1932

Abstract

Plants are the foundation of the food web and therefore interact directly and indirectly with myriad organisms at higher trophic levels. They directly provide nourishment to mutualistic and antagonistic primary consumers (e.g., pollinators and herbivores), which in turn are consumed by predators. These interactions produce cascading indirect effects on plants (either trait-mediated or density-mediated). We review how predators affect plant-pollinator interactions and thus how predators indirectly affect plant reproduction, fitness, mating systems, and trait evolution. Predators can influence pollinator abundance and foraging behavior. In many cases, predators cause pollinators to visit plants less frequently and for shorter durations. This decline in visitation can lead to pollen limitation and decreased seed set. However, alternative outcomes can result due to differences in predator, pollinator, and plant functional traits as well as due to altered interaction networks with plant enemies. Furthermore, predators may indirectly affect the evolution of plant traits and mating systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012120-094926
2020-11-02
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-012120-094926.html?itemId=/content/journals/10.1146/annurev-ecolsys-012120-094926&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott KR. 2006. Bumblebees avoid flowers containing evidence of past predation events. Can. J. Zool. 84:91240–47
    [Google Scholar]
  2. Abbott KR. 2010. Background evolution in camouflage systems: a predator–prey/pollinator–flower game. J. Theor. Biol. 262:4662–78
    [Google Scholar]
  3. Abbott KR, Dukas R. 2009. Honeybees consider flower danger in their waggle dance. Anim. Behav. 78:3633–35
    [Google Scholar]
  4. Abrams PA. 1995. Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. Am. Nat. 146:112–34
    [Google Scholar]
  5. Aguilar R, Quesada M, Ashworth L, Herrerias‐Diego Y, Lobo J 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17:245177–88
    [Google Scholar]
  6. Anderson AG, Dodson GN. 2015. Colour change ability and its effect on prey capture success in female Misumenoides formosipes crab spiders. Ecol. Entomol. 40:2106–13
    [Google Scholar]
  7. Antiqueira PAP, Romero GQ. 2016. Floral asymmetry and predation risk modify pollinator behavior, but only predation risk decreases plant fitness. Oecologia 181:2475–85
    [Google Scholar]
  8. Barrett SCH, Harder LD, Worley AC 1996. The comparative biology of pollination and mating in flowering plants. Philos. Trans. R. Soc. B 351:1271–80
    [Google Scholar]
  9. Benkman CW. 2013. Biotic interaction strength and the intensity of selection. Ecol. Lett. 16:81054–60
    [Google Scholar]
  10. Brechbühl R, Kropf C, Bacher S 2010. Impact of flower-dwelling crab spiders on plant-pollinator mutualisms. Basic Appl. Ecol. 11:176–82
    [Google Scholar]
  11. Calvert WH, Hedrick LE, Brower LP 1979. Mortality of the monarch butterfly (Danaus plexippus L.): avian predation at five overwintering sites in Mexico. Science 204:4395847–51
    [Google Scholar]
  12. Cheng K, Heiling AM, Herberstein ME 2006. Picking the right spot: Crab spiders position themselves on flowers to maximize prey attraction. Behaviour 143:8957–68
    [Google Scholar]
  13. Chittka L. 2001. Camouflage of predatory crab spiders on flowers and the colour perception of bees (Aranida: Thomisidae/Hymenoptera: Apidae). Entomol. Generalis 25:3181–87
    [Google Scholar]
  14. Chittka L, Dyer AG, Bock F, Dornhaus A 2003. Psychophysics: Bees trade off foraging speed for accuracy. Nature 424:6947388
    [Google Scholar]
  15. Cohen D, Shmida A. 1993. The evolution of flower display and reward. Evolutionary Biology, Vol. 27: MK Hecht 197–243 Boston: Springer
