1932

Abstract

The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-012121-085928
2021-11-03
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/52/1/annurev-ecolsys-012121-085928.html?itemId=/content/journals/10.1146/annurev-ecolsys-012121-085928&mimeType=html&fmt=ahah

Literature Cited

  1. Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ. 2006. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442:563–67
    [Google Scholar]
  2. Aguillon SM, Walsh J, Lovette IJ 2021. Extensive hybridization reveals multiple coloration genes underlying a complex plumage phenotype. Proc. R. Soc. B 288:20201805
    [Google Scholar]
  3. Almeida D, Maldonado E, Khan I, Silva L, Gilbert MTP et al. 2016. Whole-genome identification, phylogeny, and evolution of the cytochrome P450 family 2 (CYP2) subfamilies in birds. Genome Biol. Evol. 8:1115–31
    [Google Scholar]
  4. Andersen MJ, McCullough JM, Friedman NR, Peterson AT, Moyle RG et al. 2019. Ultraconserved elements resolve genus-level relationships in a major Australasian bird radiation (Aves: Meliphagidae). Emu - Austral Ornithol 119:218–32
    [Google Scholar]
  5. Armstrong J, Hickey G, Diekhans M, Fiddes IT, Novak AM et al. 2020. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587:246–51
    [Google Scholar]
  6. Bakker FT, Antonelli A, Clarke J, Cook JA, Edwards SV et al. 2019. The global museum: natural history collections and the future of evolutionary biology and public education. PeerJ 8:e8225
    [Google Scholar]
  7. Baldwin MW, Toda Y, Nakagita T, O'Connell MJ, Klasing KC et al. 2014. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science 345:929–33
    [Google Scholar]
  8. Beauclair L, Rame C, Arensburger P, Piegu B, Guillou F et al. 2019. Sequence properties of certain GC rich avian genes, their origins and absence from genome assemblies: case studies. BMC Genom. 20:734
    [Google Scholar]
  9. Bellott DW, Skaletsky H, Cho T-J, Brown L, Locke D et al. 2017. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat. Genet. 49:387–94
    [Google Scholar]
  10. Bird 10,000 Genomes Project 2020. The Bird 10,000 Genomes Project. Bird 10,000 Genomes Project Accessed Jan. 6. https://b10k.genomics.cn/species.html
    [Google Scholar]
  11. Borges R, Khan I, Johnson WE, Gilbert MTP, Zhang G et al. 2015. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds. BMC Genom. 16:751
    [Google Scholar]
  12. Bosse M, Spurgin LG, Laine VN, Cole EF, Firth JA et al. 2017. Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 358:365–68
    [Google Scholar]
  13. Botero-Castro F, Figuet E, Tilak M-K, Nabholz B, Galtier N 2017. Avian genomes revisited: hidden genes uncovered and the rates versus traits paradox in birds. Mol. Biol. Evol. 34:3123–31
    [Google Scholar]
  14. Braun EL, Cracraft J, Houde P 2019. Resolving the avian tree of life from top to bottom: the promise and potential boundaries of the phylogenomic era. Avian Genomics in Ecology and Evolution: From the Lab into the Wild RHS Kraus 151–210 Cham: Springer Int. Publ.
