1932

Abstract

Studies of cetacean evolution using genetics and other biomolecules have come a long way—from the use of allozymes and short sequences of mitochondrial or nuclear DNA to the assembly of full nuclear genomes and characterization of proteins and lipids. Cetacean research has also advanced from using only contemporary samples to analyzing samples dating back thousands of years, and to retrieving data from indirect environmental sources, including water or sediments. Combined, these studies have profoundly deepened our understanding of the origin of cetaceans; their adaptation and speciation processes; and of the past population change, migration, and admixture events that gave rise to the diversity of cetaceans found today.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012021-105003
2021-11-03
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012021-105003.html?itemId=/content/journals/10.1146/annurev-ecolsys-012021-105003&mimeType=html&fmt=ahah

Literature Cited

  1. Adams CIM, Knapp M, Gemmell NJ, Jeunen G-J, Bunce M et al. 2019. Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool?. Genes 10:3192
    [Google Scholar]
  2. Allen S 2014. From exploitation to adoration: the historical and contemporary contexts of human–cetacean interactions. Whale-Watching: Sustainable Tourism and Ecological Management J Higham, L Bejder, R Williams 31–47 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  3. Alter SE, Meyer M, Post K, Czechowski P, Gravlund P et al. 2015. Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100. Mol. Ecol. 24:71510–22
    [Google Scholar]
  4. Alter SE, Rynes E, Palumbi SR. 2007. DNA evidence for historic population size and past ecosystem impacts of gray whales. PNAS 104:3815162–67
    [Google Scholar]
  5. Amos B, Schlötterer C, Tautz D. 1993. Social-structure of pilot whales revealed by analytical DNA profiling. Science 260:5108670–72
    [Google Scholar]
  6. Amos W, Whitehead H, Ferrari MJ, Glockner-Ferrari DA, Payne R, Gordon J 1992. Restrictable DNA from sloughed cetacean skin; its potential for use in population analysis. Mar. Mamm. Sci. 8:3275–83
    [Google Scholar]
  7. Ansmann IC, Parra GJ, Lanyon JM, Seddon JM. 2012. Fine-scale genetic population structure in a mobile marine mammal: inshore bottlenose dolphins in Moreton Bay, Australia. Mol. Ecol. 21:184472–85
    [Google Scholar]
  8. Árnason Ú. 1972. The role of chromosomal rearrangement in mammalian speciation with special reference to Cetacea and Pinnipedia. Hered. Genet. Ark. 70:1113–18
    [Google Scholar]
  9. Árnason Ú, Lammers F, Kumar V, Nilsson MA, Janke A. 2018. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Sci. Adv. 4:4eaap9873
    [Google Scholar]
  10. Árnason Ú, Spilliaert R, Pálsdóttir A, Árnason A. 1991. Molecular-identification of hybrids between the 2 largest whale species, the blue whale (Balaenoptera musculus) and the fin whale (B. physalus). Hereditas 115:2183–89
    [Google Scholar]
  11. Ascough P, Cook G, Dugmore A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Prog. Phys. Geogr. Earth Environ. 29:4532–47
    [Google Scholar]
  12. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLOS ONE 3:10e3376
    [Google Scholar]
  13. Baker CS, Steel D, Calambokidis J, Falcone E, González-Peral U et al. 2013. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494:291–306
    [Google Scholar]
  14. Barrett RDH, Hoekstra HE. 2011. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12:11767–80
    [Google Scholar]
  15. Bayas-Rea RLÁ, Félix F, Montufar R 2018. Genetic divergence and fine scale population structure of the common bottlenose dolphin (Tursiopstruncatus, Montagu) found in the Gulf of Guayaquil, Ecuador. PeerJ 6:e4589
    [Google Scholar]