    [Google Scholar]
  16. Creel S, Christianson D. 2008. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23:4194–201
    [Google Scholar]
  17. Cresswell JE. 2017. A demographic approach to evaluating the impact of stressors on bumble bee colonies. Ecol. Entomol. 42:2221–29
    [Google Scholar]
  18. Darwin C. 2018. 1859. On the Origin of Species Minneapolis, MN: Lerner Publ. Group
    [Google Scholar]
  19. Dawson EH, Chittka L. 2014. Bumblebees (Bombus terrestris) use social information as an indicator of safety in dangerous environments. Proc. R. Soc. B 281:178520133174
    [Google Scholar]
  20. Defrize J, Llandres AL, Casas J 2014. Indirect cues in selecting a hunting site in a sit-and-wait predator. Physiol. Entomol. 39:153–59
    [Google Scholar]
  21. Dodson GN, Lang PL, Jones RN, Versprille AN 2013. Specificity of attraction to floral chemistry in Misumenoides formosipes crab spiders. J. Arachnol. 41:136–43
    [Google Scholar]
  22. Dukas R. 2001a. Effects of perceived danger on flower choice by bees. Ecol. Lett. 4:4327–33
    [Google Scholar]
  23. Dukas R. 2001b. Effects of predation risk on pollinators and plants. Cognitive Ecology of Pollination L Chittka, JD Thomson 214–36 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  24. Dukas R. 2005. Bumble bee predators reduce pollinator density and plant fitness. Ecology 86:61401–6
    [Google Scholar]
  25. Dukas R, Morse DH. 2003. Crab spiders affect flower visitation by bees. Oikos 101:1157–63
    [Google Scholar]
  26. Dukas R, Morse DH. 2005. Crab spiders show mixed effects on flower-visiting bees and no effect on plant fitness components. Ecoscience 12:2244–47
    [Google Scholar]
  27. Dukas R, Morse DH, Myles S 2005. Experience levels of individuals in natural bee populations and their ecological implications. Can. J. Zool. 83:3492–97
    [Google Scholar]
  28. Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E et al. 2010. Plant mating systems in a changing world. Trends Ecol. Evol. 25:135–43
    [Google Scholar]
  29. Estes JA, Brashares JS, Power ME 2013. Predicting and detecting reciprocity between indirect ecological interactions and evolution. Am. Nat. 181:Suppl. 1S76–99
    [Google Scholar]
  30. Fishman L, Wyatt R. 1999. Pollinator-mediated competition, reproductive character displacement, and the evolution of selfing in Arenaria uniflora (Caryophyllaceae). Evolution 53:1723–33
    [Google Scholar]
  31. Fuchs S, Tautz J. 2011. Colony defence and natural enemies. Honeybees of Asia HR Hepburn, SE Radloff 369–95 Heidelberg, Ger.: Springer
    [Google Scholar]
  32. Gavini SS, Quintero C, Tadey M 2020. Intraspecific variation in body size of bumblebee workers influences anti-predator behaviour. J. Anim. Ecol. 89:2658–69
    [Google Scholar]
  33. Gawryszewski FM, Calero-Torralbo MA, Gillespie RG, Rodríguez-Gironés MA, Herberstein ME 2017. Correlated evolution between coloration and ambush site in predators with visual prey lures. Evolution 71:82010–21
    [Google Scholar]
  34. Goodale E, Nieh JC. 2012. Public use of olfactory information associated with predation in two species of social bees. Anim. Behav. 84:4919–24
    [Google Scholar]
  35. Greco CF, Kevan PG. 1994. Contrasting patch choosing by anthophilous ambush predators: vegetation and floral cues for decisions by a crab spider (Misumena vatia) and males and females of an ambush bug (Phymata americana). Can. J. Zool. 72:91583–88
    [Google Scholar]
  36. Greco CF, Kevan PG. 1995. Patch choice in the anthophilous ambush predator Phymata americana: improvement by switching hunting sites as part of the initial choice. Can. J. Zool. 73:101912–17
    [Google Scholar]
