1932

Abstract

Recent theory and empirical evidence have provided new insights regarding how evolutionary forces interact to shape adaptation at stable and transient range margins. Predictions regarding trait divergence at leading edges are frequently supported. However, declines in fitness at and beyond edges show that trait divergence has sometimes been insufficient to maintain high fitness, so identifying constraints to adaptation at range edges remains a key challenge. Indirect evidence suggests that range expansion may be limited by adaptive genetic variation, but direct estimates of genetic constraints at and beyond range edges are still scarce. Sequence data suggest increased genetic load in edge populations in several systems, but its causes and fitness consequences are usually poorly understood. The balance between maladaptive and positive effects of gene flow on fitness at range edges deserves further study. It is becoming increasingly clear that characterizations about degree of adaptation based solely on geographical peripherality are unsupported.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012120-091002
2020-11-02
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-012120-091002.html?itemId=/content/journals/10.1146/annurev-ecolsys-012120-091002&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilera MA, Valdivia N, Broitman BR 2015. Facilitative effect of a generalist herbivore on the recovery of a perennial alga: consequences for persistence at the edge of their geographic range. PLOS ONE 10:12e0146069
    [Google Scholar]
  2. Alleaume-Benharira M, Pen IR, Ronce O 2006. Geographical patterns of adaptation within a species’ range: interactions between drift and gene flow. J. Evol. Biol. 19:1203–15
    [Google Scholar]
  3. Amundsen P-A, Salonen E, Niva T, Gjelland , Præbel K et al. 2012. Invader population speeds up life history during colonization. Biol. Invasions 14:71501–13
    [Google Scholar]
  4. Anderson JT, Eckhart VM, Geber MA 2015. Experimental studies of adaptation in Clarkia xantiana. III: Phenotypic selection across a subspecies border. Evolution 69:92249–61
    [Google Scholar]
  5. Andrade‐Restrepo M, Champagnat N, Ferrière R 2019. Local adaptation, dispersal evolution, and the spatial eco‐evolutionary dynamics of invasion. Ecol. Lett. 22:5767–77
    [Google Scholar]
  6. Angert AL, Bradshaw HD Jr, Schemske DW 2008. Using experimental evolution to investigate geographic range limits in monkeyflowers. Evolution 62:102660–75
    [Google Scholar]
  7. Antonovics J. 1976. The nature of limits to natural selection. Ann. Mo. Bot. Gard. 63:224–47
    [Google Scholar]
  8. Bachmann JC, Jansen van Rensburg A, Cortazar-Chinarro M, Laurila A, Van Buskirk J 2020. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195:E67–86
    [Google Scholar]
  9. Baniaga AE, Marx HE, Arrigo N, Barker MS 2020. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol. Lett. 23:168–78
    [Google Scholar]
  10. Barrett SCH. 2010. Understanding plant reproductive diversity. Philos. Trans. R. Soc. B 365:153799–109
    [Google Scholar]
  11. Barton N. 2001. Adaptation at the edge of a species’ range. Integrating Ecology and Evolution in a Spatial Context J Silvertown 365–92 London: Blackwell
    [Google Scholar]
  12. Bastianelli G, Wintle BA, Martin EH, Seoane J, Laiolo P 2017. Species partitioning in a temperate mountain chain: segregation by habitat versus interspecific competition. Ecol. Evol. 7:82685–96
    [Google Scholar]
  13. Benning JW, Eckhart VM, Geber MA, Moeller DA 2019. Biotic interactions contribute to the geographic range limit of an annual plant: Herbivory and phenology mediate fitness beyond a range margin. Am. Nat. 193:6786–97
    [Google Scholar]
  14. Blows MW, Hoffman AA. 2005. A reassessment of genetic limits to evolutionary change. Ecology 86:61371–84