  16. Béland SL, Frasier BA, Darling JD, Frasier TR. 2020. Using pre- and postexploitation samples to assess the impact of commercial whaling on the genetic characteristics of eastern North Pacific gray and humpback whales and to compare methods used to infer historic demography. Mar. Mamm. Sci. 36:2398–420
    [Google Scholar]
  17. Berger B, Peng J, Singh M. 2013. Computational solutions for omics data. Nat. Rev. Genet. 14:5333–46
    [Google Scholar]
  18. Bernal-Casasola D, Gardeisen A, Morgenstern P, Horwitz LK, Piqués G et al. 2016. Ancient whale exploitation in the Mediterranean: the archaeological record. Antiquity 90:352914–27
    [Google Scholar]
  19. Bérubé M, Aguilar A, Dendanto D, Larsen F, Di Sciara GN et al. 1998. Population genetic structure of North Atlantic, Mediterranean Sea and Sea of Cortez fin whales, Balaenoptera physalus (Linnaeus 1758): analysis of mitochondrial and nuclear loci. Mol. Ecol. 7:5585–99
    [Google Scholar]
  20. Bérubé M, Palsbøll PJ 2018. Hybridism. Encyclopedia of Marine Mammals B Würsig, JGM Thewissen, KM Kovacs 496–501 Amsterdam: Elsevier
    [Google Scholar]
  21. Borge T, Bachmann L, Bjørnstad G, Wiig Ø. 2007. Genetic variation in Holocene bowhead whales from Svalbard. Mol. Ecol. 16:112223–35
    [Google Scholar]
  22. Bowen WD. 1997. Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 158:267–74
    [Google Scholar]
  23. Braithwaite JE, Meeuwig JJ, Letessier TB, Jenner KCS, Brierley AS. 2015. From sea ice to blubber: linking whale condition to krill abundance using historical whaling records. Polar Biol 38:81195–202
    [Google Scholar]
  24. Buono MR, Fernández MS, Reguero MA, Marenssi SA, Santillana SN, Mörs T. 2016. Eocene basilosaurid whales from the La Meseta Formation, Marambio (Seymour) Island, Antarctica. Ameghiniana 53:3296–315
    [Google Scholar]
  25. Cabrera AA, Hoekendijk JPA, Aguilar A, Barco SG, Berrow S et al. 2019. Fin whale (Balaenoptera physalus) mitogenomics: a cautionary tale of defining sub-species from mitochondrial sequence monophyly. Mol. Phylogenet. Evol. 135:86–97
    [Google Scholar]
  26. Cabrera AA, Schall E, Bérubé M, Bachmann L, Berrow S et al. 2018. Strong and lasting impacts of past global warming on baleen whale and prey abundance. bioRxiv 497388. https://doi.org/10.1101/497388
    [Crossref]
  27. Carpenter ML, Buenrostro JD, Valdiosera C, Schroeder H, Allentoft ME et al. 2013. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93:5852–64
    [Google Scholar]
  28. Carroll EL, Baker CS, Watson M, Alderman R, Bannister J et al. 2015. Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand. Sci. Rep. 5:16182
    [Google Scholar]
  29. Carroll EL, Gallego R, Sewell MA, Zeldis J, Ranjard L et al. 2019. Multi-locus DNA metabarcoding of zooplankton communities and scat reveal trophic interactions of a generalist predator. Sci. Rep. 9:281
    [Google Scholar]
  30. Chen Z, Wang Z, Xu S, Zhou K, Yang G 2013. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans. BMC Evol. Biol. 13:34
    [Google Scholar]
  31. Chesser RK. 1991. Influence of gene flow and breeding tactics on gene diversity within populations. Genetics 129:2573–83
    [Google Scholar]
  32. Chikina M, Robinson J, Clark NL 2016. Hundreds of genes experienced convergent shifts in selective pressure in marine mammals. Mol. Biol. Evol. 33:92182–92
    [Google Scholar]
  33. Closek CJ, Santora JA, Starks HA, Schroeder ID, Andruszkiewicz EA et al. 2019. Marine vertebrate biodiversity and distribution within the Central California Current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Front. Mar. Sci. 6:732
    [Google Scholar]
  34. Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J et al. 2016. Protein sequences bound to mineral surfaces persist into deep time. eLife 5:e17092
    [Google Scholar]