  37. Hairston NG, Smith FE, Slobodkin LB 1960. Community structure, population control, and competition. Am. Nat. 94:879421–25
    [Google Scholar]
  38. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12:10e0185809
    [Google Scholar]
  39. Hanna CJ, Eason PK. 2013. Juvenile crab spiders (Mecaphesa asperata) use indirect cues to choose foraging sites. Ethol. Ecol. Evol. 25:2161–73
    [Google Scholar]
  40. Hargreaves AL, Harder LD, Johnson SD 2009. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol. Rev. 84:2259–76
    [Google Scholar]
  41. Heiling AM, Cheng K, Chittka L, Goeth A, Herberstein ME 2005a. The role of UV in crab spider signals: effects on perception by prey and predators. J. Exp. Biol. 208:203925–31
    [Google Scholar]
  42. Heiling AM, Cheng K, Herberstein ME 2004. Exploitation of floral signals by crab spiders (Thomisus spectabilis, Thomisidae). Behav. Ecol. 15:2321–26
    [Google Scholar]
  43. Heiling AM, Chittka L, Cheng K, Herberstein ME 2005b. Colouration in crab spiders: substrate choice and prey attraction. J. Exp. Biol. 208:101785–92
    [Google Scholar]
  44. Heiling AM, Herberstein ME. 2004. Predator–prey coevolution: Australian native bees avoid their spider predators. Proc. R. Soc. B 271:Suppl. 4S196–98
    [Google Scholar]
  45. Heiling AM, Herberstein ME, Chittka L 2003. Pollinator attraction: Crab-spiders manipulate flower signals. Nature 421:6921334
    [Google Scholar]
  46. Herberstein ME, Heiling AM, Cheng K 2009. Evidence for UV-based sensory exploitation in Australian but not European crab spiders. Evol. Ecol. 23:4621–34
    [Google Scholar]
  47. Higginson AD, Houston AI. 2015. The influence of the food–predation trade-off on the foraging behaviour of central-place foragers. Behav. Ecol. Sociobiol. 69:4551–61
    [Google Scholar]
  48. Huey RB, Pianka ER. 1981. Ecological consequences of foraging mode. Ecology 62:991–99
    [Google Scholar]
  49. Huey S, Nieh JC. 2017. Foraging at a safe distance: crab spider effects on pollinators. Ecol. Entomol. 42:4469–76
    [Google Scholar]
  50. Husband BC, Schemske DW. 1996. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:154–70
    [Google Scholar]
  51. Ings TC, Chittka L. 2008. Speed-accuracy tradeoffs and false alarms in bee responses to cryptic predators. Curr. Biol. 18:191520–24
    [Google Scholar]
  52. Jain SK. 1976. The evolution of inbreeding in plants. Annu. Rev. Ecol. Syst. 7:469–95
    [Google Scholar]
  53. Jones EI. 2010. Optimal foraging when predation risk increases with patch resources: an analysis of pollinators and ambush predators. Oikos 119:5835–40
    [Google Scholar]
  54. Jones EI, Dornhaus A. 2011. Predation risk makes bees reject rewarding flowers and reduce foraging activity. Behav. Ecol. Sociobiol. 65:81505–11
    [Google Scholar]
  55. Kagawa K, Takimoto G. 2013. Predation on pollinators promotes coevolutionary divergence in plant-pollinator mutualisms. Am. Nat. 183:2229–42
    [Google Scholar]
  56. Knight TM, Chase JM, Hillebrand H, Holt RD 2006. Predation on mutualists can reduce the strength of trophic cascades. Ecol. Lett. 9:111173–78
    [Google Scholar]
  57. Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD 2005a. Trophic cascades across ecosystems. Nature 437:7060880–83
    [Google Scholar]
  58. Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M et al. 2005b. Pollen limitation of plant reproduction: pattern and process. Annu. Rev. Ecol. Evol. Syst. 36:467–97
    [Google Scholar]
  59. Łangowska A, Yosef R, Skórka P, Tryjanowski P 2018. Mist-netting of migrating bee-eaters positively influences honey bee colony performance. J. Apicult. Sci. 62:167–78
    [Google Scholar]
  60. Lihoreau M, Chittka L, Raine NE 2016. Monitoring flower visitation networks and interactions between pairs of bumble bees in a large outdoor flight cage. PLOS ONE 11:3e0150844