    [Google Scholar]
  15. Boeye J, Travis JMJ, Stoks R, Bonte D 2013. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance. Evol. Appl. 6:2353–64
    [Google Scholar]
  16. Bontrager M, Angert AL. 2019. Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3:155–68
    [Google Scholar]
  17. Bontrager M, Usui T, Lee-Yaw JA, Anstett DN, Branch HA et al. 2020. Expansion dynamics and marginal climates drive adaptation across geographic ranges. bioRxiv. https://doi.org/10.1101/2020.08.22.262915
    [Crossref] [Google Scholar]
  18. Bradshaw AD. 1991. Genostasis and the limits to evolution. Philos. Trans. R. Soc. B 333:1267289–305
    [Google Scholar]
  19. Bridle JR, Gavaz S, Kennington WJ 2009. Testing limits to adaptation along altitudinal gradients in rainforest Drosophila. Proc. R. Soc. B 276:16611507–15
    [Google Scholar]
  20. Bridle JR, Kawata M, Butlin RK 2019. Local adaptation stops where ecological gradients steepen or are interrupted. Evol. Appl. 12:71449–62
    [Google Scholar]
  21. Brown GP, Shilton C, Phillips BL, Shine R 2007. Invasion, stress, and spinal arthritis in cane toads. PNAS 104:4517698–700
    [Google Scholar]
  22. Burton OJ, Phillips BL, Travis JMJ 2010. Trade-offs and the evolution of life-histories during range expansion. Ecol. Lett. 13:101210–20
    [Google Scholar]
  23. Caruso CM, Martin RA, Sletvold N, Morrissey MB, Wade MJ et al. 2017. What are the environmental determinants of phenotypic selection? A meta-analysis of experimental studies. Am. Nat. 190:3363–76
    [Google Scholar]
  24. Cassel-Lundhagen A, Tammaru T, Windig JJ, Ryrholm N, Nylin S 2009. Are peripheral populations special? Congruent patterns in two butterfly species. Ecography 32:4591–600
    [Google Scholar]
  25. Chen J, Ni P, Tran Thi TN, Kamaldinov EV, Petukhov VL et al. 2018. Selective constraints in cold-region wild boars may defuse the effects of small effective population size on molecular evolution of mitogenomes. Ecol. Evol. 8:168102–14
    [Google Scholar]
  26. Chevin LM, Lande R. 2011. Adaptation to marginal habitats by evolution of increased phenotypic plasticity. J. Evol. Biol. 24:71462–76
    [Google Scholar]
  27. Chuang A, Peterson CR. 2016. Expanding population edges: theories, traits, and trade-offs. Glob. Chang. Biol. 22:2494–512
    [Google Scholar]
  28. Crow JF. 1958. Some possibilities for measuring selection intensities in man. Hum. Biol. 30:1763–75
    [Google Scholar]
  29. Dallas T, Decker RR, Hastings A 2017. Species are not most abundant in the centre of their geographic range or climatic niche. Ecol. Lett. 20:121526–33
    [Google Scholar]
  30. Duffy KJ, Johnson SD. 2017. Specialized mutualisms may constrain the geographical distribution of flowering plants. Proc. R. Soc. B 284:186620171841
    [Google Scholar]
  31. Duputié A, Massol F, Chuine I, Kirkpatrick M, Ronce O 2012. How do genetic correlations affect species range shifts in a changing environment. ? Ecol. Lett. 15:3251–59
    [Google Scholar]
  32. Eckert CG, Samis KE, Lougheed SC 2008. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17:51170–88
    [Google Scholar]
  33. Etterson JR. 2004. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the Great Plains. Evolution 58:71446–56
    [Google Scholar]
  34. Excoffier L, Foll M, Petit RJ 2009. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40:481–501
    [Google Scholar]
  35. Exposito-Alonso M, Becker C, Schuenemann VJ, Reiter E, Setzer C et al. 2018. The rate and potential relevance of new mutations in a colonizing plant lineage. PLOS Genet 14:2e1007155
    [Google Scholar]
  36. Fedorka KM, Winterhalter WE, Shaw KL, Brogan WR, Mousseau TA 2012. The role of gene flow asymmetry along an environmental gradient in constraining local adaptation and range expansion. J. Evol. Biol. 25:81676–85
    [Google Scholar]
  37. Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37:124302–15