  35. Fontaine MC, Baird SJE, Piry S, Ray N, Tolley KA et al. 2007. Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters. BMC Biol 5:30
    [Google Scholar]
  36. Fontaine MC, Tolley KA, Michaux JR, Birkun A, Ferreira M et al. 2010. Genetic and historic evidence for climate-driven population fragmentation in a top cetacean predator: the harbour porpoises in European water. PNAS 277:16952829–37
    [Google Scholar]
  37. Foote AD, Hofreiter M, Morin PA. 2012. Ancient DNA from marine mammals: studying long-lived species over ecological and evolutionary timescales. Ann. Anat. 194:1112–20
    [Google Scholar]
  38. Foote AD, Kaschner K, Schultze SE, Garilao C, Ho SYW et al. 2013. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4:1677
    [Google Scholar]
  39. Foote AD, Liu Y, Thomas GWC, Vinař T, Alföldi J et al. 2015. Convergent evolution of the genomes of marine mammals. Nat. Genet. 47:3272–75
    [Google Scholar]
  40. Foote AD, Vijay N, Ávila-Arcos MC, Baird RW, Durban JW et al. 2016. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat. Commun. 7:11693
    [Google Scholar]
  41. Foote AD, Vilstrup JT, De Stephanis R, Verborgh P, Nielsen SCA et al. 2011. Genetic differentiation among North Atlantic killer whale populations. Mol. Ecol. 20:3629–41
    [Google Scholar]
  42. Ford JKB, Ellis GM, Barrett-Lennard LG, Morton AB, Palm RS, Balcomb KC. 1998. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76:81456–71
    [Google Scholar]
  43. Fordyce RE. 1980. Whale evolution and Oligocene southern ocean environments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 31:2–4319–36
    [Google Scholar]
  44. Fritsche-Neto R, Borém A 2014. Omics: opening up the “black box” of the phenotype. Omics in Plant Breeding A Borém, R Fritsche-Neto 1–11 Chichester, UK: Wiley
    [Google Scholar]
  45. Gariboldi MC, Túnez JI, Failla M, Hevia M, Panebianco MV et al. 2016. Patterns of population structure at microsatellite and mitochondrial DNA markers in the Franciscana dolphin (Pontoporia blainvillei). Ecol. Evol. 6:248764–76
    [Google Scholar]
  46. Glover KA, Kanda N, Haug T, Pastene LA, Øien N et al. 2013. Hybrids between common and Antarctic minke whales are fertile and can back-cross. BMC Genet 14:25
    [Google Scholar]
  47. Gravena W, da Silva VMF, da Silva MNF, Farias IP, Hrbek T. 2015. Living between rapids: genetic structure and hybridization in botos (Cetacea: Iniidae: Inia spp.) of the Madeira River, Brazil. Biol. J. Linn. Soc. 114:4764–77
    [Google Scholar]
  48. Green ML, Herzing DL, Baldwin JD. 2011. Reproductive success of male Atlantic spotted dolphins (Stenella frontalis) revealed by noninvasive genetic analysis of paternity. Can. J. Zool. 89:3239–53
    [Google Scholar]
  49. Haldane JBS. 1964. Defense of beanbag genetics. Perspect. Biol. Med. 7:3343–59
    [Google Scholar]
  50. Hare MP, Cipriano F, Palumbi SP. 2002. Genetic evidence on the demography of speciation in allopatric dolphin species. Evolution 56:4804–6
    [Google Scholar]
  51. Harlin-Cognato AD, Markowitz T, Wuersig B, Honeycutt RL. 2007. Multi-locus phylogeography of the dusky dolphin (Lagenorhynchus obscurus): passive dispersal via the west-wind drift or response to prey species and climate change?. BMC Evol. Biol. 7:131
    [Google Scholar]
  52. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:5991282–84
    [Google Scholar]
  53. Hoban S, Bertorelle G, Gaggiotti OE. 2012. Computer simulations: tools for population and evolutionary genetics. Nat. Rev. Genet. 13:2110–22
    [Google Scholar]
  54. Hoelzel AR. 1991. Genetic Ecology of Whales and Dolphins: Incorporating the Proceedings of the Workshop on the Genetic Analysis of Cetacean Populations Rep. Int. Whal.Comm., Spec. Issue 13 Cambridge, UK: Int. Whal. Comm.