    [Google Scholar]
  15. Braun EL, Kimball RT. 2021. Data types and the phylogeny of Neoaves. Birds 2:1–22
    [Google Scholar]
  16. Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK et al. 2019. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 7:e6399
    [Google Scholar]
  17. Brelsford A, Toews DPL, Irwin DE. 2017. Admixture mapping in a hybrid zone reveals loci associated with avian feather coloration. Proc. R. Soc. B 284:20171106
    [Google Scholar]
  18. Brown JW, Rest JS, García-Moreno J, Sorenson MD, Mindell DP. 2008. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol. 6:6
    [Google Scholar]
  19. Brown JW, Wang N, Smith SA 2017. The development of scientific consensus: analyzing conflict and concordance among avian phylogenies. Mol. Phylogenetics Evol. 116:69–77
    [Google Scholar]
  20. Brusatte SL, O'Connor JK, Jarvis ED 2015. The origin and diversification of birds. Curr. Biol. 25:R888–98
    [Google Scholar]
  21. Buckner JC, Sanders RC, Faircloth BC, Chakrabarty P. 2021. Science forum: the critical importance of vouchers in genomics. eLife 10:e68264
    [Google Scholar]
  22. Burga A, Wang WG, Ben-David E, Wolf PC, Ramey AM et al. 2017. A genetic signature of the evolution of loss of flight in the Galapagos cormorant. Science 356:eaal3345
    [Google Scholar]
  23. Burri R, Nater A, Kawakami T, Mugal CF, Olason PI et al. 2015. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res 25:1656–65
    [Google Scholar]
  24. Campagna L, McCracken KG, Lovette IJ. 2019. Gradual evolution towards flightlessness in steamer ducks. Evolution 73:1916–26
    [Google Scholar]
  25. Campagna L, Repenning M, Silveira LF, Fontana CS, Tubaro PL, Lovette IJ. 2017. Repeated divergent selection on pigmentation genes in a rapid finch radiation. Sci. Adv. 3:e1602404
    [Google Scholar]
  26. Card DC, Shapiro B, Giribet G, Moritz C, Edwards SV. 2021. Museum genomics. Annu. Rev. Genet. In press
    [Google Scholar]
  27. Chojnowski JL, Kimball RT, Braun EL 2008. Introns outperform exons in analyses of basal avian phylogeny using clathrin heavy chain genes. Gene 410:89–96
    [Google Scholar]
  28. Claramunt S, Cracraft J. 2015. A new time tree reveals Earth history's imprint on the evolution of modern birds. Sci. Adv. 1:e1501005
    [Google Scholar]
  29. Clements JF, Schulenberg TS, Iliff MJ, Billerman SM, Fredericks TA et al. 2019. The eBird/Clements Checklist of Birds of the World: v2019 Cornell, NY: Cornell Lab Ornithol https://www.birds.cornell.edu/clementschecklist/download/
    [Google Scholar]
  30. Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV. 2019. Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone. Syst. Biol. 68:937–55
    [Google Scholar]
  31. Cooke TF, Fischer CR, Wu P, Jiang TX, Xie KT et al. 2017. Genetic mapping and biochemical basis of yellow feather pigmentation in budgerigars. Cell 171:427–39
    [Google Scholar]
  32. Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ et al. 2004. Phylogenetic relationships among modern birds (Neornithes). Assembling the Tree of Life J Cracraft, MJ Donoghue 468–89 New York: Oxford Univ. Press
    [Google Scholar]
  33. Cruickshank TE, Hahn MW. 2014. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23:3133–57
    [Google Scholar]
  34. Damas J, Kim J, Farré M, Griffin DK, Larkin DM 2018. Reconstruction of avian ancestral karyotypes reveals differences in the evolutionary history of macro- and microchromosomes. Genome Biol 19:155
    [Google Scholar]
  35. Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24:332–40
    [Google Scholar]
  36. Driver RJ, Balakrishnan CN. 2021. Highly contiguous genomes improve the understanding of avian olfactory receptor repertoires. Integr. Comp. Biol. In press. https://doi.org/10.1093/icb/icab150
    [Crossref] [Google Scholar]