    [Google Scholar]
  61. Lima SL. 1991. Energy, predators and the behavior of feeding hummingbirds. Evol. Ecol. 5:3220–30
    [Google Scholar]
  62. Llandres AL, Gawryszewski FM, Heiling AM, Herberstein ME 2011. The effect of colour variation in predators on the behaviour of pollinators: Australian crab spiders and native bees. Ecol. Entomol. 36:172–81
    [Google Scholar]
  63. Llandres AL, Gonzálvez FG, Rodríguez-Gironés MA 2013. Social but not solitary bees reject dangerous flowers where a conspecific has recently been attacked. Anim. Behav. 85:197–102
    [Google Scholar]
  64. Llandres AL, Rodríguez-Gironés MA. 2011. Spider movement, UV reflectance and size, but not spider crypsis, affect the response of honeybees to Australian crab spiders. PLOS ONE 6:2e17136
    [Google Scholar]
  65. Louda SM. 1982. Inflorescence spiders: a cost/benefit analysis for the host plant, Haplopappus venetus Blake (Asteraceae). Oecologia 55:2185–91
    [Google Scholar]
  66. McClenaghan B, Schlaf M, Geddes M, Mazza J, Pitman G et al. 2019. Behavioral responses of honey bees, Apis cerana and Apis mellifera, to Vespa mandarinia marking and alarm pheromones. J. Apicult. Res. 58:1141–48
    [Google Scholar]
  67. McPeek MA. 2017. The ecological dynamics of natural selection: traits and the coevolution of community structure. Am. Nat. 189:5E91–117
    [Google Scholar]
  68. Meehan TD, Lease HM, Wolf BO 2005. Negative indirect effects of an avian insectivore on the fruit set of an insect-pollinated herb. Oikos 109:2297–304
    [Google Scholar]
  69. Mizuno T, Yamaguchi S, Yamamoto I, Yamaoka R, Akino T 2014. “Double-trick” visual and chemical mimicry by the juvenile orchid mantis Hymenopus coronatus used in predation of the oriental honeybee Apis cerana. . Zool. Sci 31:12795–802
    [Google Scholar]
  70. Monceau K, Maher N, Bonnard O, Thiéry D 2013. Predation pressure dynamics study of the recently introduced honeybee killer Vespa velutina: learning from the enemy. Apidologie 44:2209–21
    [Google Scholar]
  71. Morris RL, Reader T. 2016. Do crab spiders perceive Batesian mimicry in hoverflies?. Behav. Ecol. 27:3920–31
    [Google Scholar]
  72. Morse DH. 1986. Predatory risk to insects foraging at flowers. Oikos 46:223–28
    [Google Scholar]
  73. Morse DH. 1988. Cues associated with patch‐choice decisions by foraging crab spiders Misumena vatia. . Behaviour 107:3–4297–313
    [Google Scholar]
  74. Morse DH. 2007. Predator upon a Flower: Life History and Fitness in a Crab Spider Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  75. Muñoz AA, Arroyo MT. 2004. Negative impacts of a vertebrate predator on insect pollinator visitation and seed output in Chuquiraga oppositifolia, a high Andean shrub. Oecologia 138:166–73
    [Google Scholar]
  76. O'Hanlon JC, Herberstein ME, Holwell GI 2014. Habitat selection in a deceptive predator: maximizing resource availability and signal efficacy. Behav. Ecol. 26:1194–99
    [Google Scholar]
  77. Olive CW. 1982. Behavioral response of a sit-and-wait predator to spatial variation in foraging gain. Ecology 63:4912–20
    [Google Scholar]
  78. Peixoto PEC, Souza JC, Schramm JE Jr 2012. To be or not to be… a flower? A test of possible cues influencing hunting site selection in subadult females of the crab spider Epicadus heterogaster (Guerin 1812) (Araneae: Thomisidae). Stud. Neotropical Fauna Environ. 47:173–79
    [Google Scholar]
  79. Pianka ER. 1966. Convexity, desert lizards, and spatial heterogeneity. Ecology 47:61055–59
    [Google Scholar]
  80. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25:6345–53
    [Google Scholar]
  81. Preisser EL, Bolnick DI, Benard MF 2005. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:2501–9