    [Google Scholar]
  55. Hoelzel AR, Hey J, Dahlheim ME, Nicholson C, Burkanov V, Black N. 2007. Evolution of population structure in a highly social top predator, the killer whale. Mol. Biol. Evol. 24:61407–15
    [Google Scholar]
  56. Howell AB. 1930. Aquatic Mammals: Their Adaptation to Life in the Water Springfield, IL: Thomas
    [Google Scholar]
  57. Huijser LAE, Bérubé M, Cabrera AA, Prieto R, Silva MA et al. 2018. Population structure of North Atlantic and North Pacific sei whales (Balaenoptera borealis) inferred from mitochondrial control region DNA sequences and microsatellite genotypes. Conserv. Genet. 19:41007–24
    [Google Scholar]
  58. Jackson JA, Patenaude NJ, Carroll EL, Baker CS 2008. How few whales were there after whaling? Inference from contemporary mtDNA diversity. Mol. Ecol. 17:1236–51
    [Google Scholar]
  59. Jackson JA, Steel DJ, Beerli P, Congdon BC, Olavarría C et al. 2014. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc. R. Soc. B 281:20133222
    [Google Scholar]
  60. Jarman SN, Gales NJ, Tierney M, Gill PC, Elliott NG. 2002. A DNA-based method for identification of krill species and its application to analysing the diet of marine vertebrate predators. Mol. Ecol. 11:122679–90
    [Google Scholar]
  61. Kaschner K, Tittensor DP, Ready J, Gerrodette T, Worm B. 2011. Current and future patterns of global marine mammal biodiversity. PLOS ONE 6:5e19653
    [Google Scholar]
  62. Kershaw JL, Botting CH, Brownlow A, Hall AJ. 2018. Not just fat: investigating the proteome of cetacean blubber tissue. Conserv. Physiol. 6:1coy003
    [Google Scholar]
  63. Kishida T, Kubota S, Shirayama Y, Fukami H. 2007. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol. Lett. 3:4428–30
    [Google Scholar]
  64. Kishida T, Thewissen JGM, Hayakawa T, Imai H, Agata K 2015. Aquatic adaptation and the evolution of smell and taste in whales. Zool. Lett. 1:9
    [Google Scholar]
  65. Kopps AM, Ackermann CY, Sherwin WB, Allen SJ, Bejder L, Krützen M. 2014. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins. Proc. Biol. Sci. 281:178220133245
    [Google Scholar]
  66. Li C, Tan X, Bai J, Xu Q, Liu S et al. 2019. A survey of the sperm whale (Physeter catodon) commensal microbiome. PeerJ 7:e7257
    [Google Scholar]
  67. Lipps JH, Mitchell E 1976. Trophic model for the adaptive radiations and extinctions of pelagic marine mammals. Paleobiology 2:2147–55
    [Google Scholar]
  68. Lockyer CH, Brown JG. 1981. The migration of whales. Animal Migration DJ Aidley 105–38 New York: Press Synd. Univ. Cambridge
    [Google Scholar]
  69. Louis M, Skovrind M, Castruita JAS, Garilao C, Kaschner K et al. 2020. Influence of past climate change on phylogeography and demographic history of narwhals, Monodon monoceros. Proc. R. Soc. B 2871925:20192964
    [Google Scholar]
  70. Louis M, Viricel A, Lucas T, Peltier H, Alfonsi E et al. 2014. Habitat-driven population structure of bottlenose dolphins, Tursiops truncatus, in the North-East Atlantic. Mol. Ecol. 23:4857–74
    [Google Scholar]
  71. Ma H, Stewart K, Lougheed S, Zheng J, Wang Y, Zhao J. 2016. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal. Conserv. Genet. Resour. 8:4561–68
    [Google Scholar]
  72. McGowen MR, Clark C, Gatesy J. 2008. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. Syst. Biol. 57:4574–90
    [Google Scholar]
