Sci. Investig. Rep. 2005–5293 U.S. Geol. Surv. Reston, VA:
    [Google Scholar]
  27. Gagneux S, Small PM. 2007. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis. 7:5328–37
    [Google Scholar]
  28. Gemmell NJ, Schwartz MK, Robertson BC. 2004. Moa were many. Proc. R. Soc. B 271:Suppl. 6S430–32
    [Google Scholar]
  29. Geoghegan JL, Ren X, Storey M, Hadfield J, Jelley L et al. 2020. Genomic epidemiology reveals transmission patterns and dynamics of SARS-CoV-2 in Aotearoa New Zealand. Nat. Commun. 11:16351
    [Google Scholar]
  30. Gilbert MTP, Jenkins DL, Gotherstrom A, Naveran N, Sanchez JJ et al. 2008. DNA from pre-Clovis human coprolites in Oregon, North America. Science 320:5877786–89
    [Google Scholar]
  31. Gilbert MTP, Willerslev E. 2007. Ancient plant DNA. Encyclopedia of Quaternary Science AE Scott 1574–81 Oxford, UK: Elsevier
    [Google Scholar]
  32. Giovas CM. 2006. No pig atoll: island biogeography and the extirpation of a Polynesian domesticate. Asian Perspect 45:169–95
    [Google Scholar]
  33. Grayson DK. 2001. The archaeological record of human impacts on animal populations. J. World Prehistory 15:11–68
    [Google Scholar]
  34. Greig K, Gosling AL, Collins C, Boocock J, McDonald K et al. 2018. Tracking dogs across the Pacific: ancient mitogenomes reveal a complex history of origins and translocations. Sci. Rep. 8:9130
    [Google Scholar]
  35. Greig K, Walter R, Matisoo-Smith EA 2016. Dogs and people in Southeast Asia and the Pacific. The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands M Oxenham, HR Buckley 462–82 Abingdon, UK: Routledge
    [Google Scholar]
  36. Grosser S, Rawlence NJ, Anderson CNK, Smith IWG, Scofield RP, Waters JM. 2016. Invader or resident? Ancient-DNA reveals rapid species turnover in New Zealand little penguins. Proc. R. Soc. B 283:20152879
    [Google Scholar]
  37. Hawlitschek O, Porch N, Hendrich L, Balke M. 2011. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding. PLOS ONE 6:2e16662
    [Google Scholar]
  38. Heather J, Chain B. 2016. The sequence of sequencers: the history of sequencing DNA. Genomics 107:11–8
    [Google Scholar]
  39. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:5991282–84
    [Google Scholar]
  40. Hill AP, Hadly EA. 2018. Rethinking “native” in the Anthropocene. Front. Earth Sci. 6:96
    [Google Scholar]
  41. Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J et al. 2011. Time-dependent rates of molecular evolution. Mol. Ecol. 20:153087–101
    [Google Scholar]
  42. Ho SYW, Phillips MJ, Cooper A, Drummond AJ 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol. Biol. Evol. 22:71561–68
    [Google Scholar]
  43. Hofreiter M, Münzel S, Conard NJ, Pollack J, Slatkin M et al. 2007. Sudden replacement of cave bear mitochondrial DNA in the late Pleistocene. Curr. Biol. 17:4R122–23
    [Google Scholar]
  44. Jacomb C, Holdaway RN, Allentoft ME, Bunce M, Oskam CL et al. 2014. High-precision dating and ancient DNA profiling of moa (Aves: Dinornithiformes) eggshell documents a complex feature at Wairau Bar and refines the chronology of New Zealand settlement by Polynesians. J. Archaeol. Sci. 50:24–30
    [Google Scholar]
  45. Kirch PV. 2017. On the Road of the Winds: An Archaeological History of the Pacific Islands before European Contact Berkeley, CA: Univ. Calif. Press
    [Google Scholar]
  46. Kistler L, Montenegro Á, Smith BD, Gifford JA, Green RE et al. 2014. Transoceanic drift and the domestication of African bottle gourds in the Americas. PNAS 111:82937–41
    [Google Scholar]
  47. Knapp M. 2011. The next generation of genetic investigations into the Black Death. PNAS 108:3815669–70
    [Google Scholar]
  48. Knapp M, Stöckler K, Havell D, Delsuc F, Sebastiani F, Lockhart PJ. 2005. Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech). PLOS Biol 3:1e14
    [Google Scholar]
  49. Knapp M, Thomas JE, Haile J, Prost S, Ho SYW et al. 2019. Mitogenomic evidence of close relationships between New Zealand's extinct giant raptors and small-sized Australian sister-taxa. Mol. Phylogenet. Evol. 134:122–28
    [Google Scholar]
  50. Koler-Matznick J, Yates BC, Bulmer S, Brisbin IL Jr 2007. The New Guinea singing dog: its status and scientific importance. Aust. Mammal. 29:147–56