    [Google Scholar]
  38. Filin I, Holt RD, Barfield M 2008. The relation of density regulation to habitat specialization, evolution of a species’ range, and the dynamics of biological invasions. Am. Nat. 172:2233–47
    [Google Scholar]
  39. Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL 2018. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27:111268–76
    [Google Scholar]
  40. Freeman BG, Tobias JA, Schluter D 2019. Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical birds. Ecography 42:111832–40
    [Google Scholar]
  41. García-Ramos G, Huang Y. 2013. Competition and evolution along environmental gradients: patterns, boundaries and sympatric divergence. Evol. Ecol. 27:3489–504
    [Google Scholar]
  42. Garnier J, Lewis MA. 2016. Expansion under climate change: the genetic consequences. Bull. Math. Biol. 78:112165–85
    [Google Scholar]
  43. Geber MA, Eckhart VM. 2005. Experimental studies of adaptation in Clarkia xantiana. II. Fitness variation across a subspecies border. Evolution 59:3521–31
    [Google Scholar]
  44. Gibson SY, Van der Marel RC, Starzomski BM 2009. Climate change and conservation of leading-edge peripheral populations. Conserv. Biol. 23:61369–73
    [Google Scholar]
  45. Gilbert KJ, Peischl S, Excoffier L 2018. Mutation load dynamics during environmentally-driven range shifts. PLOS Genet 14:9e1007450
    [Google Scholar]
  46. Gilbert KJ, Sharp NP, Angert AL, Conte GL, Draghi JA et al. 2017. Local adaptation interacts with expansion load during range expansion: Maladaptation reduces expansion load. Am. Nat. 189:4368–80
    [Google Scholar]
  47. Gilbert KJ, Whitlock MC. 2017. The genetics of adaptation to discrete heterogeneous environments: Frequent mutation or large-effect alleles can allow range expansion. J. Evol. Biol. 30:3591–602
    [Google Scholar]
  48. Goldberg EE, Lande R. 2006. Ecological and reproductive character displacement on an environmental gradient. Evolution 60:1344–57
    [Google Scholar]
  49. González-Martínez SC, Ridout K, Pannell JR 2017. Range expansion compromises adaptive evolution in an outcrossing plant. Curr. Biol. 27:162544–51.e4
    [Google Scholar]
  50. Gould B, Moeller DA, Eckhart VM, Tiffin P, Fabio E, Geber MA 2014. Local adaptation and range boundary formation in response to complex environmental gradients across the geographical range of Clarkia xantiana ssp. xantiana. J. Ecol. 102:195–107
    [Google Scholar]
  51. Graciá E, Botella F, Anadón JD, Edelaar P, Harris DJ, Giménez A 2013. Surfing in tortoises? Empirical signs of genetic structuring owing to range expansion. Biol. Lett. 9:320121091
    [Google Scholar]
  52. Halbritter AH, Billeter R, Edwards PJ, Alexander JM 2015. Local adaptation at range edges: comparing elevation and latitudinal gradients. J. Evol. Biol. 28:101849–60
    [Google Scholar]
  53. Haldane JBS. 1956. The relation between density regulation and natural selection. Proc. R. Soc. B 145:306–8
    [Google Scholar]
  54. Hampe A, Jump AS. 2011. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. Syst. 42:313–33
    [Google Scholar]
  55. Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8:5461–67
    [Google Scholar]
  56. Hangartner S, Lasne C, Sgrò CM, Connallon T, Monro K 2019. Genetic covariances promote climatic adaptation in Australian Drosophila. . Evolution 74:2326–37
    [Google Scholar]
  57. Hardie D, Hutchings J. 2010. Evolutionary ecology at the extremes of species’ ranges. Environ. Rev. 18:1–20
    [Google Scholar]
  58. Hargreaves AL, Eckert CG. 2019. Local adaptation primes cold‐edge populations for range expansion but not warming‐induced range shifts. Ecol. Lett. 22:178–88
    [Google Scholar]
  59. Hargreaves AL, Samis KE, Eckert CG 2014. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183:2157–73
    [Google Scholar]