  73. McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, dos Reis M, Struebig M et al. 2020. Phylogenomic resolution of the cetacean tree of life using target sequence capture. Syst. Biol. 69:479–501
    [Google Scholar]
  74. Meredith RW, Gatesy J, Cheng J, Springer MS. 2011. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc. R. Soc. B 278:1708993–1002
    [Google Scholar]
  75. Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS. 2013. Rod monochromacy and the coevolution of cetacean retinal opsins. PLOS Genet 9:4e1003432
    [Google Scholar]
  76. Miller DL 2007. Reproductive Biology and Phylogeny of Cetacea: Whales, Dolphins, and Porpoises London: Routledge
    [Google Scholar]
  77. Mullis KB, Faloona FA. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–50
    [Google Scholar]
  78. Nichols C, Herman J, Gaggiotti OE, Dobney KM, Parsons K, Hoelzel AR. 2007. Genetic isolation of a now extinct population of bottlenose dolphins (Tursiops truncatus). Proc. Biol. Sci. 274:16181611–16
    [Google Scholar]
  79. Norris RD, Hull PM. 2012. The temporal dimension of marine speciation. Evol. Ecol. 26:2393–415
    [Google Scholar]
  80. Nykänen M, Kaschner K, Dabin W, Brownlow A, Davison NJ et al. 2019. Postglacial colonization of northern coastal habitat by bottlenose dolphins: a marine leading-edge expansion?. J. Hered. 110:6662–74
    [Google Scholar]
  81. O'Leary MA, Uhen MD. 1999. The time of origin of whales and the role of behavioral changes in the terrestrial-aquatic transition. Paleobiology 25:4534–56
    [Google Scholar]
  82. Pacifici M, Santini L, Di Marco M, Baisero D, Francucci L et al. 2013. Generation length for mammals. Nat. Conserv. 5:89–94
    [Google Scholar]
  83. Palmer DH, Rogers TF, Dean R, Wright AE. 2019. How to identify sex chromosomes and their turnover. Mol. Ecol. 28:214709–24
    [Google Scholar]
  84. Palsbøll PJ, Allen J, Bérubé M, Clapham PJ, Feddersen TP et al. 1997. Genetic tagging of humpback whales. Nature 388:6644767–69
    [Google Scholar]
  85. Palsbøll PJ, Clapham PJ, Mattila DK, Larsen F, Sears R et al. 1995. Distribution of mtDNA haplotypes in North Atlantic humpback whales: the influence of behaviour on population structure. Mar. Ecol. Prog. Ser. 116:1–10
    [Google Scholar]
  86. Palsbøll PJ, Peery MZ, Olsen MT, Beissinger SR, Bérubé M. 2013. Inferring recent historic abundance from current genetic diversity. Mol. Ecol. 22:22–40
    [Google Scholar]
  87. Palsbøll PJ, Vader A, Bakke I, El-Gewely MR. 1992. Determination of gender in cetaceans by the polymerase chain reaction. Can. J. Zool. 70:112166–70
    [Google Scholar]
  88. Pampoulie C, Gíslason D, Ólafsdóttir G, Chosson V, Halldórsson SD et al. 2021. Evidence of unidirectional hybridization and second-generation adult hybrid between the two largest animals on Earth, the fin and blue whales. Evol. Appl. 14:2314–21
    [Google Scholar]
  89. Pastene LA, Goto M, Kanda N, Zerbini AN, Kerem D et al. 2007. Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale, Balaenoptera acutorostrata. Mol. Ecol. 16:71481–95
    [Google Scholar]
  90. Pérez-Alvarez MJ, Olavarría C, Moraga R, Baker CS, Hamner RM, Poulin E. 2016. Historical dimensions of population structure in a continuously distributed marine species: the case of the endemic Chilean dolphin. Sci. Rep. 6:35507
    [Google Scholar]
  91. Pilot M, Dahlheim ME, Hoelzel AR. 2010. Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca). J. Evol. Biol. 23:120–31
    [Google Scholar]