    [Google Scholar]
  51. Krause J, Dear PH, Pollack JL, Slatkin M, Spriggs H et al. 2006. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 439:7077724–27
    [Google Scholar]
  52. Krause J, Fu Q, Good JM, Viola B, Shunkov MV et al. 2010. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464:7290894–97
    [Google Scholar]
  53. Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S. 1997. Neandertal DNA sequences and the origin of modern humans. Cell 90:119–30
    [Google Scholar]
  54. Larson G, Cucchi T, Fujita M, Matisoo-Smith E, Robins J et al. 2007. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. PNAS 104:124834–39
    [Google Scholar]
  55. Lepofsky D, Kahn J. 2011. Cultivating an ecological and social balance: elite demands and commoner knowledge in ancient Ma'ohi agriculture, Society Islands. Am. Anthropol. 113:2319–35
    [Google Scholar]
  56. Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J et al. 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:7373359–64
    [Google Scholar]
  57. Matisoo-Smith E 1994. The human colonisation of Polynesia. A novel approach: genetic analyses of the Polynesian rat (Rattus exulans). J. Polyn. Soc. 103:75–87
    [Google Scholar]
  58. Matisoo-Smith E, Roberts RM, Irwin GJ, Allen JS, Penny D, Lambert DM 1998. Patterns of prehistoric human mobility in Polynesia indicated by mtDNA from the Pacific rat. PNAS 95:2515145–50
    [Google Scholar]
  59. Matisoo-Smith E, Robins JH 2004. Origins and dispersals of Pacific peoples: evidence from mtDNA phylogenies of the Pacific rat. PNAS 101:249167–72
    [Google Scholar]
  60. Matisoo-Smith EA. 2007. Animal translocations, genetic variation and the human settlement of the Pacific. Genes, Language and Culture History in the Southwest Pacific JS Friedlaender 157–70 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  61. McDonald SK, Matisoo-Smith EA, Buckley HR, Walter RK, Aung HL et al. 2020.. “ TB or not TB”: the conundrum of pre-European contact tuberculosis in the Pacific. Philos. Trans. R. Soc. B. 375: 1812.20190583
    [Google Scholar]
  62. Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F et al. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:6104222–26
    [Google Scholar]
  63. Milham P, Thomson P. 1976. Relative antiquity of human occupation and extinct fauna at Madura cave, southeastern Western Australia. Mankind 10:175–80
    [Google Scholar]
  64. Mulholland CV, Shockey AC, Aung HL, Cursons RT, O'Toole RF et al. 2019. Dispersal of Mycobacterium tuberculosis driven by historical European trade in the South Pacific. Front. Microbiol. 10:2778
    [Google Scholar]
  65. Muñoz-Rodríguez P, Carruthers T, Wood JRI, Williams BRM, Weitemier K et al. 2018. Reconciling conflicting phylogenies in the origin of sweet potato and dispersal to Polynesia. Curr. Biol. 28:81246–56.e12
    [Google Scholar]
  66. Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G. 2005. Genomic sequencing of Pleistocene cave bears. Science 309:597–600
    [Google Scholar]
  67. O'Connell JF, Allen J, Williams MAJ, Williams AN, Turney CSM et al. 2018. When did Homo sapiens first reach Southeast Asia and Sahul?. PNAS 115:348482–90
    [Google Scholar]
  68. Olivares G, Peña-Ahumada B, Peñailillo J, Payacán C, Moncada X et al. 2019. Human mediated translocation of Pacific paper mulberry [Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae)]: genetic evidence of dispersal routes in Remote Oceania. PLOS ONE 14:6e0217107
    [Google Scholar]
  69. Oskarsson MCR, Klütsch CFC, Boonyaprakob U, Wilton A, Tanabe Y, Savolainen P. 2012. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc. R. Soc. B 279: 1730.967–74
    [Google Scholar]
  70. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J et al. 2004. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38:645–79
    [Google Scholar]
  71. Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N et al. 2015. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25:101395–1400
    [Google Scholar]
  72. Pedersen MW, Overballe-Petersen S, Ermini L, Der Sarkissian C, Haile J et al. 2015. Ancient and modern environmental DNA. Philos. Trans. R. Soc. B 370:166020130383
    [Google Scholar]