  37. Duret L, Galtier N. 2009. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genom. Hum. Genet. 10:285–311
    [Google Scholar]
  38. Edwards SV, Liu L, Pearl DK. 2007. High-resolution species trees without concatenation. PNAS 104:5936–41
    [Google Scholar]
  39. Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE et al. 2016. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol. Phylogenetics Evol. 94:447–62
    [Google Scholar]
  40. Ellegren H. 2013. The evolutionary genomics of birds. Annu. Rev. Ecol. Evol. Syst. 44:239–59
    [Google Scholar]
  41. Ellegren H, Galtier N. 2016. Determinants of genetic diversity. Nat. Rev. Genet. 17:422–33
    [Google Scholar]
  42. Ellegren H, Smeds L, Burri R, Olason PI, Backstrom N et al. 2012. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–60
    [Google Scholar]
  43. Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US et al. 2006. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2:543–47
    [Google Scholar]
  44. Fain MG, Houde P. 2004. Parallel radiations in the primary clades of birds. Evolution 58:2558–73
    [Google Scholar]
  45. Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61:717–26
    [Google Scholar]
  46. Farré M, Narayan J, Slavov GT, Damas J, Auvil L et al. 2016. Novel insights into chromosome evolution in birds, archosaurs, and reptiles. Genome Biol. Evol. 8:2442–51
    [Google Scholar]
  47. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q et al. 2020. Dense sampling of bird diversity increases power of comparative genomics. Nature 587:252–57
    [Google Scholar]
  48. Field DJ, Benito J, Chen A, Jagt JWM, Ksepka DT 2020. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579:397–401
    [Google Scholar]
  49. Field DJ, Berv JS, Hsiang AY, Lanfear R, Landis MJ, Dornburg A 2019. Timing the extant avian radiation: the rise of modern birds, and the importance of modeling molecular rate variation. Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers M Pittman, X Xu 159–81 Bull. Am. Mus. Nat. Hist 440 New York: Am. Mus. Nat. Hist.
    [Google Scholar]
  50. Gabrielli M, Nabholz B, Leroy T, Milá B, Thébaud C 2020. Within-island diversification in a passerine bird. Proc. R. Soc. B 287:20192999
    [Google Scholar]
  51. Gelabert P, Sandoval-Velasco M, Serres A, de Manuel M, Renom P et al. 2020. Evolutionary history, genomic adaptation to toxic diet, and extinction of the Carolina parakeet. Curr. Biol. 30:108–14.e5
    [Google Scholar]
  52. Gemmell NJ, Rutherford K, Prost S, Tollis M, Winter D et al. 2020. The tuatara genome reveals ancient features of amniote evolution. Nature 584:403–9
    [Google Scholar]
  53. Genome 10K Community Sci 2009. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered. 100:659–74
    [Google Scholar]
  54. Gilbert PS, Wu J, Simon MW, Sinsheimer JS, Alfaro ME. 2018. Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Mol. Phylogenetics Evol. 126:116–28
    [Google Scholar]
  55. Greenwold MJ, Bao W, Jarvis ED, Hu H, Li C et al. 2014. Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol. Biol. 14:249
    [Google Scholar]
  56. Gregory TR, Andrews CB, McGuire JA, Witt CC. 2009. The smallest avian genomes are found in hummingbirds. Proc. R. Soc. B 276:3753–57
    [Google Scholar]
  57. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL et al. 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–68
    [Google Scholar]
  58. Harvey MG, Bravo GA, Claramunt S, Cuervo AM, Derryberry GE et al. 2020. The evolution of a tropical biodiversity hotspot. Science 370:1343–48
    [Google Scholar]
  59. He K, Minias P, Dunn PO. 2020. Long-read genome assemblies reveal extraordinary variation in the number and structure of MHC loci in birds. Genome Biol. Evol. 13:evaa270
    [Google Scholar]
  60. Hejase HA, Salman-Minkov A, Campagna L, Hubisz MJ, Lovette IJ et al. 2020. Genomic islands of differentiation in a rapid avian radiation have been driven by recent selective sweeps. PNAS 117:30554–65