  92. Polanowski AM, Robbins J, Chandler D, Jarman SN. 2014. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14:5976–87
    [Google Scholar]
  93. Polanowski AM, Schmitt NT, Double MC, Gales NJ, Jarman SN. 2011. TaqMan assays for genotyping 45 single nucleotide polymorphisms in the humpback whale nuclear genome. Conserv. Genet. Resour. 3:4645–49
    [Google Scholar]
  94. Pompa S, Ehrlich PR, Ceballos G. 2011. Global distribution and conservation of marine mammals. PNAS 108:3313600–5
    [Google Scholar]
  95. Proches S. 2001. Back to the sea: secondary marine organisms from a biogeographical perspective. Biol. J. Linn. Soc. Lond. 74:2197–203
    [Google Scholar]
  96. Rey-Iglesia A, Martínez-Cedeira J, López A, Fernández R, Campos PF. 2018. The genetic history of whaling in the Cantabrian Sea during the 13th–18th centuries: Were North Atlantic right whales (Eubalaena glacialis) the main target species?. J. Archaeol. Sci. Rep. 18:393–98
    [Google Scholar]
  97. Rogers AR, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9:3552–69
    [Google Scholar]
  98. Roman J, McCarthy JJ. 2010. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLOS ONE 5:10e13255
    [Google Scholar]
  99. Roman J, Palumbi SR. 2003. Whales before whaling in the North Atlantic. Science 301:5632508–10
    [Google Scholar]
  100. Ruegg K, Rosenbaum HC, Anderson EC, Engel M, Rothschild A et al. 2012. Long-term population size of the North Atlantic humpback whale within the context of worldwide population structure. Conserv. Genet. 14:103–14
    [Google Scholar]
  101. Seersholm FV, Pedersen MW, Søe MJ, Shokry H, Mak SST et al. 2016. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago. Nat. Commun. 7:13389
    [Google Scholar]
  102. Shen T, Xu SX, Wang XH, Yu WH, Zhou KY, Yang G 2012. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans. BMC Evol. Biol. 12:39
    [Google Scholar]
  103. Sigsgaard EE, Jensen MR, Winkelmann IE, Møller PR, Hansen MM, Thomsen PF. 2020. Population-level inferences from environmental DNA—current status and future perspectives. Evol. Appl. 13:2245–62
    [Google Scholar]
  104. Sinding M-HS, Tervo OM, Grønnow B, Gulløv HC, Toft PA et al. 2016. Sex determination of baleen whale artefacts: implications for ancient DNA use in zooarchaeology. J. Archaeol. Sci. Rep. 10:345–49
    [Google Scholar]
  105. Skovrind M, Castruita JAS, Haile J, Treadaway EC, Gopalakrishnan S et al. 2019. Hybridization between two high Arctic cetaceans confirmed by genomic analysis. Sci. Rep. 9:7729
    [Google Scholar]
  106. Skovrind M, Louis M, Westbury MV, Garilao C, Kaschner K et al. 2021. Circumpolar phylogeography and demographic history of beluga whales reflect past climatic fluctuations. Mol. Ecol. 30:2543–59
    [Google Scholar]
  107. Solazzo C, Fitzhugh W, Kaplan S, Potter C, Dyer JM. 2017. Molecular markers in keratins from Mysticeti whales for species identification of baleen in museum and archaeological collections. PLOS ONE 12:8e0183053
    [Google Scholar]
  108. Speller C, van den Hurk Y, Charpentier A, Rodrigues A, Gardeisen A et al. 2016. Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans. Philos. Trans. R. Soc. B 371:170220150332
    [Google Scholar]
  109. Steeman ME, Hebsgaard MB, Fordyce RE, Ho SYW, Rabosky DL et al. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58:6573–85
    [Google Scholar]
  110. Sun YB, Zhou WP, Liu HQ, Irwin DM, Shen YY, Zhang YP. 2013. Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins. Genome Biol. Evol. 5:1130–39