  60. Henn BM, Botigué LR, Bustamante CD, Clark AG, Gravel S 2015. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16:6333–43
    [Google Scholar]
  61. Henn BM, Botigué LR, Peischl S, Dupanloup I, Lipatov M et al. 2016. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. PNAS 113:4E440–49
    [Google Scholar]
  62. Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:6789907–13
    [Google Scholar]
  63. Kelly MW, Sanford E, Grosberg RK 2012. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279:1727349–56
    [Google Scholar]
  64. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN et al. 2001. The strength of phenotypic selection in natural populations. Am. Nat. 157:3245–61
    [Google Scholar]
  65. Kirkpatrick M, Barrett B. 2015. Chromosome inversions, adaptive cassettes and the evolution of species’ ranges. Mol. Ecol. 24:92046–55
    [Google Scholar]
  66. Kirkpatrick M, Barton NH. 1997. Evolution of a species range. Am. Nat. 150:11–23
    [Google Scholar]
  67. Koski MH, Layman NC, Prior CJ, Busch JW, Galloway LF 2019. Selfing ability and drift load evolve with range expansion. Evol. Lett. 3:5500–12
    [Google Scholar]
  68. Krehenwinkel H, Tautz D. 2013. Northern range expansion of European populations of the wasp spider Argiope bruennichi is associated with global warming–correlated genetic admixture and population-specific temperature adaptations. Mol. Ecol. 22:82232–48
    [Google Scholar]
  69. Laenen B, Tedder A, Nowak MD, Toräng P, Wunder J et al. 2018. Demography and mating system shape the genome-wide impact of purifying selection in Arabis alpina. . PNAS 115:4816–21
    [Google Scholar]
  70. Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution 37:61210–26
    [Google Scholar]
  71. Lee-Yaw JA, Fracassetti M, Willi Y 2018. Environmental marginality and geographic range limits: a case study with Arabidopsis lyrata ssp. lyrata. Ecography 41:4622–34
    [Google Scholar]
  72. Lee-Yaw JA, Kharouba HM, Bontrager M, Mahony C, Csergo AM et al. 2016. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecol. Lett. 19:6710–22
    [Google Scholar]
  73. Lesica P, Allendorf FW. 1995. When are peripheral populations valuable for conservation. ? Conserv. Biol. 9:4753–60
    [Google Scholar]
  74. Louthan AM, Doak DF, Angert AL 2015. Where and when do species interactions set range limits. ? Trends Ecol. Evol. 30:12780–92
    [Google Scholar]
  75. Maron JL, Baer KC, Angert AL 2014. Disentangling the drivers of context-dependent plant-animal interactions. J. Ecol. 102:61485–96
    [Google Scholar]
  76. Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M et al. 2020. Eco-evolutionary dynamics of range expansion. Ecology https://doi.org/10.1002/ecy.3139
    [Crossref] [Google Scholar]
  77. Moeller DA, Geber MA, Eckhart VM, Tiffin P 2012. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant. Ecology 93:1036–48
    [Google Scholar]
  78. Moeller DA, Geber MA, Tiffin P 2011. Population genetics and the evolution of geographic range limits in an annual plant. Am. Nat. 178:S1S44–57
    [Google Scholar]
  79. Nadeau CP, Urban MC. 2019. Eco-evolution on the edge during climate change. Ecography 42:71280–97
    [Google Scholar]
  80. Nguyen AD, Brown M, Zitnay J, Cahan SH, Gotelli NJ et al. 2019. Trade-offs in cold resistance at the northern range edge of the common woodland ant Aphaenogaster picea (Formicidae). Am. Nat. 194:6E151–63
    [Google Scholar]
  81. Ochocki BM, Saltz JB, Miller TEX 2019. Demography-dispersal trait correlations modify the eco-evolutionary dynamics of range expansion. Am. Nat. 195:2231–46
    [Google Scholar]
  82. Oldfather MF, Kling MM, Sheth SN, Emery NC, Ackerly DD 2019. Range edges in heterogeneous landscapes: integrating geographic scale and climate complexity into range dynamics. Glob. Chang. Biol. 26:31055–67
    [Google Scholar]