    [Google Scholar]
  82. Preisser EL, Orrock JL, Schmitz OJ 2007. Predator hunting mode and habitat domain alter nonconsumptive effects in predator–prey interactions. Ecology 88:112744–51
    [Google Scholar]
  83. Quintero C, Corley JC, Aizen MA 2015. Weak trophic links between a crab-spider and the effective pollinators of a rewardless orchid. Acta Oecol 62:32–39
    [Google Scholar]
  84. Reader T, Higginson AD, Barnard CJ, Gilbert FSBehav. Ecol. Field Course 2006. The effects of predation risk from crab spiders on bee foraging behavior. Behav. Ecol. 17:6933–39
    [Google Scholar]
  85. Regan EC, Santini L, Ingwall-King L, Hoffmann M, Rondinini C et al. 2015. Global trends in the status of bird and mammal pollinators. Conserv. Lett. 8:6397–403
    [Google Scholar]
  86. Rinehart SA, Schroeter SC, Long JD 2017. Density-mediated indirect effects from active predators and narrow habitat domain prey. Ecology 98:102653–61
    [Google Scholar]
  87. Ripple WJ, Estes JA, Schmitz OJ, Constant V, Kaylor MJ et al. 2016. What is a trophic cascade?. Trends Ecol. Evol. 31:11842–49
    [Google Scholar]
  88. Robertson IC, Maguire DK. 2005. Crab spiders deter insect visitations to slickspot peppergrass flowers. Oikos 109:3577–82
    [Google Scholar]
  89. Rodríguez-Gironés MA. 2012. Possible top-down control of solitary bee populations by ambush predators. Behav. Ecol. 23:3559–65
    [Google Scholar]
  90. Rodríguez-Gironés MA, Jiménez OM. 2019. Encounters with predators fail to trigger predator avoidance in bumblebees, Bombus terrestris (Hymenoptera: Apidae). Biol. J. Linn. Soc. 128:4901–8
    [Google Scholar]
  91. Rodríguez-Morales D, Rico-Gray V, García-Franco JG, Ajuria-Ibarra H, Hernández-Salazar LT et al. 2018. Context-dependent crypsis: a prey's perspective of a color polymorphic predator. Sci. Nat. 105:5–636
    [Google Scholar]
  92. Romero GQ, Antiqueira PA, Koricheva J 2011. A meta-analysis of predation risk effects on pollinator behaviour. PLOS ONE 6:6e20689
    [Google Scholar]
  93. Romero GQ, Koricheva J. 2011. Contrasting cascade effects of carnivores on plant fitness: a meta-analysis. J. Anim. Ecol. 80:3696–704
    [Google Scholar]
  94. Romero GQ, Vasconcellos-Neto J. 2004. Beneficial effects of flower-dwelling predators on their host plant. Ecology 85:2446–57
    [Google Scholar]
  95. Romero-Gonzalez JE, Perry CJ, Chittka L 2019. Honeybees adjust colour preferences in response to concurrent social information from conspecifics and heterospecifics. bioRxiv 2019.12.12.874917. https://doi.org/10.1101/2019.12.12.874917
    [Crossref]
  96. Rusch A, Birkhofer K, Bommarco R, Smith HG, Ekbom B 2015. Predator body sizes and habitat preferences predict predation rates in an agroecosystem. Basic Appl. Ecol. 16:3250–59
    [Google Scholar]
  97. Schmalhofer VR. 2001. Tritrophic interactions in a pollination system: impacts of species composition and size of flower patches on the hunting success of a flower-dwelling spider. Oecologia 129:2292–303
    [Google Scholar]
  98. Schmitz OJ, Hambäck PA, Beckerman AP 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am. Nat. 155:2141–53
    [Google Scholar]
  99. Schoener TW. 1971. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2:369–404
    [Google Scholar]
  100. Schwantes CJ, Carper AL, Bowers MD 2018. Solitary floral specialists do not respond to cryptic flower-occupying predators. J. Insect Behav. 31:6642–55
    [Google Scholar]
  101. Shankar U. 2015. Predation risk of pollinators on flowers. Bee World 92:384–85
    [Google Scholar]
  102. Sicard A, Lenhard M. 2011. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann. Bot. 107:91433–43
    [Google Scholar]