    [Google Scholar]
  111. Swift JA, Bunce M, Dortch J, Douglass K, Faith JT et al. 2019. Micro methods for megafauna: novel approaches to late Quaternary extinctions and their contributions to faunal conservation in the Anthropocene. BioScience 69:877–87
    [Google Scholar]
  112. Székely D, Corfixen NL, Mørch LL, Knudsen SW, McCarthy ML et al. 2021. Environmental DNA captures the genetic diversity of bowhead whales (Balaena mysticetus) in West Greenland. Environ. DNA 3:1248–60
    [Google Scholar]
  113. Tautz D, Ellegren H, Weigel D. 2010. Next generation molecular ecology. Mol. Ecol. 19:1–3
    [Google Scholar]
  114. Tautz D, Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:104127–38
    [Google Scholar]
  115. Thewissen JGM, Williams EM. 2002. The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annu. Rev. Ecol. Syst. 33:73–90
    [Google Scholar]
  116. Thompson K, Baker CS, van Helden A, Patel S, Millar C, Constantine R 2012. The world's rarest whale. Curr. Biol. 22:21R905–6
    [Google Scholar]
  117. Toren D, Kulaga A, Jethva M, Rubin E, Snezhkina AV et al. 2020. Gray whale transcriptome reveals longevity adaptations associated with DNA repair and ubiquitination. Aging Cell 19:7e13158
    [Google Scholar]
  118. Uhen MD. 2007. Evolution of marine mammals: back to the sea after 300 million years. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 290:6514–22
    [Google Scholar]
  119. Uhen MD. 2010. The origin(s) of whales. Annu. Rev. Earth Planet. Sci. 38:189–219
    [Google Scholar]
  120. Valsecchi E, Bylemans J, Goodman SJ, Lombardi R, Carr I et al. 2020. Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates. Environ. DNA 2:4460–76
    [Google Scholar]
  121. Viricel A, Rosel PE. 2014. Hierarchical population structure and habitat differences in a highly mobile marine species: the Atlantic spotted dolphin. Mol. Ecol. 23:205018–35
    [Google Scholar]
  122. Wakeley J. 2004. Recent trends in population genetics: More data! More math! Simple models?. J. Hered. 95:5397–405
    [Google Scholar]
  123. Wang JY, Frasier TR, Yang SC, White BN. 2008. Detecting recent speciation events: the case of the finless porpoise (genus Neophocaena). Heredity 101:2145–55
    [Google Scholar]
  124. Westbury MV, Cabrera AA, Rey-Iglesia A, De Cahsan B, Duchêne DAet al 2021. A genomic assessment of the marine-speciation paradox within the toothed whale superfamily Delphinoidea. bioRxiv 2020.10.23.352286 https://doi.org/10.1101/2020.10.23.352286
    [Crossref]
  125. Willerslev E. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:5620791–95
    [Google Scholar]
  126. Wright S. 1931. Evolution in Mendelian populations. Genetics 16:97–159
    [Google Scholar]
  127. Xu S, Chen Y, Cheng Y, Yang D, Zhou X et al. 2012. Positive selection at the ASPM gene coincides with brain size enlargements in cetaceans. Proc. R. Soc. B 279:17464433–40
    [Google Scholar]
  128. Zhou X, Guang X, Sun D, Xu S, Li M et al. 2018. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat. Commun. 9:1276
    [Google Scholar]
  129. Zhou X, Seim I, Gladyshev VN. 2015. Convergent evolution of marine mammals is associated with distinct substitutions in common genes. Sci. Rep. 5:16550
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012021-105003
Loading
/content/journals/10.1146/annurev-ecolsys-012021-105003
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error