  83. Olsen J, Singh Gill G, Haugen R, Matzner SL, Alsdurf J, Siemens DH 2019. Evolutionary constraint on low elevation range expansion: defense-abiotic stress-tolerance trade-off in crosses of the ecological model Boechera stricta. Ecol. Evol 9:2011532–44
    [Google Scholar]
  84. Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:3452–62
    [Google Scholar]
  85. Paccard A, Van Buskirk J, Willi Y 2016. Quantitative genetic architecture at latitudinal range boundaries: reduced variation but higher trait independence. Am. Nat. 187:5667–77
    [Google Scholar]
  86. Pannell JR. 2015. Evolution of the mating system in colonizing plants. Mol. Ecol. 24:92018–37
    [Google Scholar]
  87. Paul JR, Sheth SN, Angert AL 2011. Quantifying the impact of gene flow on phenotype-environment mismatch: a demonstration with the scarlet monkeyflower Mimulus cardinalis. Am. Nat 178:S1S62–79
    [Google Scholar]
  88. Pease CM, Lande R, Bull JJ 1989. A model of population growth, dispersal and evolution in a changing environment. Ecology 70:61657–64
    [Google Scholar]
  89. Peischl S, Dupanloup I, Kirkpatrick M, Excoffier L 2013. On the accumulation of deleterious mutations during range expansions. Mol. Ecol. 22:245972–82
    [Google Scholar]
  90. Peischl S, Gilbert KJ. 2019. Evolution of dispersal can rescue populations from expansion load. Am. Nat. 195:2349–60
    [Google Scholar]
  91. Pfennig KS, Kelly AL, Pierce AA 2016. Hybridization as a facilitator of species range expansion. Proc. R. Soc. B 283:183920161329
    [Google Scholar]
  92. Phillips BL, Brown GP, Shine R 2010. Life-history evolution in range-shifting populations. Ecology 91:61617–27
    [Google Scholar]
  93. Phillips BL, Perkins TA. 2019. Spatial sorting as the spatial analogue of natural selection. Theor. Ecol. 12:155–63
    [Google Scholar]
  94. Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD 2016. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. Camb. Philos. Soc. 92:41877–909
    [Google Scholar]
  95. Polechová J. 2018. Is the sky the limit? On the expansion threshold of a species’ range. PLOS Biol 16:6e2005372
    [Google Scholar]
  96. Polechová J, Barton NH. 2015. Limits to adaptation along environmental gradients. PNAS 112:206401–6
    [Google Scholar]
  97. Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ 2008. Adaptive evolution in invasive species. Trends Plant Sci 13:6288–94
    [Google Scholar]
  98. Pujol B, Pannell JR. 2008. Reduced responses to selection after species range expansion. Science 321:588596
    [Google Scholar]
  99. Santini L, Pironon S, Maiorano L, Thuiller W 2019. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 42:4696–705
    [Google Scholar]
  100. Schiffers K, Schurr FM, Travis JMJ, Duputié A, Eckhart VM et al. 2014. Landscape structure and genetic architecture jointly impact rates of niche evolution. Ecography 37:121218–29
    [Google Scholar]
  101. Sexton JP, Hufford MB, Bateman AC, Lowry DB, Meimberg H et al. 2016. Climate structures genetic variation across a species’ elevation range: a test of range limits hypotheses. Mol. Ecol. 25:4911–28
    [Google Scholar]
  102. Sexton JP, McIntyre PJ, Angert AL, Rice KJ 2009. The evolution and ecology of geographic range limits. Annu. Rev. Ecol. Evol. Syst. 40:415–36
    [Google Scholar]
  103. Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA 2017. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48:183–206
    [Google Scholar]
  104. Sexton JP, Strauss SY, Rice KJ 2011. Gene flow increases fitness at the warm edge of a species’ range. PNAS 108:2811704–9
    [Google Scholar]
  105. Sharakhov IV, White BJ, Sharakhova MV, Kayondo J, Lobo NF et al. 2006. Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex. PNAS 103:166258–62
    [Google Scholar]
  106. Sheth SN, Angert AL. 2016. Artificial selection reveals high genetic variation in phenology at the trailing edge of a species range. Am. Nat. 187:2182–93