  73. Pedersen MW, Ruter A, Schweger C, Friebe H, Staff RA et al. 2016. Postglacial viability and colonization in North America's ice-free corridor. Nature 537:761845–49
    [Google Scholar]
  74. Peña-Ahumada B, Saldarriaga-Córdoba M, Kardailsky O, Moncada X, Moraga M et al. 2020. A tale of textiles: genetic characterization of historical paper mulberry barkcloth from Oceania. PLOS ONE 15:5e0233113
    [Google Scholar]
  75. Perry GLW, Wheeler AB, Wood JR, Wilmshurst JM. 2014. A high-precision chronology for the rapid extinction of New Zealand moa (Aves, Dinornithiformes). Quat. Sci. Rev. 105:126–35
    [Google Scholar]
  76. Phillips MJ, Gibb GC, Crimp EA, Penny D 2010. Tinamous and moa flock together: Mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst. Biol. 59:190–107
    [Google Scholar]
  77. Pollmann B, Jacomet S, Schlumbaum A. 2005. Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium (Eschenz, Switzerland). J. Archaeol. Sci. 32:101471–80
    [Google Scholar]
  78. Prebble M, Anderson A, Augustinus P, Emmitt J, Fallon S et al. 2019. Early tropical crop production in marginal subtropical and temperate Polynesia. PNAS 116:201821732
    [Google Scholar]
  79. Prüfer K, Stenzel U, Hofreiter M, Pääbo S, Kelso J, Green RE. 2010. Computational challenges in the analysis of ancient DNA. Genome Biol 11:5R47
    [Google Scholar]
  80. Quach H, Rotival M, Pothlichet J, Loh YHE, Dannemann M et al. 2016. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell 167:3643–56.e17
    [Google Scholar]
  81. Rawlence NJ, Scofield RP, McGlone MS, Knapp M. 2019. History repeats: large scale synchronous biological turnover in avifauna from the Plio-Pleistocene and Late Holocene of New Zealand. Front. Ecol. Evol. 7:158
    [Google Scholar]
  82. Rawlence NJ, Wood JR, Bocherens H, Rogers KM. 2016. Dietary interpretations for extinct megafauna using coprolites, intestinal contents and stable isotopes: complimentary or contradictory?. Quat. Sci. Rev. 142:173–78
    [Google Scholar]
  83. Reid AH, Fanning TG, Hultin JV, Taubenberger JK 1999. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. PNAS 96:41651–56
    [Google Scholar]
  84. Rick TC, Hofman CA, Braje TJ, Maldonado JE, Sillett TS et al. 2012. Flightless ducks, giant mice and pygmy mammoths: Late Quaternary extinctions on California's Channel Islands. World Archaeol 44:13–20
    [Google Scholar]
  85. Roullier C, Benoit L, McKey DB, Lebot V 2013. Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination. PNAS 110:62205–10
    [Google Scholar]
  86. Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E, Lundeberg J 2004. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. PNAS 101:3312387–90
    [Google Scholar]
  87. Schuenemann VJ, Bos K, DeWitte S, Schmedes S, Jamieson J et al. 2011. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. PNAS 108:38E746–52
    [Google Scholar]
  88. Seelenfreund D, Clarke AC, Oyanedel N, Pina R, Lobos S et al. 2010. Paper mulberry (Broussonetia papyrifera) as a commensal model for human mobility in Oceania: anthropological, botanical and genetic considerations. New Zeal. J. Bot. 48:3231–47
    [Google Scholar]
  89. Shiels AB, Flores CA, Khamsing A, Krushelnycky PD, Mosher SM, Drake DR. 2013. Dietary niche differentiation among three species of invasive rodents (Rattus rattus, R. exulans, Mus musculus). Biol. Invasions 15:51037–48
    [Google Scholar]
  90. Smith BD, Zeder MA. 2013. The onset of the Anthropocene. Anthropocene 4:8–13
    [Google Scholar]
  91. Smith FA, Elliott Smith RE, Lyons SK, Payne JL 2018. Body size downgrading of mammals over the Late Quaternary. Science 360:6386310–13
    [Google Scholar]
  92. Spyrou MA, Bos KI, Herbig A, Krause J. 2019a. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 20:6323–40
    [Google Scholar]
  93. Spyrou MA, Keller M, Tukhbatova RI, Scheib CL, Nelson EA et al. 2019b. Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat. Commun. 10:14470
    [Google Scholar]
  94. Steadman DW, Martin PS. 2003. The Late Quaternary extinction and future resurrection of birds on Pacific islands. Earth-Sci. Rev 61:1–2133–47
    [Google Scholar]
  95. Stiller M, Molak M, Prost S, Rabeder G, Baryshnikov G et al. 2013. Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. Quat. Int. 339–340:224–31