    [Google Scholar]
  61. Hillis DM. 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst. Biol. 47:3–8
    [Google Scholar]
  62. Houde P, Braun EL, Narula N, Minjares U, Mirarab S 2019. Phylogenetic signal of indels and the neoavian radiation. Diversity 11:108
    [Google Scholar]
  63. Int. Chick. Genome Seq. Consort 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716
    [Google Scholar]
  64. Irwin DE, Mila B, Toews DPL, Brelsford A, Kenyon HL et al. 2018. A comparison of genomic islands of differentiation across three young avian species pairs. Mol. Ecol. 27:4839–55
    [Google Scholar]
  65. Itoh Y, Kampf K, Pigozzi MI, Arnold AP. 2009. Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma 118:527–36
    [Google Scholar]
  66. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–31
    [Google Scholar]
  67. Jiang ZY, Gao B, Lei FM, Qu YH. 2019. Population genomics reveals that refugial isolation and habitat change lead to incipient speciation in the Ground tit. Zool. Scr. 48:277–88
    [Google Scholar]
  68. Kapusta A, Suh A. 2017. Evolution of bird genomes—a transposon's-eye view. Ann. N. Y. Acad. Sci. 1389:164–85
    [Google Scholar]
  69. Kapusta A, Suh A, Feschotte C. 2017. Dynamics of genome size evolution in birds and mammals. PNAS 114:E1460–69
    [Google Scholar]
  70. Khan I, Yang Z, Maldonado E, Li C, Zhang G et al. 2015. Olfactory receptor subgenomes linked with broad ecological adaptations in Sauropsida. Mol. Biol. Evol. 32:2832–43
    [Google Scholar]
  71. Kim J, Farré M, Auvil L, Capitanu B, Larkin DM et al. 2017. Reconstruction and evolutionary history of eutherian chromosomes. PNAS 114:E5379–88
    [Google Scholar]
  72. Kimball RT, Wang N, Heimer-McGinn V, Ferguson C, Braun EL 2013. Identifying localized biases in large datasets: a case study using the avian tree of life. Mol. Phylogenetics Evol. 69:1021–32
    [Google Scholar]
  73. Kinsella CM, Ruiz-Ruano FJ, Dion-Côté A-M, Charles AJ, Gossmann TI et al. 2019. Programmed DNA elimination of germline development genes in songbirds. Nat. Commun. 10:5468
    [Google Scholar]
  74. Knief U, Bossu CM, Saino N, Hansson B, Poelstra J et al. 2019. Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone. Nat. Ecol. Evol. 3:570–76
    [Google Scholar]
  75. Ksepka DT, Stidham TA, Williamson TE. 2017. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction. PNAS 114:8047–52
    [Google Scholar]
  76. Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G et al. 2021. An unbiased molecular approach using 3′-UTRs resolves the avian family-level tree of life. Mol. Biol. Evol. 38:108–27
    [Google Scholar]
  77. Küpper C, Stocks M, Risse JE, Dos Remedios N, Farrell LL et al. 2016. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48:79–83
    [Google Scholar]
  78. Lamichhaney S, Andersson L. 2019. A comparison of the association between large haplotype blocks under selection and the presence/absence of inversions. Ecol. Evol. 9:4888–96
    [Google Scholar]
  79. Lamichhaney S, Berglund J, Almen MS, Maqbool K, Grabherr M et al. 2015. Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature 518:371–75
    [Google Scholar]
  80. Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L et al. 2015. Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biol 16:147
    [Google Scholar]
  81. Lemmon AR, Emme SA, Lemmon EM. 2012. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61:727–44
    [Google Scholar]
  82. Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J et al. 2018. Earth BioGenome Project: sequencing life for the future of life. PNAS 115:4325–33
    [Google Scholar]
  83. Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature 475:493–96
    [Google Scholar]
  84. Liedtke HC, Gower DJ, Wilkinson M, Gomez-Mestre I. 2018. Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat. Ecol. Evol. 2:1792–99