  103. Sprengel CK. 1793. Das Entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen Berlin: Vieweg
    [Google Scholar]
  104. Stebbins GL. 1974. Flowering Plants: Evolution Above the Species Level Boston: Belknap
    [Google Scholar]
  105. Strauss SY, Irwin RE. 2004. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu. Rev. Ecol. Evol. Syst. 35:435–66
    [Google Scholar]
  106. Strauss SY, Whittall JB. 2006. Non-pollinator agents of selection on floral traits. Ecology and Evolution of Flowers LD Harder, SCH Barrett 120–38 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  107. Suttle KB. 2003. Pollinators as mediators of top-down effects on plants. Ecol. Lett. 6:8688–94
    [Google Scholar]
  108. Telles FJ, Gonzálvez FG, Rodríguez-Gironés MA, Freitas L 2018. The effect of a flower-dwelling predator on a specialized pollination system. Biol. J. Linn. Soc. 126:3521–32
    [Google Scholar]
  109. terHorst CP, Zee PC, Heath KD, Miller TE, Pastore AI et al. 2018. Evolution in a community context: trait responses to multiple species interactions. Am. Nat. 191:3368–80
    [Google Scholar]
  110. Théry M, Casas J. 2002. Predator and prey views of spider camouflage. Nature 415:6868133
    [Google Scholar]
  111. van der Niet T, Johnson SD 2012. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol. Evol. 27:6353–61
    [Google Scholar]
  112. Walsh MR. 2013. The evolutionary consequences of indirect effects. Trends Ecol. Evol. 28:123–29
    [Google Scholar]
  113. Wang MY, Ings TC, Proulx MJ, Chittka L 2013. Can bees simultaneously engage in adaptive foraging behaviour and attend to cryptic predators?. Anim. Behav. 86:4859–66
    [Google Scholar]
  114. Wang Z, Qu Y, Dong S, Wen P, Li J et al. 2016a. Honey bees modulate their olfactory learning in the presence of hornet predators and alarm component. PLOS ONE 11:2e0150399
    [Google Scholar]
  115. Wang Z, Wen P, Qu Y, Dong S, Li J et al. 2016b. Bees eavesdrop upon informative and persistent signal compounds in alarm pheromones. Sci. Rep. 6:25693
    [Google Scholar]
  116. Welti EA, Putnam S, Joern A 2016. Crab spiders (Thomisidae) attract insect flower-visitors without UV signalling. Ecol. Entomol. 41:5611–17
    [Google Scholar]
  117. Wen P, Cheng Y, Qu Y, Zhang H, Li J et al. 2017.. F oragers of sympatric Asian honey bee species intercept competitor signals by avoiding benzyl acetate from Apis cerana alarm pheromone. Sci. Rep. 7:16721
    [Google Scholar]
  118. Werner EE, Peacor SD. 2003. A review of trait‐mediated indirect interactions in ecological communities. Ecology 84:51083–100
    [Google Scholar]
  119. Wignall AE, Heiling AM, Cheng K, Herberstein ME 2006. Flower symmetry preferences in honeybees and their crab spider predators. Ethology 112:5510–18
    [Google Scholar]
  120. Wyatt R. 1983. Plant-pollinator interactions and the evolution of breeding systems. Pollination Biology L Real 51–95 Orlando, FL: Academic
    [Google Scholar]
  121. Yong TH. 2005. Prey capture by a generalist predator on flowering and nonflowering ambush sites: Are inflorescences higher quality hunting sites?. Environ. Entomol. 34:4969–76
    [Google Scholar]
  122. Zenzal TJ Jr., Fish AC, Jones TM, Ospina EA, Moore FR. 2013. Observations of predation and anti-predator behavior of Ruby-throated hummingbirds during migratory stopover. Southeast. Nat. 12:4N21–25
    [Google Scholar]
  123. Zhao J, He K, Peng Y, Wu X, Sun S 2016. Net neutral effects of a generalist vertebrate predator on seed production result from simultaneous suppression of plant antagonists and mutualists. Basic Appl. Ecol. 17:4344–51
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012120-094926
Loading
/content/journals/10.1146/annurev-ecolsys-012120-094926
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error