    [Google Scholar]
  96. Storey AA, Athens JS, Bryant D, Carson M, Emery K et al. 2012. Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLOS ONE 7:7e39171
    [Google Scholar]
  97. Storey AA, Clarke AC, Ladefoged T, Robins J, Matisoo-Smith E. 2013. DNA and Pacific commensal models: applications, construction, limitations, and future prospects. J. Isl. Coast. Archaeol. 8:137–65
    [Google Scholar]
  98. Sun YC, Jarrett CO, Bosio CF, Hinnebusch BJ. 2014. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe 15:5578–86
    [Google Scholar]
  99. Thomsen PF, Elias S, Gilbert MTP, Haile J, Munch K et al. 2009. Non-destructive sampling of ancient insect DNA. PLOS ONE 4:4e5048
    [Google Scholar]
  100. Tsangaras K, Greenwood AD. 2012. Museums and disease: using tissue archive and museum samples to study pathogens. Ann. Anat. 194:158–73
    [Google Scholar]
  101. Uchii K, Doi H, Minamoto T. 2016. A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes. Mol. Ecol. Resour. 16:2415–22
    [Google Scholar]
  102. Valéry L, Fritz H, Lefeuvre JC, Simberloff D. 2008. In search of a real definition of the biological invasion phenomenon itself. Biol. Invasions 10:81345–51
    [Google Scholar]
  103. Van Der Kaars S, Miller GH, Turney CSM, Cook EJ, Nürnberg D et al. 2017. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat. Commun. 8:14142
    [Google Scholar]
  104. van der Valk T, Pečnerová P, Díez-del-Molino D, Bergström A, Oppenheimer Jet al 2021. Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591:26569
    [Google Scholar]
  105. Vigne JD, Carrère I, Briois F, Guilaine J. 2011. The early process of mammal domestication in the Near East: new evidence from the Pre-Neolithic and Pre-Pottery Neolithic in Cyprus. Curr. Anthropol. 52:Suppl. 4S255–71
    [Google Scholar]
  106. Waters JM. 2011. Competitive exclusion: phylogeography's “elephant in the room”?. Mol. Ecol. 20:214388–94
    [Google Scholar]
  107. Waters JM, Craw D. 2006. Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Syst. Biol. 55:2351–56
    [Google Scholar]
  108. Waters JM, Grosser S. 2016. Managing shifting species: ancient DNA reveals conservation conundrums in a dynamic world. BioEssays 38:111177–84
    [Google Scholar]
  109. West C, Hofman CA, Ebbert S, Martin J, Shirazi S et al. 2017. Integrating archaeology and ancient DNA analysis to address invasive species colonization in the Gulf of Alaska. Conserv. Biol. 31:51163–72
    [Google Scholar]
  110. West K, Collins C, Kardailsky O, Kahn J, Hunt TL et al. 2017. The Pacific rat race to Easter Island: tracking the prehistoric dispersal of Rattus exulans using ancient mitochondrial genomes. Front. Ecol. Evol. 5:52
    [Google Scholar]
  111. White AW, Worthy TH, Hawkins S, Bedford S, Spriggs M 2010. Megafaunal meiolaniid horned turtles survived until early human settlement in Vanuatu, Southwest Pacific. PNAS 107:3515512–16
    [Google Scholar]
  112. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP et al. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:5620791–95
    [Google Scholar]
  113. Wilmshurst JM, Hunt TL, Lipo CP, Anderson AJ 2011. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. PNAS 108:51815–20
    [Google Scholar]
  114. Wood JR, Crown A, Cole TL, Wilmshurst JM. 2016. Microscopic and ancient DNA profiling of Polynesian dog (kurī) coprolites from northern New Zealand. J. Archaeol. Sci. Rep. 6:496–505
    [Google Scholar]
  115. Wood JR, Wilmshurst JM, Richardson SJ, Rawlence NJ, Wagstaff SJ et al. 2013. Resolving lost herbivore community structure using coprolites of four sympatric moa species (Aves: Dinornithiformes). PNAS 110:4216910–15
    [Google Scholar]
  116. Worthy TH, Hawkins S, Bedford S, Spriggs M. 2015. Avifauna from the Teouma Lapita site, Efate Island, Vanuatu, including a new genus and species of megapode. Pacific Sci 69:2205–54
    [Google Scholar]
  117. Worthy TH, Holdaway RN. 2002. The Lost World of the Moa: Prehistoric Life of New Zealand Bloomington, IN: Indiana Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-100938
Loading
/content/journals/10.1146/annurev-ecolsys-012021-100938
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error