    [Google Scholar]
  85. Linck E, Freeman BG, Dumbacher JP 2020. Speciation and gene flow across an elevational gradient in New Guinea kingfishers. J. Evol. Biol. 33:1643–52
    [Google Scholar]
  86. Liu J, Wang Z, Li J, Xu L, Liu J et al. 2021. A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Res. 31:497–511
    [Google Scholar]
  87. Liu L, Yu L, Edwards SV 2010. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evol. Biol. 10:302
    [Google Scholar]
  88. Liu Y, Liu S, Yeh C-F, Zhang N, Chen G et al. 2018. The first set of universal nuclear protein-coding loci markers for avian phylogenetic and population genetic studies. Sci. Rep. 8:15723
    [Google Scholar]
  89. Livezey BC, Zusi RL. 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linnean Soc. 149:1–95
    [Google Scholar]
  90. Lowe CB, Clarke JA, Baker AJ, Haussler D, Edwards SV. 2015. Feather development genes and associated regulatory innovation predate the origin of Dinosauria. Mol. Biol. Evol. 32:23–28
    [Google Scholar]
  91. Lu Q, Wang K, Lei F, Yu D, Zhao H 2016. Penguins reduced olfactory receptor genes common to other waterbirds. Sci. Rep. 6:31671
    [Google Scholar]
  92. Lynch M. 2007. The Origins of Genome Architecture Sunderland, MA: Sinauer Associates
  93. Manthey JD, Moyle RG, Boissinot S. 2018. Multiple and independent phases of transposable element amplification in the genomes of Piciformes (woodpeckers and allies). Genome Biol. Evol. 10:1445–56
    [Google Scholar]
  94. Mathur S, DeWoody JA 2021. Genetic load has potential in large populations but is realized in small inbred populations. Evol. Appl 14:154057
    [Google Scholar]
  95. McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT. 2013a. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLOS ONE 8:e54848
    [Google Scholar]
  96. McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. 2013b. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenetics Evol. 66:526–38
    [Google Scholar]
  97. Meiklejohn KA, Faircloth BC, Glenn TC, Kimball RT, Braun EL 2016. Analysis of a rapid evolutionary radiation using ultraconserved elements: evidence for a bias in some multispecies coalescent methods. Syst. Biol. 65:612–27
    [Google Scholar]
  98. Meredith RW, Zhang G, Gilbert MT, Jarvis ED, Springer MS 2014. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346:1254390
    [Google Scholar]
  99. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. 2014. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30:i541–48
    [Google Scholar]
  100. Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA et al. 2017. Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358:951–54
    [Google Scholar]
  101. Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H. 2013. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLOS Genet 9:e1003942
    [Google Scholar]
  102. Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H. 2015. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25:1375–80
    [Google Scholar]
  103. Nam K, Ellegren H 2008. The chicken (Gallus gallus) Z chromosome contains at least three nonlinear evolutionary strata. Genetics 180:1131–36
    [Google Scholar]
  104. Natl. Acad. Sci. Eng. Med 2020. Biological Collections: Ensuring Critical Research and Education for the 21st Century Washington, DC: Nat. Acad. Press https://doi.org/10.17226/25592
    [Crossref]
  105. Norell MA, Xu X. 2005. Feathered dinosaurs. Annu. Rev. Earth Planet. Sci. 33:277–99
    [Google Scholar]
  106. O'Connor EA, Westerdahl H, Burri R, Edwards SV. 2019. Avian MHC evolution in the era of genomics: phase 1.0. Cells 8:1152
    [Google Scholar]
  107. Oh KP, Aldridge CL, Forbey JS, Dadabay CY, Oyler-McCance SJ. 2019. Conservation genomics in the sagebrush sea: population divergence, demographic history, and local adaptation in sage-grouse (Centrocercus spp.). Genome Biol. Evol. 11:2023–34