    [Google Scholar]
  107. Sheth SN, Morueta-Holme N, Angert AL 2020. Determinants of geographic range size in plants. New Phytol 226:3650–65
    [Google Scholar]
  108. Shine R, Brown GP, Phillips BL 2011. An evolutionary process that assembles phenotypes through space rather than through time. PNAS 108:5708–11
    [Google Scholar]
  109. Siepielski AM, Morrissey MB, Buoro M, Carlson SM, Caruso CM et al. 2017. Precipitation drives global variation in natural selection. Science 355:6328959–62
    [Google Scholar]
  110. Simmons AD, Thomas CD. 2004. Changes in dispersal during species’ range expansions. Am. Nat. 164:3378–95
    [Google Scholar]
  111. Soltis PS, Soltis DE. 2000. The role of genetic and genomic attributes in the success of polyploids. PNAS 97:137051–57
    [Google Scholar]
  112. Sork VL. 2017. Genomic studies of local adaptation in natural plant populations. J. Hered. 109:13–15
    [Google Scholar]
  113. Stock AJ, Campitelli BE, Stinchcombe JR 2014. Quantitative genetic variance and multivariate clines in the ivyleaf morning glory. Ipomoea hederacea. Philos. Trans. R. Soc. B 369:164920130259
    [Google Scholar]
  114. Svenning JC, Skov F. 2004. Limited filling of the potential range in European tree species. Ecol. Lett. 7:7565–73
    [Google Scholar]
  115. Takahashi Y, Suyama Y, Matsuki Y, Funayama R, Nakayama K, Kawata M 2016. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25:184450–60
    [Google Scholar]
  116. Toräng P, Wunder J, Obeso JR, Herzog M, Coupland G, Ågren J 2015. Large-scale adaptive differentiation in the alpine perennial herb Arabis alpina. . New Phytol 206:1459–70
    [Google Scholar]
  117. Urban MC, Scarpa A, Travis JMJ, Bocedi G 2019. Maladapted prey subsidize predators and facilitate range expansion. Am. Nat. 194:4590–612
    [Google Scholar]
  118. van Heerwaarden B, Kellermann V, Schiffer M, Blacket M, Sgrò CM, Hoffmann AA 2009. Testing evolutionary hypotheses about species borders: patterns of genetic variation towards the southern borders of two rainforest Drosophila and a related habitat generalist. Proc. R. Soc. B 276:16611517–26
    [Google Scholar]
  119. Volis S, Ormanbekova D, Yermekbayev K, Song M, Shulgina I 2016. The conservation value of peripheral populations and a relationship between quantitative trait and molecular variation. Evol. Biol. 43:126–36
    [Google Scholar]
  120. Walsh B, Blows MW. 2009. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40:41–59
    [Google Scholar]
  121. Wan JSH, Fazlioglu F, Bonser SP 2016. Populations evolving towards failure: costs of adaptation under competition at the range edge of an invasive perennial plant. Plant Ecol. Divers. 9:4349–58
    [Google Scholar]
  122. Willi Y. 2019. The relevance of mutation load for species range limits. Am. J. Bot. 106:6757–59
    [Google Scholar]
  123. Willi Y, Fracassetti M, Zoller S, Van Buskirk J 2018. Accumulation of mutational load at the edges of a species range. Mol. Biol. Evol. 35:4781–91
    [Google Scholar]
  124. Willi Y, Van Buskirk J 2019. A practical guide to the study of distribution limits. Am. Nat. 193:6773–85
    [Google Scholar]
  125. Wright SI, Kalisz S, Slotte T 2013. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. B 280:176020130133
    [Google Scholar]
  126. Yang A, Dick CW, Yao X, Huang H 2016. Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense. Sci. Rep 6:125632
    [Google Scholar]
  127. Zhang M, Zhou L, Bawa R, Suren H, Holliday JA 2016. Recombination rate variation, hitchhiking, and demographic history shape deleterious load in poplar. Mol. Biol. Evol. 33:112899–910
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012120-091002
Loading
/content/journals/10.1146/annurev-ecolsys-012120-091002
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error