    [Google Scholar]
  108. Ohta T. 1992. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 23:263–86
    [Google Scholar]
  109. Oliveros CH, Field DJ, Ksepka DT, Barker FK, Aleixo A et al. 2019. Earth history and the passerine superradiation. PNAS 116:7916–25
    [Google Scholar]
  110. Opazo JC, Hoffmann FG, Natarajan C, Witt CC, Berenbrink M, Storz JF. 2015. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol. Biol. Evol. 32:871–87
    [Google Scholar]
  111. Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV. 2007. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446:180–84
    [Google Scholar]
  112. Pennissi E. 2018. Researchers reboot ambitious effort to sequence all vertebrate genomes, but challenges loom. Science News Sep. 13. https://www.sciencemag.org/news/2018/09/researchers-reboot-ambitious-effort-sequence-all-vertebrate-genomes-challenges-loom
    [Google Scholar]
  113. Peona V, Blom MPK, Xu LH, Burri R, Sullivan S et al. 2021. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol. Ecol. Resour. 21:263–86
    [Google Scholar]
  114. Peona V, Palacios-Gimenez OM, Blommaert J, Liu J, Haryoko T et al. 2020. The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. bioRxiv 2020.07.31.230854. https://doi.org/10.1101/2020.07.31.230854
    [Crossref]
  115. Peona V, Weissensteiner MH, Suh A. 2018. How complete are “complete” genome assemblies?—An avian perspective. Mol. Ecol. Resour. 18:1188–95
    [Google Scholar]
  116. Pereira SL, Baker AJ. 2006. A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol. Biol. Evol. 23:1731–40
    [Google Scholar]
  117. Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R et al. 2014. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846
    [Google Scholar]
  118. Pigozzi MI, Solari AJ. 1998. Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res 6:105–13
    [Google Scholar]
  119. Pittman M, Xu X 2020. Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers Bull. Am. Mus. Nat. Hist. 440 New York: Am. Mus. Nat. Hist.
  120. Poelstra JW, Vijay N, Bossu CM, Lantz H, Ryll B et al. 2014. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344:1410–14
    [Google Scholar]
  121. Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, Hendy MD, Penny D. 2009. Toward resolving deep Neoaves phylogeny: data, signal enhancement, and priors. Mol. Biol. Evol. 26:313–26
    [Google Scholar]
  122. Price-Waldman R, Stoddard MC. 2021. Avian coloration genetics: recent advances and emerging questions. J. Hered. 112:395416
    [Google Scholar]
  123. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP et al. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–73
    [Google Scholar]
  124. Qu YH, Zhao HW, Han NJ, Zhou GY, Song G et al. 2013. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4:2071
    [Google Scholar]
  125. Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ et al. 2017. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 66:857–79
    [Google Scholar]
  126. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G et al. 2021. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592:737–46
    [Google Scholar]
  127. Rokas A, Holland PWH. 2000. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15:454–59
    [Google Scholar]
  128. Romiguier J, Ranwez V, Douzery EJP, Galtier N. 2010. Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. Genome Res 20:1001–9
    [Google Scholar]
  129. Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS et al. 2019. Convergent regulatory evolution and loss of flight in paleognathous birds. Science 364:74–78
    [Google Scholar]
  130. Salter JF, Oliveros CH, Hosner PA, Manthey JD, Robbins MB et al. 2020. Extensive paraphyly in the typical owl family (Strigidae). Auk 137:ukz070
    [Google Scholar]
  131. Sheldon FH, Bledsoe AH. 1993. Avian molecular systematics, 1970s to 1990s. Annu. Rev. Ecol. Syst. 24:243–78
    [Google Scholar]
  132. Sibley CG, Ahlquist JE. 1990. Phylogeny and Classification of Birds: A Study in Molecular Evolution New Haven, CT: Yale Univ. Press
  133. Sin SYW, Lu L, Edwards SV 2020. De novo assembly of the Northern Cardinal (Cardinalis cardinalis) genome reveals candidate regulatory regions for sexually dichromatic red plumage coloration. G3: Genes Genomes Genet 10:3541–48
    [Google Scholar]
  134. Siva N. 2008. 1000 Genomes project. Nat. Biotechnol. 26:256
    [Google Scholar]
  135. Smeds L, Warmuth V, Bolivar P, Uebbing S, Burri R et al. 2015. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6:7330
    [Google Scholar]
  136. Smith JV, Braun EL, Kimball RT. 2013. Ratite nonmonophyly: independent evidence from 40 novel loci. Syst. Biol. 62:35–49
    [Google Scholar]
  137. Smith SD, Pennell MW, Dunn CW, Edwards SV. 2020. Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35:415–25
    [Google Scholar]
  138. Stiller J, Zhang G. 2019. Comparative phylogenomics, a stepping stone for bird biodiversity studies. Diversity 11:115
    [Google Scholar]
  139. Stryjewski KF, Sorenson MD. 2017. Mosaic genome evolution in a recent and rapid avian radiation. Nat. Ecol. Evol. 1:1912–22
    [Google Scholar]
  140. Suh A. 2016. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool. Scr. 45:50–62
    [Google Scholar]
  141. Suh A, Bachg S, Donnellan S, Joseph L, Brosius J et al. 2017. De-novo emergence of SINE retroposons during the early evolution of passerine birds. Mobile DNA 8:21
    [Google Scholar]
  142. Suh A, Paus M, Kiefmann M, Churakov G, Franke FA et al. 2011. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat. Commun. 2:443
    [Google Scholar]
  143. Suh A, Smeds L, Ellegren H. 2015. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLOS Biol 13:e1002224
    [Google Scholar]
  144. Suh A, Witt CC, Menger J, Sadanandan KR, Podsiadlowski L et al. 2016. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nat. Commun. 7:11396
    [Google Scholar]
  145. Toews DPL, Taylor SA, Vallender R, Brelsford A, Butcher BG et al. 2016. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr. Biol. 26:2313–18
    [Google Scholar]
  146. Toomey MB, Lopes RJ, Araujo PM, Johnson JD, Gazda MA et al. 2017. High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. PNAS 114:5219–24
    [Google Scholar]
  147. Torgasheva AA, Malinovskaya LP, Zadesenets KS, Karamysheva TV, Kizilova EA et al. 2019. Germline-restricted chromosome (GRC) is widespread among songbirds. PNAS201817373
    [Google Scholar]
  148. Turbek SP, Browne M, Di Giacomo AS, Kopuchian C, Hochachka WM et al. 2021. Rapid speciation via the evolution of pre-mating isolation in the Iberá Seedeater. Science 371:eabc0256
    [Google Scholar]
  149. Tuttle EM, Bergland AO, Korody ML, Brewer MS, Newhouse DJ et al. 2016. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26:344–50
    [Google Scholar]
  150. Vianna JA, Fernandes FAN, Frugone MJ, Figueiró HV, Pertierra LR et al. 2020. Genome-wide analyses reveal drivers of penguin diversification. PNAS 117:22303–10
    [Google Scholar]
  151. Walsh J, Benham PM, Deane-Coe PE, Arcese P, Butcher BG et al. 2019. Genomics of rapid ecological divergence and parallel adaptation in four tidal marsh sparrows. Evol. Lett. 3:324–38
    [Google Scholar]
  152. Waltari E, Edwards SV. 2002. Evolutionary dynamics of intron size, genome size, and physiological correlates in archosaurs. Am. Nat. 160:539–52
    [Google Scholar]
  153. Wang K, Zhao H 2015. Birds generally carry a small repertoire of bitter taste receptor genes. Genome Biol. Evol. 7:2705–15
    [Google Scholar]
  154. Wang N, Braun EL, Kimball RT. 2012. Testing hypotheses about the sister group of the Passeriformes using an independent 30-locus data set. Mol. Biol. Evol. 29:737–50
    [Google Scholar]
  155. Wang P, Burley JT, Liu Y, Chang J, Chen D et al. 2020. Genomic consequences of long-term population decline in brown eared pheasant. Mol. Biol. Evol. 38:263–73
    [Google Scholar]
  156. Wang ZJ, Chen GJ, Zhang GJ, Zhou Q. 2020. Dynamic evolution of transposable elements, demographic history, and gene content of paleognathous birds. Zool. Res. 42:51–61
    [Google Scholar]
  157. Warren WC, Hillier LW, Tomlinson C, Minx P, Kremitzki M et al. 2017. A new chicken genome assembly provides insight into avian genome structure. G3: Genes, Genomes, Genet 7:109–17
    [Google Scholar]
  158. Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H 2014. Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biol 15:549
    [Google Scholar]
  159. Weissensteiner MH, Bunikis I, Catalan A, Francoijs KJ, Knief U et al. 2020. Discovery and population genomics of structural variation in a songbird genus. Nat. Commun. 11:3403
    [Google Scholar]
  160. Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F et al. 2014. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346:1256780
    [Google Scholar]
  161. Wright AE, Fumagalli M, Cooney CR, Bloch NI, Vieira FG et al. 2018. Male-biased gene expression resolves sexual conflict through the evolution of sex-specific genetic architecture. Evol. Lett. 2:52–61
    [Google Scholar]
  162. Wright NA, Gregory TR, Witt CC 2014. Metabolic ‘engines’ of flight drive genome size reduction in birds. Proc. R. Soc. B 281:20132780
    [Google Scholar]
  163. Xu L, Auer G, Peona V, Suh A, Deng Y et al. 2019a. Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nat. Ecol. Evol. 3:834–44
    [Google Scholar]
  164. Xu L, Wa Sin SY, Grayson P, Edwards SV, Sackton TB. 2019b. Evolutionary dynamics of sex chromosomes of paleognathous birds. Genome Biol. Evol. 11:2376–90
    [Google Scholar]
  165. Xu L, Zhou Q. 2020. The female-specific W chromosomes of birds have conserved gene contents but are not feminized. Genes 11:1126
    [Google Scholar]
  166. Yazdi HP, Ellegren H. 2018. A genetic map of ostrich Z chromosome and the role of inversions in avian sex chromosome evolution. Genome Biol. Evol. 10:2049–60
    [Google Scholar]
  167. Yin ZT, Zhu F, Lin FB, Jia T, Wang Z et al. 2019. Revisiting avian ‘missing’ genes from de novo assembled transcripts. BMC Genom 20:4
    [Google Scholar]
  168. Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. 2020. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 30:553–65
    [Google Scholar]
  169. Zhang C, Rabiee M, Sayyari E, Mirarab S 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformat 19:153
    [Google Scholar]
  170. Zhang G, Jarvis ED, Gilbert MTP. 2014a. A flock of genomes. Science 346:1308–9
    [Google Scholar]
  171. Zhang G, Li B, Li C, Gilbert MTP, Jarvis ED et al. 2014b. Comparative genomic data of the Avian Phylogenomics Project. GigaScience 3:26
    [Google Scholar]
  172. Zhang G, Li C, Li Q, Li B, Larkin DM et al. 2014c. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–20
    [Google Scholar]
  173. Zhang Q, Edwards SV. 2012. The evolution of intron size in amniotes: a role for powered flight?. Genome Biol. Evol. 4:1033–43
    [Google Scholar]
  174. Zhao H, Li J, Zhang J 2015. Molecular evidence for the loss of three basic tastes in penguins. Curr. Biol. 25:R141–42
    [Google Scholar]
  175. Zhou Q, Zhang J, Bachtrog D, An N, Huang Q et al. 2014. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346:1246338
    [Google Scholar]
  176. Zhou T, Shen X, Irwin DM, Shen Y, Zhang Y. 2014. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds. Mitochondrion 18:70–5
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-012121-085928
Loading
/content/journals/10.1146/annurev-ecolsys-012121-085928
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error